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Abstract: Cloud computing is a promising concept for the implementation of scalable on-demand computing infrastruc-
tures, where resources are provided in a self-managing manner based on predefined customers requirements.
A Service Level Agreement (SLA), which is established between a Cloud provider and a customer, specifies
these requirements. It includes terms like required memory consumption, bandwidth or service availability.
The SLA also defines penalties for SLA violations when the Cloud provider fails to provide the agreed amount
of resources or quality of service. A current challenge in Cloud environments is to detect any possible SLA
violation and to timely react upon it to avoid paying penalties, as well as reduce unnecessary resource con-
sumption by managing resources more efficiently. In resource-shared Cloud environments, where there might
be multiple VMs on a single physical machine and multiple applications on a single VM, Cloud providers
require mechanisms for monitoring resource and QoS metrics for each customer application separately. Cur-
rently, there is a lack of generic classification of application level metrics. In this paper, we introduce a novel
approach for classifying and monitoring application level metrics in a resource-shared Cloud environment.
We present the design and implementation of the generic application level monitoring system. Finally, we
evaluate our approach and implementation, and provide a proof of concept and functionality.

1 INTRODUCTION ely, meaning that Cloud providers are required to
monitor metrics at the application layer in the Cloud

Cloud computing represents a novel and promising environment, referred to as application level metrics.
approach for providing on-demand computing re- Currently, a virtualization technology is deeply
sources to remote customers on the basis of Serviceused to share resourcesin Cloud environments. Cloud
Level Agreements (SLAs) defining the terms of usage providers are now capable of running multiple vir-
and provisioning of these resources. Additionally, an tual machines (VMs) on a single physical machine
SLA defines metrics (Ludwig et al., 2003; Patel et al., or even multiple applications on a single VM. How-
2009) that represent measurable attributes of a serviceever, monitoring only a physical machine or even a
that is being provided and can be expressed as a nuVVM in a resource-shared environment, does not pro-
merical value, e.g., 98% favailability. SLA metrics vide enough information for measuring the applica-
include resource descriptions, e @RU andstorage tion’s resource consumption, detecting SLA viola-
and a quality of service to be guaranteed, egail- tions, and thus, managing resources efficiently. In
ability andresponse timeThey must be monitored by  order to properly implement managing mechanisms,
a Cloud provider in order to allocate the right amount a Cloud provider is required to measure metrics for
of resources to a customer. each application (Cao et al., 2009), and thus, perform

On the one hand, a Cloud provider wastes re- application level monitoring. Furthermore, applica-
sources, if he allocates more than a customer is using tion level metrics lack a generic and adequate classifi-
which consumes significant amount of energy (Duy cation, which makes their usage in other management
et al., 2010; Mehta et al., 2011); and on the other mechanisms difficult, such as in application schedul-
hand, if he allocates the exact amount of resources,ing. Appropriate metric classification is a big chal-
there is a risk of SLA violations once the customer’s lenge in achieving monitoring for purpose of efficient
usage increases beyond that allocation. Moreover,scheduling and detecting SLA violations in resource-
SLA metrics are defined for each application separat- shared Cloud environments.
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In this paper we present a novel model-driven ap- However, they do not provide measuring details for
proach for generic application level monitoring in a specified metrics.
resource-shared Cloud environment. We first present  There are also approaches dealing with metric
the Cloud Metric Classification (CMC) approach for monitoring like Runtime Model for Cloud Monitor-
classifying application level metrics, which forms the ing (RMCM) presented in (Shao et al., 2010). RMCM
basis for the implementation of our novel application is also used in (Shao and Wang, 2011) for perfor-
monitoring framework. CMC consists of four models mance guarantee in Cloud environments. It uses sev-
where each model distinguishes metrics by a single eral mechanisms for monitoring resource consump-
characteristic. tion and performance including Sigar tool, JVM mon-

Based on CMC we introduce a generic application itoring, JMX and service probing. However, RMCM
level monitoring model for a resource-shared Cloud focuses on Web applications, while it does not pro-
environment referred to as M4Cloud, which is ca- vide a generic approach for interfacing these met-
pable of monitoring application level metrics at run- rics. (Rak et al., 2011) introduces Cloud Application
time. We describe our M4Cloud model as a com- Monitoring for mOSAIC framework, which provides
ponent based model consisting of three core compo-API for developing a portable Cloud software. How-
nents. Moreover, we present its main Application ever, it offers a generic interface limited only to the
Level Monitoring component implemented using an mOSAIC framework, while it depends on monitoring
Agent-Server architecture. We utilize Sigar tool (Hy- tools like ganglia, nagios etc. Authors in (Lee and
peric, 2010) as the Agent's core monitoring compo- Hur, 2011) provide Platform Management Frame-
nent. work for the ETRI Saa$S platform based on services,

The rest of the paper is organized as follows: which includes system level monitoring in a resource-
Section 2 presents an overview of the related work. shared environment. Beside system level metrics like
Section 3 introduces CMC for classifying applica- CPU, memory sessionsandthreads the authors also
tion level metrics by explaining each model sepa- mentiontenant userand servicemonitoring. How-
rately. Section 4 covers the conceptual design of the ever, no indication or description of application level
M4Cloud model. Section 5 describes the design and metrics is provided. To the best of our knowledge,
implementation of the Application Level Monitoring none of the discussed approaches deals with a generic
component. Section 6 deals with the evaluation of our monitoring approach of application level metrics in an
approach, and presents the results. Finally, Section 7arbitrary Cloud environment.
concludes our work and discusses the future work.

3 APPLICATION LEVEL
2 RELATED WORK METRICS

We present in this section an overview of the related In this section, we provide a use-case scenario for a

\t/_vorIT forla m‘?tt“‘? classmcau;)n, ES V‘{ﬁ" as ;ppllcéll_- discussion on a metric classification. We use several
lon Ievel monitoring approaches by othe€rautnors. 10 myetyics a5 an example and describe overlapping met-

olur kf}pwlgdge, tngrr]e IS nolgomr_nonlyltl’:\ccepyed MENC e characteristics. Finally, we present our CMC ap-
classification, which would satisfy all requirements ., o1, for classifying application level metrics using

imposed by Cloud environments. In (Cheng et al., the exambple metrics from the use case
2009) the authors define a basic mathematical differ- xamp ! . '

ence between metrics by creating two categoriis:

rect andcalculablemetrics, also referred assource Cloud Metrics Use Case. We use a Cloud environ-
andcompositemetrics in (Patel et al., 2009; Ludwig ment use-case shown in Figure 1 that takes the fol-
et al., 2003). Although commonly used, this clas- lowing metrics as an input data for managing Cloud
sification does not provide means to distinguish ap- resources and defining SLA objectiveSPU usage
plication level metrics by some other criteria. How- response tim@andnumber of database (db) entities
ever, we use this classification as theasurement  CPU usageandresponse timean be measured for
basedmodel in our CMC. In (Alhamad et al., 2010) every application as represented with circle shapes in
the authors define metrics for certain Cloud deploy- Figure 1. However, metrics represented with rectan-
ment modelsl@aS PaaSandSaa3. They use met-  gular shapes can be measured only for specific appli-
rics like Reliability, Scalability etc., thus, providing cations. In our use caseumber of db entitiesan

a more of an abstract overview, serving as a guide- be measured only for a database application. If we
book for a Cloud consumer when signing an SLA. implement a scheduling algorithm, which usaesn-
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Table 1: Metric classification examples using CMC modelfeantaining two classes.

Model Class || Memory | Response timg Uptime | Query speed
. Generic X X X
Application based Specific «
Measurement based 2'&Ct X
Calculable X X X
. Shared X X
Implementation based | ..
Individual X X
Nature based Quantity X X
Quality X X

ber of db entitiegnetric as an input data, the mech-

anism would be dedicated only for database applica- ‘;esps:e]

tions. Moreover, a Cloud provider has to specify how . 5\“?; .

these metrics are being measured. Whilenber of .7 " Ts.
4 A

db entitiesis a raw value (marked with symbdlin
Figure 1),CPU usageandresponse timdéave to be M “ w
calculated from several other metrics, and are marked a4 _ .

with symbolcin Figure 1; e.g.response timés calcu-

Database

Processing Image

lated using theequest received timestan(tp) and the S—— &iication S— VM
response sent timestanip), as shown by the Equa-
tion 1 (Norton and Solutions, 1999).
MM
ResponseTime t; —t3 (1) 4
1
Although response time&an be measured for all Vs \ @
applications, metrict andt, cannot be acquired the [ CPU | | fumbero
pplicati J ! E- U2 qui i | usage db entities
same way for all applications. Thus, a Cloud provider
has to implement different mechanisms for measuring , .
. . . . easurable for d Direct or - Separate measuring
response timefor each application separately. This | eveyapplication raw metrics mechanisms
is shown in Figure 1 with dotted arrows, where MM || Measurable only for - ¢} Calculable Shared measuring
. . . specific applications metrics mechanisms
represents a measuring mechanism for a single met
ric. Number of db entitiesbviously requires a sep- Figure 1: Use-case scenario with metric overview.

arate implementation as it can only be measured for
specific applications. Finally, a Cloud provider has
to define these metrics within an SLEPU usage
andnumber of db entitiesan be defined and charged
by the amount customer is using and are placed be-
low applications in Figure 1.Response timeepre-
sents a quality of service (QoS), thus, it is defined as
a threshold depending on the application type and the
application input data. QoS metrics are placed above

applications in Figure 1. which distinguishes it by an application for which this

Inlor((:ijer to.respond to challenges prlesednted N metric is being measured; (ii) after theasurement
our Cloud metrics use case, we present Cloud Metric 550 qmodel is applied to it that defines a mathemat-

Clas_S|f|ca_t|gn (CMC) forﬁla_lssﬁyn:g aPp"Caﬁ'O” Ieve_l ical equation to measure/calculate metric; (i) next
metrics with respect to their overlapping characteris- step is thelmplementation basethodel, which de-

tics. fines a metric measuring mechanism using the equa-
. . tion defined in the previous step; (iv) final step is us-
3.1 Cloud Metric Classification (CMC) ing the Nature basednodel to define a nature of a
metric and its definition within an SLA. Table 1 con-
In this section, we describe each CMC model sep- tains summary of CMC models along with the exam-
arately by applying them on metrics used in the ples. Next, we provide a detailed explanation for each
Cloud metrics use case. CMC includesApplica- model:

tion based (ii) Measurement basediii) Implemen-
tation basedand (iv) Nature basedmodels. Using
these models, each metric can and must be classified
in order to be used for generic application level mon-
itoring in our M4Cloud model described in Section 4.
All CMC models are applied on an individual met-
ric by following these specific procedures: (i) a met-
ric is first classified by thépplication basednodel,
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Application based model defines if a metric can
be applied on an individual or on all applications.
Consequently, this model defines two classes: (a)
generic- metrics that can be measured for every ap-
plication, e.g.CPU usageandresponse timeand (b)
specific- metrics that depend on additional informa-
tion that an application can provide by having specific
functions. Consequently, we can only measspe-
cific metrics which an application is providing, e.g.,
number of db entities

Measurement basedmodel defines how a met-
ric is measured or calculated. This model relies on a
categorization introduced by (Cheng et al., 2009) and
defines two classes: (d)rect - metrics that are mea-
sured and useds iswithout further processing, e.g.,
number of db entitiesand (b) calculable - metrics
which are calculated from two or more other metrics,
director calculable e.g.,CPU usagéEquation 2) and
response tim¢Equation 1).

CPUtime&ppiication 2)
CPUt'm%ystem

Implementation basedmodel defines how metric
measuring mechanisms can be implemented for cer-
tain applications. Consequently, this model defines
two classes: (ayhared- metrics for which a single
measuring mechanism can be implemented to suppor
all applications, e.g.CPU usageand (b)individual
- metrics for which a measuring mechanism has to
be implemented for each application separately, since
not all applications provide same interface or a metric
information in a uniform way, e.gresponse timand
number of db entities

Nature based model defines nature of a met-
ric and its definition within an SLA. It includes two
classes: (ajuantity - metrics that are defined as
amount of resources being provided/rented to a con-
sumer, e.g.CPU usageand number of db entities
and (b)quality - metrics that represent a quality of
service that is guaranteed within some threshold, e.g.,
response time

CMC models provide a clear metric classification
used for utilizing metrics on-demand in our M4Cloud
model. Moreover, they provide basis for defining
standardized set of metrics for different application
types as suggested in (Ludwig et al., 2003).

x 100

CPUusage=

4 DESIGN OF GENERIC
APPLICATION LEVEL
MONITORING SYSTEM

In this section, we discuss the application level moni-
toring in a resource-shared Cloud environment. We

ENVIRONMENTS

introduce our generic monitoring model M4Cloud
that implements the CMC approach described in Sec-
tion 3. We explain its role in an arbitrary Cloud Man-
agement System (CMS), which supports fully cus-
tomized components. In our model, we use the FoSlI
infrastructure (Brandic, 2009) as a CMS, developed
at Vienna University of Technology in context of the
FoSll project (FoSll, 2011). Finally, we describe an
implementation of the M4Cloud main component -
the Application Level Monitoring component.

Figure 2 presents the M4Cloud model, as well as
its relations to FoSlIl as a CMS. FoSllI offers a model
foran autonomic knowledge-based SLA management
and enforcement using the MAPE lodddnitoring,
Analysis Planningand Executiof). Monitored data
is analyzed and stored within a knowledge database.
Data from the knowledge database is used for plan-
ning and suggesting actions. After an action has been
executed, monitored data is again acquired and ana-
lyzed for evaluating action’s efficiency. FoSlII consists
of two core components: (i) the LoM2HiS frame-
work introduced by (Emeakaroha et al., 2010), used
for mapping metrics on a resource layer to SLA spec-
ified metrics; (ii) the Enactor component introduced
by (Maurer et al., 2011). It implements a knowledge-
based management system for provisioning resources

in a self-adaptable manner. Finally, FoSIl includes

an SLA-aware scheduler introduced by (Emeakaroha
etal., 2011a), which decides where a user application
will be deployed.

In order to provide full functionality, FoSII re-
quires a metric monitoring system which can pro-
vide a necessary application monitored data. For this
purpose, we introduce our M4Cloud model consist-
ing of three core components: Application Deployer
(AD), Metric Plugin Container (MPC) and Applica-
tion Level Monitoring (ALM) component.

As shown in Figure 2, the Scheduler decides
where customer’s application will be executed. Af-
ter that, it sends a request to the AD that deploys
an application to a designated VM, starts it and re-
trieves its ID. It also deploys plugins to MPC con-
taining measuring mechanisms fodividualmetrics.
Finally, it forwards ID of the deployed application to
the ALM component. Using the application ID, the
ALM component tracks down customer’s application
and monitors it using the metric plugins. Acquired
monitored data, consisting of metric values, is stored
in a database, as well as directly forwarded to the
LoM2HiS framework. If there is a risk of an SLA
violation or some resource is being underutilized, En-
actor Component performs an action in order to cor-
rect the situation. Additionally, monitored data from
the database can be used by the Knowledge System
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for application profiling. Measurement basedodel in a DSI format. Devel-
opment of the appropriate DSL interface is a subject
of an ongoing work; (iii) a type of implementation by
the Implementation basechodel including the inter-
face type; (iv) a threshold or amount defined by the
Nature basednodel.

(3) Application Level Monitoring - ALM compo-
nent serves as a central component used for measuring

FoSll infrastructure
request

Enactor

|

I

i

: SLA-aware LoM2HiS
|

|

I

|

leamn |

v Ma4cCloud | metrics, storing monitored data into the database, and
g gl i forwarding data to a CMS. It uses ID received from
kS level | 7 v AD for monitoring individual applications, and MPC
- Monitoring — to utilize metrics on-demand as requested by an SLA
Agggfj;'e"r" (ALM) o description. The functionality and implementation of

this componentis fully described in Section 5.

FoSIl components on top of Figure 2 represent
deploy | o ntainer third party CMS components. VM in Figure 2
T (MPC) represents Cloud resources provisioned by a Cloud
----- I G B B provider. Finally, Application is a software deployed
by a Cloud consumer. In the following section we
discuss more about ALM component and its imple-
mentation.

(AD); e

Metric Plugin

deploy
and start

monitor

manage resources

Cloud infrastructure

Figure 2: M4Cloud model.
5 IMPLEMENTATION OF THE
4.1 MA4Cloud Infrastructure Overview APPLICATION LEVEL

After explaining roles of the M4Cloud components MONITORING (ALM)
(Figure 2), here we provide a description of their in- COMPONENT
ternal structure and functions. ) )
(1) Application Deployer - AD component is used Usually, Cloud enwronme_nts COﬂSIS.t of Cloqdh-
to deploy applications, achieve automatic metric plu- Mmentsrepresented by physical machines running one
gin deployment and identify applications for indi- Or several VMs, which serve as a platform for run-
vidual monitoring. In our model, we assume that a Ning customer’s applications. Thes&mentscon-
CMS has already generated an SLA description of a Sist of the following three layers, as shown in Figure
customer’s application in a WSLA format including: 3 (i) Physical layer with physical machines which
application name, version, metrics to be monitored, ¢an include Hypervisor, (ii) System layer with VMs,
thresholds etc. Applications are automatically iden- @nd (iii) Application layer where customer’s applica-
tified using the SLA description received from the tions are running. Monitoring application level met-
CMS. Afterwards, they are matched to required plug- ficS needs to be done on the Application layer. Conse-
ins using a plugin’s metadata in a standard data formatduently, this requires metric measuring mechanisms
like JSON, XML etc. The Application is started and {0 be applied on that layer. We use an Agent, as
assigned an ID. part of ALM, for utilizing metric measuring mech-
(2) Metric Plugin Container - MPC supports the anisms on-demand and monitoring application Ie\_/eI
concept of a dynamic plugin loader, which can uti- Metrics. The Agent represents a standalone applica-
lize metrics by using plugins deployed by AD. Plu- tion fchat_ runs on the Ap_pllcanon layer amongst other
gins are classified using the CMC approach and uti- applications, as shown in Figure 3. .
lized on-demand by MPC through a generic inter-  Additionally, the Agent has to monitor metrics pe-
face. The generic interface is achieved with an object- fodically on a predefined interval This requires a
oriented development using abstract classes, as weltimer-like function for each application separately, as
as dynamic libraries. The classification is done within intervals can be arbitrary. This is shown in Figure 4
the plugin’s metadata which defines: (i) applications Where one Agent, running on a single VM, monitors
to which this plugin is applied to by thapplication ~ three applications running on the same VM. Each ap-
basedmodel; (ii) metric function dependencies by the Plication has its own measuring intervai (r2, and

1Domain Specific Language.
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Application layer Applications

Agent

N

Figure 3: Cloud element layers.

rs3), and a different start timety( to, andts). Since
defining a monitoring interval is not a trivial task,
we refer to (Emeakaroha et al., 2011b), where an ap-
proach for defining monitoring interval has been sug-
gested.

Application 3
Application 2

Application 1

&

Figure 4: Time view of measuring procedure for three ap-
plications.

In order to distinguish one application from an-
other, and to monitor each application separately, the
Agent has to identify each application by a unique
parameter. For this purpose, we use the process |
called PID (Linfo, 2011). Each application consists
of one or more processes, each of them having the
unigue PID. While an application is being started, op-

ENVIRONMENTS

immediately. However, in order to monitor metrics,
the Agent must include consumption of all descend-
ing processes belonging to the application. We use the
sameparent-childrelationship in order to build a list

of PIDs for a single application. Using the PID list,
we can easily sum up a resource consumption of all
processes belonging to the monitored application and
calculate total resource consumption in a mormtent
as expressed with the Equation (3). Table 2 lists met-
rics measured by ALM using a Sigar tool in our im-
plementation. Metrics are classified using the CMC
approach described in Section 3.

R(total) =R (P1) +R(P) + ...+ R(Pn)  (3)

A specifiometrics by théApplication basednodel
do not share this approach, as they are implemented
and measured within an application itself, and col-
lected through an external API by the Agent. An ex-
ample is given in Section 6.1 with thender time per
framemetric on a real world application. In the fol-
lowing sections, we discuss the infrastructure of the
ALM component.
5.1 Infrastructure Overview
For implementing the ALM component, we used
an Agent-Server architecture (Figure 6) consisting

pof two main components: (iAgent is a small,

lightweight monitoring mechanism, which runs as
a standalone application on every VM/node in the
Cloud. Its task is to measure and gather monitored

erating system creates a main process and assigns P[§at@ of one or more applications running on a subject

to it. The main process, also calledparent pro-
cess, can create other processes caléld processes
(MSDN, 2011). In Figure 5, process P.0 iparentto
processes P.01 and P.02, while process P.0Ogasent
to a process P.021.

Parent

_| Child
rocess

process p.o1

Child

process p.o2 Child

process p.o21

Figure 5: Application’s process tree.

Getting the PID once the process has started is not
a trivial task, as an operating system can run hun-
dreds of processes. We use the Agent asptirent
process to start customer’s applications. Oruteéld)
process of a customer’s application has started, it re-
ports its PID back to garentprocess, in our case
the Agent. This way, the Agent can start monitoring

VM, and to forward acquired data to the Server. This
is the Agent described in Section 5; (®erveris an
application running on a separate physical element,
serving as a central point of the entire ALM com-
ponent. It is used for managing remote Agents, re-
ceiving monitored data and storing it into a database.
Infrastructure combined of one Server and multiple
Agents is referred to as M4Cloud Branch, as shown
in Figure 6. It can be used for smaller Cloud systems
up to several hundreds of VM instances. However,
larger Cloud systems can use a cluster of M4Cloud
Branches, all managed by the Dynamic Cluster Bal-
ancer. A function of the Dynamic Cluster Balancer
is to balance a communication load created by the
Agents. The Agent supports dynamic change of a
Server destination, thus, it can be easily redirected to
another Server instance for purpose of load balancing.
Dynamic Cluster Balancer in this case can use an arbi-

trary algorithm to determine the number of M4Cloud

Branches in a cluster, as well as redirect the Agents to
another M4Cloud Branches to optimize the load.
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Table 2: Classification of the CPU and Memory metrics usingdpproach.

CPU metrics Memory metrics
User | Kernel | Total | cpU
Model Class time | time | time | usage| Resident| Shared| Virtual
.. Generic X X X X X X X
Application based Specific
Measurement based Direct X X X X X
Calculable X X
. Shared X X X X X X X
Implementation based | -
Individual
Nature based Quantity X X X X X X X
Quality
Dynamic

[ . M4Cloud :

: r | Branch ! Server

' |

| ]

| |

: | Agent Agent
' |

| |

Figure 6: Agent-server architecture.

_________________

5.2 Server Implementation

Figure 7: Server infrastructure overview.

The Server is implemented as a non-GUI desktop ap-
plication written entirely in Java. It consists of the
following components as shown in Figure 7: \(ieb
interface (Ul)is a user interface implemented with
Java Server Faces used for managing entire ALM
component through the Server application. It sends
monitoring instructions to the Server used for start-
ing the application, defining measuring interval and
metrics for monitoring; (ii)Ul connectionis a socket
connection that receives monitoring instructions and
forwards them to the Core component; (i@pre is

the main component, which controls all other com-
ponents; (iv)Connection manageis an ActiveMQ
messaging system for managing connections with the
remote Agents. It is used for sending monitoring in-
structions and receiving monitored data; DB con-
nectionis a JDBC connection to a MySQL database
used for storing monitored data.

tion being monitored. It is used for receiving moni-
toring instructions and sending monitored data to the
Server; (ii)Core is the main component which con-
trols all other components; (iidpplication starteris
a component written in C for starting a targeted ap-
plication using a run command from the monitoring
instructions. It performs functionality of the AD com-
ponent by retrieving the application’s PID and return-
ing it to the Core component. Moreover, it connects
to the Agent through a Java API implemented using
Java Native Interface; (iMprocess seekas used for
building a PID list of a targeted application using the
Sigar tool. It returns the PID list to the Core compo-
nent; (v) Plugin interfaceis a Java interface for uti-
lizing metric measuring mechanisms using the plug-
ins from MPC; (vi)Sigaris a well known monitoring
tool implemented in C with Java APl used by the Pro-
] cess seeker component. It is also used for measuring
5.3 Agent Implementation sharedmetrics of applications. Except Sigar, which
measuresharedmetrics, plugins foindividual met-
The Agent is also a non-GUI desktop application im- rics are accessed through MPC.
plemented in Java with some partitions of portable
C code. It consists of the following components as
shown in Figure 8: (i)Connectionis an ActiveMQ
connection with multiple sessions for each applica-
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—————————————————————————————————

Java API

Process

Java API

Application

Server

Connection ActiveMQ <+———>

i

Plugin interface

Metric Plugin

ENVIRONMENTS

tion is completed, both the Agent and the Server are
stopped. Additional evaluation includes monitoring
Agent’s resource consumption. This is done within
the Agent itself using already implemented Sigar tool.
Resource consumption data is stored within a local
text file.

Test 1: Each application is executed indepen-
dently on a VM. Since both Scilab and FFmpeg are
CPU intensive applications, t&PU usagds almost

Container (MPC)

________________________________

Figure 8: Agent infrastructure overview.

constant at 100% during runtime.

Test 2: For the simplicity of tests and present-
ing results, we run only two applications in parallel.
However, the same approach could apply for running
several applications. Figure 9 shows tbBU usage
of the applications running in parallel. Since both ap-
plications are CPU intensive, there is a performance
impact by one application to another. Figure 10 shows
the memory consumption of the FFmpeg application.
Since execution time is prolonged due to a lower CPU

For our evaluation we use VMs running Ubuntu Usage as seen in Figure 9, the memory usage is also
Server 10.04 edition with 1GB of RAM and one CPU  Prolonged on the time axis. This shows how one met-
core within a single M4Cloud Branch. We run sev- ric can impact on other metric, directly or indirectly.
eral types of evaluation tests, which we can divide
into two groups: (i) Agent side tests, and (ii) Server
side tests. (i) For the Agent side tests we use two
VMs: one for running the Agent and one for running
the Server application. The test are performed on a
real world applications including Scilab - a free soft-
ware for numerical computation, and FFmpeg - cross
platform solution to record, convert and stream au- 20
dio and video. (ii) For the Server side tests we used o
four VMs: one for running the Server application and 0 100 200 300 400 300 600
up to three VMs for running SimAgent Deployers for _
simulating distributed environment. Additionally, we Figure 9: CPU usage of Scilab and FFmpeg from Test 1 and
evaluate MySQL database. We implemented a small Test2.
benchmark application, whose task is to continuously
store packages, but within an infinite loop and without
any additional workload. The packages are the same
as those received during a real runtime.

The setup and results of these tests are presented
in following sections: for Agent side tests in Section
6.1 and in Section 6.2 for Server side tests.

6 EVALUATION

Render time
| CPUFFmpeg ~ -------

Running parallel:

cpu usage [%]

CPUFFmpeg
CPUscilab B —

700 800

40

running alone = ||
running parallel - -« -+ )
.

6.1 Agent Evaluation Results 7o 300 300 300 So0 600

time [sec]

Here we present the evaluation approach, as well asFigure 10: Memory usage of FFmpeg while running alone
the results for the Agent side tests. The tests are per-(Test 1) and parallel (Test 2).

formed on a single VM running a single Agent. This

reflects a real Cloud environment, since the Agentis  Moreover, we implemented an additional metric
not aware of other nodes but the one it is running for monitoring: render time per framé¢hat measures
on. The tests are performed with Scilab and FFm- time needed to render a single video frame by FFm-
peg applications running alone, as well as running in peg. Obviously, this is apecificmetric by theAppli-
parallel. Monitored data is collected by the Server cation basednodel since it can be monitored only for
running on a different node/VM. After an applica- FFmpeg in our example, as well asdividual met-
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ric by the Implementation basethodel as it has to  Server. We run these tests with 13 metrics per simu-
be monitored by a separate measuring mechanism.lated application, and the increasing number of Sim-
However, since FFmpeg does not natively provide this Agents/simulated applications (Table 3). A SimAgent
metric, we implemented it by changing the source simulates deployment of a new application every one
code of the application. This clearly shows tlspe- second with a random measuring interval between 5
cific metrics cannot be measured if an application and 20 seconds for a metric. Tests are performed until

does not provide an interface for it. Monitored data a throughput limit is detected.

of this metric is stored into a local text file. Figure 9
shows how th€€PU usageffects theender time per

Table 3: Server side test configurations.

frame m_etnc by creating high peeks where 68U Tes Sim SimAppIications Total no.
usageslightly drops down. no. | Agents| per SimAgent | of Metrics
Finally, we monitor the performance of the Agent. 31 1 17200 10 56000
Figure 11 shows th€PU andmemory usagef the 3.2 | 175100 50 65000
Agent in_ relation with the number of applications be- 3.4 | 3*100 55 97500
ing monitored at certain time step. As seen from the 35 | 2¥100 0 130000

results, the Agent does not affect overall VM perfor-
mance since it is using a small percentage of the CPU,
as well as a small amount of memory. Since the ALM “thread SimAgent #1
component aims only on application level metrics, its '
hardware requirements are considerably below simi- ' g;,agen¢ thread SimAgent#2

Server E

lar tools like Hyperic HQ (Hyperic, 2011). deployer
25 5 _thread  SimAgent#n
- — AR
g ig - S Figure 12: Server’s scalability testbed using SimAgents.
R 52
S cp il 5 . .
32 s e 2|8 Test 3: Figure 13 shows a cumulative number
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Figure 11: Agent’s resource consumption in comparison
with a number of monitored applications.

n
\
y
\

=)
\
A
\

6.2 Server Evaluation Results

o
n

In this section we present evaluation results for the
Server side tests, as well as the evaluation approach.
The tests are performed in an emulation like en-
vironment with one Server application on a single
M4Cloud Branch. The Server application is started
on a separate node/VM, while the remote Agents are  As seen from the Figure 13, the Server is able to
simulated using SimAgent Deployer. SimAgent De- receive all packages being sent by these 200 SimA-
ployer is an application that starts dozens of threadsgents. However, stagnation in the number of pack-
called SimAgents as shown in Figure 12. Every Sim- ages being stored into the DB is due to a large num-
Agent simulates one Agent by sending predetermined ber of concurrent threads trying to access the DB con-
metric values to the Server without performing any nection component of the Server application. This
real monitoring, thus, creating a realistic communi- represents the throughput limit for a single M4Cloud
cation load on the Server. We measure three pointsBranch and is slightly below 1000 packages per sec-
of interest during test runtime: (1) number of pack- ond as seen in Figure 14. Although, the Server can
ages sent by the SimAgents, (2) number of pack- continue working, it cannot catch up with the increas-
ages received by the Server and (3) number of pack-ing number of received packages, unless the receiv-
ages stored into the database. After several minutesing speed decreases below the limit. Using the clus-
of execution, SimAgents are stopped, as well as thetering approach described in Section 5.1 solves this

cumulative number of packages

(=]

o

50 100 150 250 300 350 400

200
time [sec]

Figure 13: Packages transmitted during test 3.5 runtime.
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problem, by distributing a load to multiple Servers. ments, which overcomes these shortages. M4Cloud
However, our goal is to increase this limit in order to provides a generic approach for acquiring any metric
provide greater scalability. This way, we would re- data, thus, providing an interface for other CMS com-
quire fewer M4Cloud Branches for large Clouds. By ponents.

implementing multi-threaded queues and utilizing a Implementing Application Deployer and Metric
database connection pool, this limit can be distinctly Plugin Container is part of our ongoing research
increased (Chamness, 2000). However, a databasavork. We also intend to integrate our model with
limitation still remains a bottleneck. other Cloud Management System components to pro-
vide full support for scheduling and SLA violation de-
tection mechanisms. Additionally, we are working on
introducing new metrics using our CMC approach, as
well as extending it to include Security, Performance
and other metric types. Our future work will be fo-
cused on resource sharing itself in order to provide
a generic, secure and flexible resource-shared Cloud
environment.
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