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Abstract: The Apache Hadoop software library is a framework for distributed processing of large data sets, while HDFS
is a distributed file system that provides high-throughput access to data-driven applications, and MapReduce
is software framework for distributed computing of large data sets. The huge collections of raw data require
fast and accurate mining process in order to extract useful knowledge. One of the most popular techniques
of data mining is the K-means clustering algorithm. In this paper, we developed a distributed version of the
K-means algorithm using the MapReduce framework on the Hadoop Distributed File System. The theoretical
and experimental results of the technique proved its efficiency.

1 INTRODUCTION follows the Single Program Multiple Data (SPMD)
paradigm. It can be implemented by using threads,
Nowadays, computational systems and science instru-MPI or MapReduce (HMR, 2011).
ments generate petascale data stores. For example, The purpose of this study is to explore the pos-
the Large Synoptic Survey Telescope (LSST, 2011) sibility of using Hadoop’s MapReduce framework
generates several petabytes of data each year, whilgAH, 2011) and the Hadoop Distributed File System
the Square Kilometer Array generates 200 Gbytes or -HDFS- (Dean and Ghemawat, 2008) to implement
raw data per second (SKA, 2011). Cyber security has a popular clustering technique in a distributed fash-
to handle huge raw datasets and should provide ac-ion. The experimental results obtained so far are very
tionable results in seconds to minutes while social promising and showed good performance of the pro-
computing stores vast amount of content that must posed technique. In addition, the theoretical analysis
managed, searched, and delivered to users over thef the complexity of the algorithm is inline with the
Internet. Thus, the computational applications are be- experimental results, the approach scales very well
coming data-centric (Gorton et al., 2008). With Data and outperforms the sequential original version.
Intensive Computing, organizations can progressively  The rest of the paper is organised as follows. The
filter, transform and process massive data volumesrelated work is presented in Section 2. In Section 3
into information that helps the users make better de- the proposed algorithms are presented. Section 4
cisions sooner. presents the experimental results and in Section 5 we
Data Mining is the process for extracting useful discuss the complexity issues of the techniques. Fi-
information from large data-sets. One of the most nally, Section 6 concludes the paper and highlights
important techniques of data mining clustering is the some future research directions.
k-means algorithm (LLoyd, 1982). K-means takes
as inputs the desired number of clustérsand a
dataset. It assigns data objects to the clusters accord-
ing to a certain similarity measure. As the datasets 2 RELATED WORK
are very large, the operation of assigning and/or re-
assigning data objects to their nearest centroids isThere have been extensive studies on various clus-
very time consuming. One method is to distribute the tering methods; and especially the k-means clus-
dataset among a set of processing nodes and perforntering has been given a great attention. However,
the calculation of centroids in parallel. This method there is very little on the application of k-means to
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the MapReduce. Since its early development, the Hadoop is not well suited for modest-sized databases.
k-means clustering (LLoyd, 1982) has been identi- However, when the datasets are large, there is a good
fied to have a very high complexity and significant performance benefit in using Hadoop.

effort has been spent to tune the algorithm and im-

prove its performance. While k-means is very simple

and straightforward algorithm, it has two mainissues: 3 M APREDUCE K-MEANS

1) the choice of the number of clusters and of the ini-

tial centroids. 2) the iterative nature of the algorithm TECHNIQUE

which impacts heavily on its scalability as the size of
the dataset increases. The right set of initial centroids
will lead to compact and well formed clusters (Jin
et al., 2006). On the other hand, in (McCallum et al.,

The sequential k-means algorithm starts by choosing
k initial centroids, one for each cluster and assigns

each object of the dataset to the nearest centroid. Then
it recalculates the centroid of each cluster based on

2000) and (Guha et al., 1998), the authors explained. . .
how the number of iterations can be reduced by parti- Its _member Obj.eCtS _and goes through again ea_ch data
object and assigns it to its closest centroid. This step

tioning the dataset into overlapping subsets and iterat-. ted until there i h i th troid
ing only over the data objects within the overlapping IS repéated untifthere IS no change in the centroias.

areas. This technique is called Canopy Clustering. In_th|s work we transformed the orlg[nal k-means
While the above studies largely concentrated on algorithm to meet the MapReduce requirements. The

improving the k-means algorithm and reducing the new k-means technique consists of four parts: a map-

number of iterations, there have been many other ger, a r(?t(?]ucer, abr_napper withh @ Combinet, andia re-
studies about its scalability. Recently, more research ucerwith a compi g’

has been done on MapReduce framework. The paper.
(Zhao et al., 2009) presented Parallel k-means cluster-3'1 Mapper and Reducer (MR)
ing based on MapReduce. It has been shown that thel_
k-means clustering algorithms can scale well and can

be parallelized. The authors concluded that MapRe- men location/and accessed by all the mappers or dis-

duce can efficiently process large datasets. : S
Some researches have conducted comparativet”bmed on each mapper. The centroid list has an

studies of various MapReduce frameworks available |de_nti.fication for each centroid as a ke_y af?d the cen-
in the market and studied their effectiveness in the troid itself as the value. Each data object in the sub-

area of clustering large datasets. In (S.lbrahim et al., tsrfé()r%;axzj é'r’ X”\;\)/;Suassés't%gegégl:gsegr?sdei::;ﬁgr%drgga_
2009), the authors have analysed the performance pper.

benefits of Hadoop on virtual machines, and it was sure prox?mity of data object_s; the distances _betvyeen
shown that MapReduce is a good too’l for cloud a data object and the centroids. The data object is as-

based data analysis. There have been also deveI-Signed to the closest centroid. When all the objects

. : are assigned to the centroids, the mapper sends all the
opments with Microsoft product DryadLINQ to per- ) . .
form data intensive analysis and compared the per- ?heg&:: dbdigtrs(z?domﬁr%egt)ro'ds they are assigned to, 1o
formance of DryadLINQ with Hadoop implementa- Y :

tions (Ekanayake et al., 2009). In another study, the takeA;t:; ?Eeuf):ﬁgurggn ?afr :)hti r&zgpe‘iélzhee)p:rdsucer
authors have implemented a slightly enhanced model P PP puteey, ’

and architecture of MapReduce called tiaister and loops through them to calculate the new centroid

(Ekanayake et al., 2010). They have compared thevaIues. For each centroid,_ the redgcer calc_ulgtes a
performance of Twister with Hadoop and DryadLINQ new yalue based on the ot_)Jec_:ts QSS|gned to it in that
with the aim of expanding the applicability of MapRe- iteration. This new centrmd list is sent back to the
duce for data-intensive scientific applications. Two start-up program (Algorithm  2).

important observations can be made from this study. .
First, for computation intensive workload, threads and 3.2 Mapp_er and Reducer with

processes did not show any significant difference in Combiner (MRC)

performance. Second, for memory intensive work-

load, processes are 20 times faster than threads. 1N the MapReduce model, the output of the map func-
(Jiang et al., 2009) a comparative study of Hadoop tion is written to the disk and the reduce function
MapReduce and Framework for Rap|d |mp|emen_ reads it. In the mean time, the OUtpUt is sorted and
tation of data mining Engines has been performed. shuffled. In order to reduce the time overhead be-

According to this study, they have concluded that tween the mappers and the reducer, Algorithm 1 was
modified to combine the map outputs in order to re-

he input dataset is distributed across the mappers.
The initial set of centroids is either placed in a com-
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Algorithm 1: Algorithm for Mapper. Algorithm 3: Algorithm for Mapper with Combiner.

Require: Require:

e Subset of m-Dim objectxg, Xz, ..., X%, } in each map-
per
e Initial set of centroid<C = {c;, ¢y, ..., Ck}

e A subset of d-dimensional objects ff1, %z,..., X} in
each mapper
e Initial set of centroid< = {c1,¢y,...,Ck}

10 M+ {Xg, X2, -, Xn} 10 M {X1,%2, ..., %n}

2: current_centroids <« C 2: current_centroids < C

3: outputlist «+ @ 3: outputlist + @

4: for all x; € M do 4:veg

5 bestCentroid + @ 5: for all x, € M do

6: minDig < o 6: betCentroid + @

7 for all ¢ e current_centroids do 7:  minDigt + o

8 dist < ||x;, c]| 8. for all ce current_centroidsdo
9: if bestCentroid = @ or dist < minDist then 9: dist « ||x,c]|

10: minDig < dist 10: if bestCentroid = @ or dig < minDig then
11: bestCentroid < ¢ 11: minDigt « dist

12: end if 12; minDist « dist
13:  endfor 13: end if
14: " outputlist < outputlist U (bestCentroid, x;) 14:  endfor
15: end for 15.  Vbescentroid & Xi
16: return outputlist 16: end for

Algorithm 2 Algorithm for Reducer.

17: for all centroid € vdo
18: localCentroid + @
19:  sumoflLocalobjects + @

Require: Input (key, value) where key = bestCentroid, and 20:  pumofLocal Objects « @
value = objects assigned to the centroids by the mapper.  21:  for all object € vdo

. for all centroid € vdo

1: outputlist « outputlistsfrom mappers 22: sumofLocal Objects «+ sumofLocalObjects +
2. v+ o object

3: newCentroidList <— @ 23: numof Local Objects «— numof Local Objects—+ 1

4: for all y € outputlist do 24:  end for

5t centroid « ykey 25:  localCentroid « (sumofLocal Objects  +
6:  object «yvalue numof Local Objects)

7t Veentroid < Object 26: outputlist « (centroid,local Centroid)

8: end for 27: end for

9

28: return outputlist

10:  newCentroid, sumofObjects, numof Objects+ @
11: for all object € vdo

Algorithm 4: Algorithm for Reducer with Combiner.

Require: Input (key, value) where key = oldCentroid and value
=newLocalCentroid assigned to the centroid by the mapper.

12: sumof Objects «+— sumofObjects+ object

13: numof Objects«+ numofObjects+ 1

14:  end for

15:  newCentroid + (sumofObjects-numofObjects) 1

16:  newCentroidList + newCentroidList U newCentroid 2

17: end for 3

18: return newCentroidList 4
5:

duce the amount of data that the mappers have to write 6:
locally and the reducer to read it. The proposed com- 7

biner reads the mapper outputs locally, and calculates 8
9: for all centroid € vdo

the local centroids. After that, the reducer reads the

output produced by the mappers (which is only the 10

local centroids instead of the entire dataset) and cal-
culates the global centroids. This method reduces dra-
matically the read/write operations. The mappers and

T outputlist < out putlists from mappers

VO
: newCentroidList < &
: for all y € outputlist do

centroid « y.key

localCentroid <+ y.value

Veentroid < l0cal Centroid
end for

newCentroid — (sumofLocalCentroids  +
numo f Local Centroids)
newCentroidList <— newCentroidList UnenCentroid

12: end for
13: return newCentroidList

reducer now are using the combiner, which are de-
scribed in Algorithms 3, and 4 respectively.
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4 EXPERIMENTAL RESULTS controids =

To evaluate the proposed MapReduce K-means tech-
nigue, we use a cluster of 21 nodes. One of the nodes 5

is defined as Namenode and Job Tracker and has an e

Intel Pentium IV cpu of 3#GHz and 2GB of main <

300 =

memory. The remaining nodes are defined as Datan- =
odes and Task Trackers; each of them has an Intel dual *
Core cpu of 223GHz and 2GB of main memory. The

network has a bandwidth of 1Gbps. All nodes run Red

Hat version 41.2— 48 and 32bit operating systent5 .

We used Java Runtime versiof6D_16, Python 24.3 o

and Hadoop 21.0. Figure 2: Final clusters of 3d data.

4.1 Input Datasets With the Hadoop characteristics in mind, we have

improved the clustering response time. We also stud-
We use spatial data for testing for many reasons. Theied the effect of the number of nodes on the speed of
distance measure, Euclidian distance, is well suited convergence of the clustering technique. So we used
for such data, the spatial dimensions are very com- the same set of data objects and perform the MapRe-
plex, as their combination with the Euclidian distance, duce with just one node and gradually, we increased
define spherical shapes, which are not always desir-the number of nodes up to 21. As the number of nodes
able. We generated datasets containing clusters ofincreases, the MapReduce k-means algorithm conver-
different shapes, densities and noise. So, the primarygences faster. For example, a dataset of 100K data
dimensions are the spacial dimensions, we generatecbjects, it takes about 110 seconds with one node to
about 2G data objects of 2D and 3D. The:d@ataset  converge and 71 seconds with 4 nodes. It is far from
before clustering is shown in Figure 1. an ideal speedup but it is an improvement of 35%.
dotapoints - Another very interesting point is the behaviour of

the technique when the number of clustdgsyaries.
As we can see in Table 1 increasing the number of
clusters, the performance of the proposed technique
is also increasing. For example, floe= 2, the simple
MapReduce algorithm needs at least 8 participating
nodes in order to outperform the sequential algorithm
when the number of data objects is abNut 10 mil-
lions, and only 2 nodes whdn= 10. Basically, more
k is bigger more the technique needs to be distributed,
s because more computations are required to assign the
® coordinate A objects to their corresponding clusters, and therefore,

Figure 1: 3d-Dataset. the o_verhead of the MapReduce procedure becomes

less important.

988
8aa
788
600
5080
488
300
200
1088

4.2 Results Analysis

Table 1: Number of nodes needed to outperform the sequen-

) . ial technique.
As a first step of the k-means algorithm we have con- taltechnique

sidered various methods, from random choice of cen- | N VR k:?leC VR k::\‘ARC MRkle\(/I)RC
troids to canopy clustering, to generate initial cen-

troids. Because the quality of the final clusters in k- 1180 >1210 g 170 % g g
means depends highly on the first step (initial genera- | 5og | 16 2 16 2 2 2
tion of centroids), we decided against random choice. | 1000 | >20 2 20 3 2 2

Instead, we chose a more dependable approach of the
density distribution of the data objects. This worked More precisely, in Figures 3, and 4 we can see
well for our study as our aim was not to optimise the the behaviour of the proposed technique with 3 dif-
choice of initial set of centroids but to analyse the ef- ferent numbers of clusters. The number of participat-
fectiveness of MapReduce to cluster. The final clus- ing nodes varied from 1 to 2x{axis), while keep-

tered 3l data points are shown in Figure 2. ing constant the number of data objects to 1 billion.

416



MINING ON THE CLOUD - K-means with MapReduce

4000

o 4500 sponding centroid. So, the complexity of the mapper
§ 4000 :;R is expressed by the following equation 2.
3 w00 MRC M x kx N
3000 TM (N) = T (2)
2500 Reducer: In the reducer, we iterate through the output
2000 17— from x mappers for assigning each object and its cor-
1500 responding centroid into a dictionary type variable for
1000 further processing. We then iterate through each cen-
500 troid k, by cumulating and counting the data objects in
0 that cluster and calculate a new centroid. Therefore,
1 3 5 7 9 11 13 15 17 19 | the complexity of this operation is given by equation
Figure 3: Time to cluster 1 billion 3d points (k=4). 3.
N
g 8000 77_5 Tr(N) = M(N +kE) =2M x N )
g 7000 S —wR We repeat the MapReduce procéédimes until
% 6000 \ — MRC convergence. So, according to the equations 2 and 3
00, | } the total complexity for the MapReduce algorithm is
| as follows:

3000

TRV =T () + Tath) =M<V (4.2 @)

2000

1000 - S Wherex is the number of nodes assigned for the

0 L T MapReduce K-means process.

Complexity of MapReduce with Combiner. Mapper

with Combiner: In the mapper, we iterate through all
theN/x data objects for each centroid to calculate the
As the number of the clusteksand the number of  istances between them while the combiner calculates
nodes increase, the efficiency of MapReduce k-meansihe k centroids each time the mappers terminate their

Figure 4: Time to cluster 1 billion 3d points (k=10).

increases. process. Therefore, the complexity now is as follows:
M xkx N+N
Tve(N) = ————— (5)
5 MAPREDUCE K-MEANS X
Reducer: In the reducer, we iterate througloutputs
COMPLEXITY from x mappers to calculate the global centroids.
In this section we validate theoretically the experi- Tre(N) =N+k (6)
mental results obtained in the previous section. We repeat the entire process Mdriterations un-

Complexity of the Sequential Algorithm. In the til convergence. Thus, the total complexity of the
sequential k-means clustering the time coplexity is MapReduce with Combiner algorithm is as follows:
given by the equation 1 (LLoyd, 1982).

MKN +N
To(N) =M x kx N ) Turc(N) = Tue(N) + Tre(N) = — — + N+(:)
wherek is the number of clusterd| is the number wherex is the number of nodes assigned for the
of data objects, ani! is the number of iterations. MapReduce K-means process.
Complexity of the MapReduce Algorithm. Mapper: Comparing the above mentioned complexities we

Before using MapReduce for clustering, we need to can see the following:

partition the input data objects intosubsets, where Sequential vs. MapReduce. From equations 1, and 4
x is the number of available mappers. In each map- we can easily see that

per, we iterate througN /x data objects and for each

centroid in thek clusters, for calculating the distance MKN

between them and assign for each objects its corre- — t2MN =< MKN,V(k >2Ax>3)  (8)
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Thus, for anyk > 2 and the number of the partic- Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.,
ipating nodes is greater than 3 then the MapReduce  Qiu, J., and Fox, G. (2010). Twister: a runtime for iter-

k-means version outperforms the sequential one. ative mapreducel9th ACM International Symposium

) ) on High Performance Distributed Computing, pages
MapReduce vs. MapReduce with Combiner. From 810-818.
equations 4, and 7 we can derive the following: Gorton, 1., Greenfield, P., Szalay, A., and Williams, R.

(2008). Data-intensive computing in the 21st century.
|EEE Computer, pages 78-80.

N

—+N+k < 2MN,V(x>1AM>1) Guha, S., Rastogi, R., and Shim, K. (1998). Cure: an effi-

X cient clustering a}lgorithm for large databaseSCM
Therefore, the MapReduce with Combiner tech- SGMOD International Conference on Management

of Data, pages 73-84.

HMR (2011). Hadoop MapReduce. http://
hadoop.apache.org/mapreduce/.

Jiang, W., Ravi, V., and Agrawal, G. (2009). Compar-
ing map-reduce and freeride for data-intensive appli-
cations. |EEE International Conference on Cluster
Computing and Workshops, pages 1-10.

6 CONCLUSIONS Jin, R., Goswami, A., and Agrawal, G. (2006). Fast and

exact out-of-core and distributed k-means clustering.

Knowledge and Information Systems, 10(1):17-40.

LLoyd, S. P. (1982). Least squares quantization in pcm.

nigue outperforms the simple MapReduce technique
even with one processing node and the number of iter-
ations is more than 2 and in addition, the experimental
results are inline with the theoretical analysis.

In this study, we have adapted the MapReduce tech-

nique to the k-means clustering algorithm. We de- IEEE Transactions on Information Theory, 28:129—
scribe the new technigue and discuss its theoretical 137.

complexity. We validated our implementation by ex- | SST (2011). Large Synoptic Survey Telescope.  http://
periments on a cluster of workstations. The results www.Isst.org/lsst.

show that the clusters formed using MapReduce areMcCallum, A., k. Nigam, and Ungar, L. H. (2000). Ef-
identical to the clusters formed using the sequential ficient clustering of high-dimensional data sets with
(original) algorithm. We also showed that by adding application to reference matchingCM SIGKDD In-

ternational Conference on Knowledge Discovery and
Data Mining, pages 169-178.

S.lbrahim, Jin, H., Lu, L., Qi, L., Wu, S., and Shi,

a combiner between Map and Reduce jobs improves
the performance by decreasing the amount of interme-
diate read/write operations. In addition, the number X , \

. . L . (2009). Evaluating mapreduce on virtual ma-
of available nodes for the map tasks increases signifi- chines: The hadoop casdst International Confer-
cantly the performance of the system. ence on Cloud Computing, Springer: Cloud Comput-

As near future work we would like to; 1) Evaluate ing 5931:519-528.
the performance of the proposed techniques on a veryska (2011). Square Kilometer Array. http:/
large number of heterogeneous computing resources www.skatelescope.org/.
(nodes) since one of the main problems of the MapRe- Zhao, W., Ma, H., and He, Q. (2009). Parallel k-means clus-
duce is that all the mappers have to finish their jobs tering based on mapreducést International Confer-
before starting the reduce phase. 2) Express explic- ence on Cloud Computing, Springer: Cloud Comput-
itly the overhead produced from both the MapReduce Ing 5931:674-679.
technique and the read/write operations as a function
of the size of the input dataset and the number of the
nodes Tp = f(N,X)).
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