
STUDENTS’ PERSPECTIVES ON LEARNING SOFTWARE
ENGINEERING WITH OPEN SOURCE PROJECTS

Lessons Learnt after Three Years of Program Operation

Pantelis M. Papadopoulos1, Ioannis G. Stamelos1 and Andreas Meiszner2
1Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2United Nations University-Merit, Keizer-Karelplein 19, Maastricht, The Netherlands

Keywords: Software Engineering Education, Open Education, Authentic Learning, Open Source, Online Learning,
Learning Community, Project-based Learning.

Abstract: This paper presents the results after three years of running of an instructional method that utilizes free/libre
open source software (FLOSS) projects as tools for teaching software engineering in formal education. In
the last three academic years, a total of 268 juniors majoring in Informatics (in a 4-year program)
participated in study, assuming the roles of testers, developers, and requirements engineers. Students
appreciated the benefits gained by the method and identified aspects that require further improvement. In
the following, we present (a) the details of our method, (b) students’ opinions as recorded through a
questionnaire including both closed and open ended questions, and (c) conclusions on how the use of
FLOSS projects can be applied and proved beneficial for the students.

1 INTRODUCTION

The domain of software engineering poses a
considerable complexity for the students and may be
hard to teach. Learning within the domain relies
largely on theoretical concepts and models and their
application in ill-structure contexts. In other words,
software engineering is anchored to the real world
and students’ involvement in a project is a very
popular method of instruction. However, where most
of the instructional approaches engage students in
fictitious projects in the safe environment of the
class, we propose the use of real free/libre open
source software (FLOSS) projects as educational
tools.

FLOSS projects are based on open, self
organized communities of volunteers, that manage to
support software development, support and
maintenance in an unprecedented way. This unique
kind of virtual community provides an excellent
environment for learning how to communicate with,
cooperate with and ultimately learn from other
members of the community (Stamelos, 2008).

There are three main approaches for using
FLOSS projects in formal education (Meiszner et al.,
2009):
1. The ‘inside approach’ refers to the practice of

taking the principles found in FLOSS communities
and applying them within the higher education
context. In line with Fischer’s work (2007), this
approach involves mapping the key principles onto
education and includes an evolutionary growth of
the course and its environment. Within the ‘inside
approach’ institutions might also decide to ‘open up’
their virtual learning environments to fellow
universities or the general public to view what is
going on within the environment. This scenario
might be relatively moderate to implement since the
technology should be already in place at most higher
education institutions, although admittedly
modifications very likely would be necessary.
2. The ‘outside approach’ at which institutions
would send out their students into already well
established and mature environments to engage and
collaborate within those communities on pre-defined
tasks. In contrast to the inside approach, the outside
approach might take traditional education as the
starting point by providing theoretical information
and then send the students “outside” to find well
established communities, such as the FLOSS ones,
to work within those communities and to apply and
deepen their theoretical knowledge.

In particular for the area of software engineering,
this approach might be suitable due to the existence

313
M. Papadopoulos P., G. Stamelos I. and Meiszner A..
STUDENTS’ PERSPECTIVES ON LEARNING SOFTWARE ENGINEERING WITH OPEN SOURCE PROJECTS - Lessons Learnt after Three Years of
Program Operation.
DOI: 10.5220/0003922803130322
In Proceedings of the 4th International Conference on Computer Supported Education (CSEDU-2012), pages 313-322
ISBN: 978-989-8565-07-5
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

of a large number of mature FLOSS projects and a
myriad of educational resources. The outside
approach might be the least complex and almost cost
neutral; and therefore relatively easy to implement.
3. If we view the inside and the outside
approaches as opposite ends of a spectrum, then
there is clearly a range of blended, hybrid
approaches in the middle, which take components of
both elements. The drawback of the hybrid approach
might be that it probably requires the most drastic
overhaul of higher educational practices and might
be the most complex to implement.
There are already a number of studies exploring the
potential of FLOSS projects in education. Jaccheri
and Osterlie (2007) report on a course at the
Norwegian University of Science and Technology
that is based on the involvement of students in the
NetBeans project and their interaction with its
community. At the Athens University of Economics
and Business (Greece), in the context of a master
level course titled “Advanced Topics in Software
Engineering”, students are asked to participate and
produce code in FLOSS projects (Spinellis, 2006).
Staring et al. (2005, 2006) also claim that “involving
students in large scale, international open source
projects has a potential for transformation of the
relationship between students, educational
institutions and society at large”. Lundell et al.
(2007) report their experience from a practical
assignment “designed to give students on an Open
Source Masters course an insight into real
involvement in Open Source projects” at the
University of Skövde (Sweden). They also report on
a reduced exercise for undergraduate students
related to FLOSS. The authors found out that “the
learning experience was both positive and valuable
in that it gave real insight into Open Source
participation”. They also report that students were
further encouraged to keep on participating in Open
Source projects even after their course was
completed.

Surprisingly, the underlying technology used by
most FLOSS projects is relatively simple, yet
mature, usually including versioning systems,
mailing lists, chats, forums, wikis or similar
knowledge bases. Additionally, free web based
services such as Sourceforge provide each FLOSS
project with an initial working and community
environment therefore facilitating the take off of
new projects (Meiszner, 2007).

From a pedagogical perspective learning in
FLOSS is characterized by self-studying, project-
based learning, problem-based learning, inquiry-
based learning, collaborative learning, reflective

practice or social learning. It is not assumed that
those pedagogies were deliberately set out, but
rather that due to the structure, approach and
governance of FLOSS communities certain
pedagogies have emerged (Glott et al., 2007).

In the next section, we present our instructional
method along with the three roles our students are
able to take as members of FLOSS projects, the
learning environment we used to support the
activity, and the assessment method. In section 3, we
present students’ responses regarding various
characteristics of the activity. Students refer to the
strengths of the approach and underline aspects that
need further improvement. Finally, we provide
discussion on the results and concluding remarks.

2 THE INSTRUCTIONAL
METHOD

We first started using FLOSS projects as a medium
of instruction in software engineering during the
academic year 2005/2006. The way our students
were engaged in the open source community went
through changes over the next years. Since the
academic year 2008/2009, the instructional method
remains the same. This section presents the specifics
of the method we have applied in our university in
the last 3 years.

2.1 Participants

The core course “Introduction in Software
Engineering” (ISE) is typically offered in the 5th
semester in our Informatics program (in a four years
study program). The duration of the course is 12.5
weeks and approximately 150 students enroll in the
course each semester. Since this is a core course, a
passing grade is necessary for all the students, in
order to graduate. A falling grade means that the
student will have to repeat the course during the next
academic year. This causes the actual number of
enrolled students to fluctuate over the years.

The FLOSS activity is introduced as a course
assignment to the students. The assignment counts
for 40% of the total course grade and it was optional
the first two years with 31 (2008/2009) and 50
(2009/2010) students participating respectively, and
mandatory the last year with 187 (2010/2011)
students completing the assignment.

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

314

2.2 Procedure

In the course, we apply a hybrid approach
combining formal, distance, exploratory and project-
based learning. Students receive printed material
(books, tutorials, papers) and online resources and
they learn about the theoretical concepts of the
domain through a series of in-class lectures. The
typical form of instruction continues, until the
students are ready to move from the book examples
to real cases. At this point selected FLOSS projects
are presented in class and students have the
opportunity to see how theoretical principles are
applied in real world contexts.

In the next step, we introduce the assignment to
the class. Students have to search and select one of
the FLOSS projects readily available online, and
actively participate in the project, choosing one of
these roles: (a) tester, (b) developer, or (c)
requirements engineer. We chose these roles to give
the opportunity to students to approach FLOSS
projects from three different points of view. Each
role has specific needs and immerses the students in
the software engineering world. The ability to
choose the role that fits better their characteristics is
very important to the students. While some may
have a knack for finding bugs, others may prefer the
analytical work behind a requirements document, or
– if they have confidence in their programming
skills – the challenge of developing something new
and extending the functionality of a FLOSS project.

At this point, a supporting learning environment
becomes available for the students (more on this on
section 2.2.4) and detailed guidelines and
instructions are given for each of the three roles.

2.2.1 The Role of the Tester

Students opting for the tester’s role have to test
projects and find a small number (5-10) of non-
submitted bugs, report these bugs properly in the
bug tracking system (BTS) of the project (or in a
developers’ forum, if such a system is not in place),
and – optionally – assist the development team
address these bugs. Testers have to follow a 5-step
procedure:
STEP 1: Find a project. Students can search for a
FLOSS project anywhere they want, although a list
of webpages with a big volume of projects is
proposed to them (e.g., sourceforge.net, tigris.org,
etc.). Students should browse the available
categories of projects (e.g., finance, games,
enterprise, etc.) and find something they like. To
help them in their selection, we propose a list of

criteria. First of all, the project has to be compatible
with the operation system the students use at home.
Then, they should check the maturity level of the
project. Stable/mature projects may have fewer
bugs, thus making the task of finding bugs hard.
Instead, the students should focus on projects in beta
development status. Finally, they should check the
activity of the project. A big number of developers,
the existence of a busy mailing list/forum, and an
up-to-date feed on the main page of the project,
indicates a high activity and a bigger probability of a
timely feedback for the student.
STEP 2: Register the project. After selecting a
project, the student has to declare it in the learning
environment used in the ISE course. Only after
granting permission from the instructor, the student
is able to start working on the project. For example,
it is not allowed for two students to work on the
same FLOSS project with the same role.
STEP 3: Install and run the project. In this step, the
student has to start using the project to understand its
functionalities and check the appropriate way of
reporting bugs. Most of the projects use BTS, while
others use a dedicated sub-forum, or a mailing list.
STEP 4: Find bugs. During the in-class lectures,
students learn various techniques to test a program
and find bugs (e.g., smoke, recovery, exploratory,
functional, usability, etc.). They can apply multiple
techniques, in order to find bugs. Next, they should
check if a bug has already been reported and if not,
they can submit it through the proper channel, along
with sufficient information so that it could be
possible for the developers to reproduce it. Students
should also monitor the bugs the report, in case
additional information is requested.
STEP 5: Present the project. At the end, the students
have to present their work to the rest of the class by
submitting a detailed report to the learning
environment and doing a slides presentation in class.
The report should include information about the
selected project, the interaction between the student
and the project community, and links to bugs
submissions.

2.2.2 The Role of the Developer

Students opting for the developer’s role have to
check the project page for desired functionalities and
unsolved bugs, write appropriate code, and submit it
for approval to the project team. The 5 steps a
developer has to follow are:
STEP 1: Find a project. This step is similar as
before. The students are able to search online the
FLOSS project that better fits their needs. In

STUDENTS'�PERSPECTIVES�ON�LEARNING�SOFTWARE�ENGINEERING�WITH�OPEN�SOURCE�PROJECTS�-
Lessons�Learnt�after�Three�Years�of�Program�Operation

315

addition to the previous criteria concerning the level
of maturity and activity of the project, the students
should be confident and familiar with the
programming language of the project. Since they
have to produce functionalities and commit their
source code gradually (to give time to other to
comment on their work), time scheduling is an
important factor in the selection process. We advice
our students to also check out the “Help Wanted”
section of webpages hosting FLOSS, since there are
many projects looking for developers. The goal is to
choose a project in which the students will receive
timely feedback on their work.
STEP 2: Register the project. Same as before; the
students have to declare their projects in the learning
environment and get approval from the instructor to
proceed with the assignment.
STEP 3: Contact the developers. The students have
to contact the developers and inform them of their
intention to develop parts of the source code. If the
developers agree, the next thing to do is to start
understanding the existing code. Otherwise, it is
better to go back to STEP 1 and select another
project. The support of the open source community
is vital for students regardless of the project or the
role they choose. When the students are ready they
propose functionalities they want to implement,
basing their proposals on desired features and open
bugs reported in the official page of the project. If
the developers agree with the proposals, they grant
students access to the concurrent versions system
(CVS) of the project.
STEP 4: Write source code. Finally, students can
start working on the source code. They should
submit their code gradually back to the project and
give time to the project community to respond with
corrections and suggestions.
STEP 5: Present the project. After the completion of
the source code, the students should present their
work, including information about the project, their
interaction with the project team, and the
functionalities they coded.

2.2.3 The Role of the Requirements
Engineer

Students have to prepare a system requirements
specification (SRS) document for a project that does
not have one, is partially specified, or outdated, and
submit it to the community for evaluation. The
students could also propose improvements and
amendments to the existing requirements as
appropriate. Students acting as requirements
engineers have to follow this 5-step procedure:

STEP 1: Find a project. As always, the first thing
the students have to do is to find a suitable project to
work on. In contrast to the advice we give to
students acting as tester, students opting for the
requirements engineer role are advised to find
stable/mature projects, preferably without an SRS
document.
STEP 2: Register the project. Once again, the
students have to get approval from the instructor on
the selected project to move to the next step.
STEP 3: Contact the developers. The students have
to contact the developers and ask them if a SRS
document is needed in the project. If such a need
exists, the developers should provide the students
with all the necessary information to write the
document.
STEP 4: Write the SRS document. Before they start
writing the SRS document, students have to spend a
significant amount of time using the project to fully
understand its functionalities. Only then, they are
ready to start writing. The students have to produce
a formal document. Hence they have to follow any
available template for such a document in the
webpage of the project. If such a template does not
exist, the students can use one of the templates we
provide for them in the learning environment. Along
with the text, students have to include screenshots
and diagrams, where this is necessary. The finished
document should be submitted to the project
community. Comments and reviews from the
community should be taken into account, and – if
necessary – revisions may be done.
STEP 5: Present the project. The assignment is
completed when the students present their work,
including information about the project, their
collaboration with the project team, and the
document they produced.

2.2.4 The Learning Environment

In the first two years of the study, we used the
NetGeners environment, while in the third year, we
transferred to openSE. Both environments were
products of European projects on open education
and software engineering education, in which we
have been partners. While there were several tools in
each environment, the subset we used for the ISE
course was identical in both environments. This
allowed us to apply the exact same instructional
method throughout the years. NetGeners was shut
down at the end of the second year, while openSE
was taking over. During migration, all the material
(e.g., reports, forum posts, documents, etc.) were
transferred without any loss. At this point, we need

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

316

to underline that the instructional method is not
grounded to the characteristics of the specific
learning environment. On the contrary, the interested
instructor could apply our method of using FLOSS
projects to teach software engineering with a
different set of tools.

The main function of the environment was to
support students during the assignment. A digital
library contained all the necessary resources (e.g.,
documents, instructions, tutorials, templates,
external links, etc.). This library was updated when
necessary (e.g., instruction clarification, new SRS
templates, etc.).

A second very important function of the
environment was to act as a hub among students,
past and current. A basic set of communication tools
were available (forum, blog, chat). Through them
students could communicate with each other.
Although each student had to work independently on
a different project, the feedback from peers,
assistants, and instructors was important for them.
Among the communication tools, the forum was the
prominent one, since it was the most organized and
was holding the main volume of knowledge (e.g.,
FAQ section, roles sub-forums, past experiences,
managerial issues section, etc.). Students also had
personal blogs where they could upload information
about their projects. Blogs were used mostly as
journals, informing others (and most importantly the
instructor) on their progress and the difficulties they
had in each step. Finally, the chat was used rarely
(mostly around deadlines), since students preferred
other ways of synchronous communication (e.g.,
MSN, Skype, etc.).

After the first year, the environment served one
more purpose; students were able to see what
previous students had to deal with, by reading their
reports and blogs. This helped students a lot,
especially in selecting appropriate projects for them.
Furthermore, students had a better image of what to
expect. For example, how long it takes to receive
feedback from others, when the right time is to
abandon a project with low activity and start
working on another one, what type of project is
more appropriate for a specific role, etc.

Another function that was offered, but was used
randomly by the students, was the ability to review
each other’s work. For this, a simple review form
with one textbox was available in each project report
and students were able to freely comment on the
project. In addition, there was a 5-star rating scale
for the project, much like the rating scale used in
commercial sites (e.g., Amazon). Since reviewing
one another was not an assignment requirement,

students refrained from doing so, possibly in order to
avoid conflict.

Finally, it is worth mentioning that the learning
environment was open to students and instructors of
other higher education institutes (HEI), and to any
other interested individual. This means that it was
possible for our students to receive feedback from
people outside the course. Of course, most of these
messages came from our past students that kept
visiting the learning environment, acting as
consultants, and giving advice to current students.

2.2.5 Assessment Method

An obvious parameter of student assessment was the
quality of the work they produce (number and
significance of bugs reported, complexity and
effectiveness of code developed, clarity and
usefulness of SRS document).

However, the main goal of the assignment was to
immerse the students into the real world of software
engineering. Because of this, the actual involvement
of the student in the open source community was
equally important. This is the reason why the
students had to elaborate in their reports about the
collaboration they had with the project team. The
volume and quality of collaboration could be
estimated according to the number and importance
of messages exchanged in forums, mailing lists, or
project pages. We encouraged our students to
produce high quality work and we decided to award
these efforts: if the work of a student was adopted by
the project community (progress on the reported
bugs, use of developed functionalities in new
versions, post of SRS document on the project
page), the full grade for the assignment was awarded
by default. Of course, the student had still to work
on the final report and present the project to the
class.

Since students’ success was based – up to a
certain point – on the level of project activity, we
allowed students to work on their assignments
beyond the 12.5 weeks of the official lecturing
period and submit it at a later time at 3 pre-defined
dates per year – by the end of the course in
February, or alternatively in June or September.

After the completion of the assignment, the
students had to answer a questionnaire focusing on
how they perceived the activity and what is their
opinion regarding the strengths and weaknesses of
our approach. The results of this questionnaire for
the three-year period of this instructional method are
presented in the next section.

STUDENTS'�PERSPECTIVES�ON�LEARNING�SOFTWARE�ENGINEERING�WITH�OPEN�SOURCE�PROJECTS�-
Lessons�Learnt�after�Three�Years�of�Program�Operation

317

3 STUDENTS’ RESPONSES ON
THE METHOD

After the end of the assignment each year, we asked
students to complete online a comprehensive
questionnaire, covering many aspects of the activity.
We compiled the questionnaire using both closed
and open-ended items and students had also the
opportunity to freely submit their comments. The set
of questions used addressed every aspect of the
activity for all the three student roles.

The data presented here depict students’ opinions
over the last three years of the FLOSS instructional
method. Despite the fact that the learning
environment changed in the third year, the method –
and thus the questionnaire too – remained the same.

Table 1 presents the number of students in each
role for the three academic years.

Table 1: Number of students in each role.

 ‘08/’09 ’09/’10 ‘10/’11 Total

Testers 12 27 50 89

Developers 0 7 20 27

Engineers 19 16 117 152

Total 31 50 187 268

During the first academic year, only 31 students
volunteered to participate. None of them chose the
role of the developer. Probably the fact that this was
the first year we applied the method and the lack of
previous experience from past students discouraged
students from taking that role. Although, all three
roles are demanding, the role of the developer
requires high programming skills and confidence. It
is obvious that this was the least favorite role among
the students with group numbers constantly trailing
behind the other two roles.

Regarding the testers, their numbers seem to
double each year, while the engineers’ group
remained stable for the first two years and grew 8
times in the last one. As we mentioned earlier,
during the first two academic years the participation
in the assignment was optional, while in the third
year participation became mandatory for all, as the
assignment became part of the course. This is the
reason why the students’ population spiked in the
third year. According to students’ statements,
writing an SRS document seemed less technical and
closer to their set of skills. While we believe that in
many cases, students underestimated their technical
competencies, we have to keep in mind that this was
the first time for the students that their work would

be submitted for evaluation to a greater community
that exceeds the safe and familiar environment of the
university. The fear of receiving negative comments
for their work made students choose roles and
projects that would seem more feasible for them.

This fear, however, does not have a real base.
The culture behind the open source community
dictates that any contribution, especially since it
comes free and voluntarily, should be appreciated.
Thus, we maintain that it is not a matter of
strengthening our students’ skills, but changing their
attitudes about being members of a bigger
community.

Table 2 presents students’ answers to some of the
most important closed-type questions. In general,
students in all the three groups have a very positive
opinion about the activity (Q4). Some differences
appear and they can be explained based on the
characteristics of each role.

The first difference appears in item (Q1), where
developers and engineers said that they had to spend
at least two weeks using the project and
understanding its functionalities before starting to
write code or explain existing functions to others. In
comparison, testers were able to start finding bugs
on the third day. Some bug are more obvious than
other and do not require deep knowledge of the
project. However, after all groups start working, the
degree of difficulty becomes comparable for all
students (Q5, Q6).

The task of finding an appropriate project is not
simple. Students made it clear that they had
difficulties (Q2). It appears that it was more difficult
for testers that tried on average more than 10
projects, while the others had to try on average only
five (Q3). Although the students had to work on
only one project, changes of projects were expected
during the early steps of the assignment. Usually the
lack of timely feedback from the project team to the
student was an indication that the assignment would
be finished later. So, many students changed their
projects in the early steps. However, the number of
tested projects does not mean that students asked
approval for each one of these projects on STEP 2,
but rather that they used various projects before
deciding which one to submit for approval.

Regarding their ability to be an equal part of the
project community, both testers and developers said
that it was easy for them to understand the work of
others (Q7, Q10), while a significant number of
testers said that, if needed, they could work as
developers and fix the bugs reported by them (Q8)
or by others (Q9).

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

318

Table 2: Students’ responses.

 Testers
(n = 89)

Developers
(n = 27)

Engineers
(n = 152)

Total
(n = 268)

Q1.How many days passed before you started finding bugs/ writing code/ writing the SRS document? M (SD)

 2.20 (0.76) 14.82 (16.72) 16.70 (15.02) 12.00 (14.26)

Q2. Was it easy for you to find an appropriate FLOSS project? Y | N (Y%)

 24 | 65 (27%) 11 | 16 (41%) 59 | 93 (39%) 94 | 174 (35%)

Q3. How many projects did you try, before selecting the final one? M (SD)

 11.09 (11.26) 5.55 (3.82) 4.74 (4.15) 6.76 (7.90)

Q4. Did you like working as a tester/ developer/ engineer of a FLOSS project? Y | N (Y%)

 84 | 5 (94%) 26 | 1 (96%) 135 | 17 (89%) 245 | 23 (91%)

Q5. Was it easy for you to find a bug/ develop a functionality/ analyze a requirement? Y | N (Y%)

 60 | 29 (67%) 14 | 13 (52%) 101 | 51 (66%) 175 | 93 (65%)

Q6. Was it easy for you to properly report a bug/ submit your code/ submit the document? Y | N (Y%)

 79 | 10 (89%) 23 | 4 (85%) 103 | 49 (68%) 205 | 63 (76%)

Q7-Tester. Did you understand the bugs that other people reported on your FLOSS project? Y | N (Y%)

 80 | 9 (90%) n.a. n.a. 80 | 9 (90%)

Q8-Tester. Can you fix the bugs that you found? Y | N (Y%)

 39 | 50 (44%) n.a. n.a. 39 | 50 (44%)

Q9-Tester. Can you fix the bugs that other people found? Y | N (Y%)

 29 | 60 (33%) n.a. n.a. 29 | 60 (33%)

Q10-Developer. Did you understand the code that other people submitted on your FLOSS project? Y | N (Y%)

 n.a. 20 | 7 (74%) n.a. 20 | 7 (74%)

Q11. Did you exchange messages with the project developers? Y | N (Y%)

 50 | 39 (56%) 14 | 13 (52%) 106 | 46 (70%) 170 | 98 (63%)

Q12. Did you participate in discussions in project forums? Y | N (Y%)

 28 | 61 (31%) 11 | 16 (41%) 52 | 100 (34%) 91 | 177 (34%)

Q13. Did you receive feedback through project forums/ emails/ private messages? Y | N (Y%)

 58 | 31 (65%) 15 | 12 (56%) 73 | 79 (48%) 146 | 122 (54%)

Q15. Will you continue to participate in the FLOSS project after the completion of the assignment? Y | N (Y%)

 63 | 26 (71%) 25 | 2 (93%) 94 | 58 (62%) 182 | 86 (68%)

Q16. Would you be interested in helping students next year by assuming the role of forum moderators, consultants,
etc.? Y | N (Y%)

 53 | 36 (60%) 14 | 13 (52%) 76 | 57 (57%) 143 | 106 (53%)

We have mentioned several times that the

collaboration between students and the open source
community was vital. This collaboration is depicted
in the assignment through forum posts, messages,

and other forms of discussions. More than half of the
students exchanged messages directly with the
developers of the project (Q11). The percentage was
higher for the engineers, because they needed more

STUDENTS'�PERSPECTIVES�ON�LEARNING�SOFTWARE�ENGINEERING�WITH�OPEN�SOURCE�PROJECTS�-
Lessons�Learnt�after�Three�Years�of�Program�Operation

319

information to understand the project and produce a
clearer SRS document. Participating in forum
discussions was less appealing for the students
(Q12), probably because they were more reserved
and new members of the community. In general, a
satisfactory number of students received feedback
on their inquiries through various media (Q13).
However, we would like to see this number rise in
the future.

It is very encouraging to have a high percentage
of students declare that they are going to remain
members of the open source community, even after
the completion of the assignment (Q15). This is a
more real metric of the impact the approach had to
our students. Even if the high percentages recorded
drops after the assignment, the strong positive
attitude is promising. Being members of an open,
active, evolving programming community could be a
goal in itself for the students of an Informatics
department. The experience gained through this kind
of work can be valuable for the professional
development of the students.

Finally, students appreciated the value of past
students’ work. By reading what others did before
them they get a useful depository of good and bad
case scenarios. Additionally, students in the last two
years were able to get feedback from past students
who had the same assignment and the same issues to
deal with. So, it is only natural that the majority of
students expressed an interest to assume a consulting
role, during the next academic year (Q16).

A number of open-ended questions were also
included in the questionnaire, so that students could
comment freely on improvement suggestions and
issues they faced. Students asked for more support
during the selection process. Although, support on
how to find an appropriate project is already
available, students felt that more guidance is
necessary in order to identify a good project for the
assignment. Another issue of concern for the
students was the data organization inside the
learning environment. Throughout the years the
resources (e.g., documents, tutorials, etc.) and
especially students’ reports multiplied in volume. It
was not always easy for the students to find what
they were looking for. The most important issue
regarding organization was that it was difficult to
browse past reports. Although, the reports were
organized by role, the student asked for more levels
of organization, such as the type of the project (e.g.,
finance, game, etc.), the activity level of each
project, etc. Additionally, they asked for faster
response times from the instructor and the assistants
in the learning environment. Finally, student praised

the fact that they were able to work on real projects
and experience the development of open source
software first hand.

4 DISCUSSION

The hybrid method we apply may pose complex and
difficult issues to the students. The main difficulty
for the students is that for the first time during their
studies, they are asked to work in the real context of
a larger community. The results, however, showed
that students are able to manage the activity and
complete successfully the assignment, having a
positive opinion for the method as a whole. Working
in a real context is both a challenge and a motive for
the students.

Regarding the issues raised by the students, a
better organization scheme is needed, as is more
support on the selection of a project. At this point,
there is a review form and a rating scale available in
all the submitted post, but students rarely used them.
Although this does not cover students’ demands on
several levels of organization, the 5-star rating
system could be used to distinct the good case
scenarios from the rest. The fact that the review
function is not used is an issue for us. There are
many studies on how peer review can enhance
learning in cognitive and meta-cognitive level (e.g.,
McConnell, 2001; Liu & Tsai, 2005; Papadopoulos
et al., 2012). Even if the review comments are
submitted to past reports, studies have shown that it
is more beneficial for the students to submit many
reviews than receiving comments (Lundstrom &
Baker, 2009; Papadopoulos et al., 2012). Apart from
strengthening analytical, comparing, and evaluating
skills, a peer review process can be applied to
support multiple perspectives. By conducting
reviews the students get familiar with the work of
their peers, get another view on the same issues and
get the opportunity to see where the others are
converging, thus identifying a dominant solution.

In the future, we intend to enhance the role of
review in our method and better support students in
peer review by guiding them using review guidelines
and appropriate forms. This way we will give
structure to the review (and drop the totally free
mode that exists now) and make it more meaningful
for the students.

Another issue that came up after three years of
the course running is that there is a low level of
collaboration between students of the same
academic year inside the learning environment.
Students tend to use the environment to get

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

320

feedback, but their questions are addressed to the
instructor, teacher assistants, and past students
acting as consultants. Log files and questionnaires
show very limited interaction between peers. A
better design is needed in order to strengthen the
links between current students. For example, a
student could be a member of a FLOSS community
acting as a tester, and at the same time a member of
the testers’ community of the class. These smaller
circles formed inside the students’ cohort can
provide additional assistance to the students and help
them tackle collaboratively any common issue.

Finally, readers interested in applying similar
method in their courses should take into account the
instructor’s overhead and the resource demands of
the approach. Starting from the resources, the
method utilizes pre-existing communities to what is
called an outside approach of organization
(Meiszner et al., 2009). However, a learning
environment with basic communication tool-box is
also needed. Although we used an all-inclusive
environment, a combination of similar, freely
available tools (forum, blog, wiki, etc.) could also be
used. Regarding the instructor’s overhead, the main
task is the monitoring of students’ progress
throughout the different steps. This could be done by
visiting students’ personal blogs about their projects.
Of course, the most intense period for the instructor
is the second step of the process, when the students
submit their projects for approval. This is not a job
for one person, especially when we had 187 projects
requiring approval in the third year. Right from the
start of the first we formed a group of people that
would assist students in their projects. Apart from
the instructor, a number of teacher assistants and
PhD candidates were enlisted to help. This group
grew over the years, by including past students and
external collaborators. However, students’ demand
for faster responds remained constant the last three
years.

5 CONCLUSIONS

The use of FLOSS project in formal education has
increasingly gained interest over the years. The
benefits for the students could be multifold.
However, attention is needed in designing a learning
activity that utilizes the pre-existed communities of
the open source world in a way that will not
overwhelm the students.

In this paper we presented in detail an
instructional approach that immerses students in
software engineering through three different roles.

Our intention is to keep using FLOSS projects as
instructional tools in our software engineering
courses. However, it is clear that improvements are
needed in at least three areas. First, students need
better support in selecting appropriate projects.
Tutorial sessions and more detailed instructions
could be useful for this. Second, we need to change
students’ attitude toward the peer review process.
We need to clarify the purpose of such a process in
the learning activity and help the students appreciate
its benefits. Third, we need to enhance peer
interaction, especially between students who work in
the same context. In-class communities based on
student roles can address this issue.

The results during the last three years were
encouraging, showing that students are able to
participate successfully in such an activity. Maybe
the most promising finding was that students’
expressed their intentions to remain members of
their FLOSS projects communities, even after the
completion of the assignment. The participation in
such communities is important and could support
students in skill development.

ACKNOWLEDGEMENTS

This work is partially funded by the European
Commission in the context of (A) the OPEN-SME
Open-Source Software Reuse Service for SMEs
projects, under the grant agreement no. FP7-SME-
2008-2/243768, (B) the openSE project under the
grant agreement no. 503641-LLP-1-2009-1-PT-
ERASMUS-ECUE, and (C) the FLOSSCom project
under the grant agreement no. 229405 - CP -1-2006-
1- PT - MINERVA – M.

REFERENCES

Fischer, G., (2007). Meta-design: Expanding Boundaries
and Redistributing Control in Design. In Proceedings
of INTERACT 2007. Rio de Janeiro, Brazil. 193-206.

Glott, R., Meiszner, A. and Sowe, S. K., (2007).
FLOSSCom Phase 1 Report: Analysis of the Informal
Learning Environment of FLOSS Communities”,
FLOSSCom Project. 2007.

Jaccheri, L., Osterlie, T., (2007). Open Source Software:
A Source of Possibilities for Software Engineering
Education and Empirical Software Engineering. First
International Workshop on Emerging Trends in
FLOSS Research and Development, 2007.

Liu, C. C. and Tsai, C. M., (2005). Peer assessment
through web-based knowledge acquisition: tools to

STUDENTS'�PERSPECTIVES�ON�LEARNING�SOFTWARE�ENGINEERING�WITH�OPEN�SOURCE�PROJECTS�-
Lessons�Learnt�after�Three�Years�of�Program�Operation

321

support conceptual awareness. Innovations in
Education and Teaching International, 42, 43-59.

Lundell, B., Persson, A., Lings, B., (2007). Learning
Through Practical Involvement in the OSS Ecosystem:
Experiences from a Masters Assignment. In
Proceedings of the Third International Conference on
Open Source Systems 2007, 289-294

Lundstrom, K. and Baker, W., (2009). To give is better
than to receive: The benefits of peer review to the
reviewer’s own writing. Journal of Second Language
Writing, 18, 30-43.

McConnell, J. (2001). Active and cooperative learning.
Analysis of Algorithms: An Active Learning
Approach. Jones & Bartlett Pub

Meiszner, A. Moustaka, K. and Stamelos, I., (2009). A
hybrid approach to Computer Science Education – A
case study: Software Engineering at Aristotle
University. In: CSEDU 2009 - International
Conference on Computer Supported Education, 23-26
March 2009, Lisbon, Portugal.

Meiszner, A., (2007a) “Communication tools in FLOSS
communities: A look at FLOSS communities at large
– Beyond the development team”, paper and
presentation at the Web Based Communities
Conference 2007, Salamanca – Spain

Papadopoulos, P. M., Lagkas, T. D. and Demetriadis, S.
N., (2012). How to Improve the Peer Review Method:
Free-Selection vs Assigned-Pair Protocol Evaluated in
a Computer Networking Course. Computers &
Education (in press), doi: 10.1016/j.compedu.
2012.01.005.

Spinellis, D. (2006). Prof. Diomidis Spinellis, Personal
communication, Athens, 2006.

Stamelos, I. (2008). Teaching Software Engineering with
Free/Libre Open Source Projects. International
Journal of Open Source Software & Process
(IJOSSP), Vol. 1(1), pp: 72-90.

Staring. K., Titlestad, O. H. (2006). Networks of Open
Source Health Care Action. In the Proceedings of the
2nd International Conference on Open Source
Systems, Springer-Verlag, 135-141.

Staring. K., Titlestad, O. H., Gailis, J. (2005). Educational
transformation through open source approaches,
IRIS'28 Meeting. http://wwwold.hia.no/iris28/Docs/
IRIS2028-1106.pdf

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

322

