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Abstract: Cloud computing is getting an enormous popularity for software companies as a way to save and optimize the
cost of large hardware and software infrastructure organizations demand. Also, the cooperation between cloud
layers constitutes a timely research challenge as allocation and optimization of (often virtualized) resources
is many times done in isolation or with poor interaction. In this paper we propose a framework that adapts
a cloud-based software application by providing an enhanced assembly of resources using the Pareto-optimal
solution to optimize the resource allocation with tight cooperation between the cloud layers.

1 INTRODUCTION

Cloud computing is an emerging computational
model where systems, both hardware and software,
are seamlessly delivered and administered over the In-
ternet asservices, giving the illusion to have them on
a local machine. This is achievable by exploiting web
technologies, virtualization techniques and large web
data centers. Depending on the Service Model (Mell
and Grance, 2011), acloud can offer Infrastructure
(raw computing services such as CPU and storage) as
a Service (IaaS), Platform (COTS, tools, middleware
for developing and deploying applications) as a Ser-
vice (PaaS), and Software (end user applications) as a
Service (SaaS)1.

The SaaS layer generally exploits the Service-
Oriented Architecture (SOA) technology because, as
remarked in (Tsai et al., 2010), SOA and cloud com-
puting coexist, complement and support each other.
Obviously, the adoption of SOA requires taking into
account the typical features of cloud domain. In such

1The lines dividing the layers are not distinctive. “Com-
ponents and features of one layer can also be considered to
be in another layer. For example, data storage service can
be considered to be either in as IaaS or PaaS.”(Tsai et al.,
2010).

a domain, for example, service providers publish the
services in deployable packages that can be easily
replicated and redeployed to different cloud hosting
environments. Hence, the increasing deployment of
cloud systems is leading to new research challenges
based on the cooperation and integration of a variety
of hardware and software resources and services that
are part of the cloud.

One of the aforementioned challenges we address
in this paper refers to the problem of optimizing re-
source allocation and adapting a cloud-based applica-
tion. Cloud-based applications require dynamic adap-
tation (Cheng et al., 2009) for several reasons, such
as: the introduction of new functionality, adaptations
in the runtime environment (e.g. workflow composi-
tion), or changes in the QoS level. Since the system
quality attributes are directly affected by the limita-
tion of hardware resources, the dynamic system adap-
tation2 is strongly tied to the dynamic resource alloca-
tion. For example, the system reliability might change
dynamically according to various types of failures
(e.g., overflow failure, timeout failure, resource miss-
ing failure, network failure, or database failure), and

2Throughout the paper, unless otherwise stated, the
term “system” and “cloud-based application” are used in-
terchangeable.
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the cloud infrastructure must react and adapt itself to
preserve the level of reliability.

In addition, the layers of a cloud architecture (i.e.,
IaaS, PaaS and SaaS) cooperate for the resource man-
agement through established contracts: each layer
usually provides resources to the upper layers by ex-
ploiting resources of the lower layers. Cloud lay-
ers attempt to perform optimal resource allocation
(e.g., the IaaS layer maximizes hardware resources
utilization) in order to satisfy user demands, but ex-
isting approaches usually optimize the decisions in
a single layer without considering dependencies and
constraints between layers. Hence, instead of view-
ing layers as separate control/optimization problems,
an explicit coordination between layers would allow
finding the appropriate trade-off between the, usu-
ally conflicting, objectives of the layers (Litoiu et al.,
2010).

In this work we address the interdependencies of
cloud layers. Our approach attempts to find optimal
solutions for each layer when resource allocation is
needed and to support explicit cooperation between
layers. Different resource allocation actions may be
suitable for assuring a certain quality attribute (e.g.,
a different deployment of containers on VMs and/or
assignment of CPU and memory to the VMs could
still assure a certain reliability). Our solution allows
the verification of the impact of the software adapta-
tion actions on the qualities attributes by predicting
the quality, obtained after the application of adapta-
tion actions for each change required, as a function
of the resource allocation. To this purpose, we adopt
a Pareto multi-objective optimization(Censor, 1977)
to optimize the resource allocation with tight cooper-
ation between the cloud layers.

The paper is organized as follows. Section 2 re-
ports some related work. Section 3 presents a small
application example adopted as running case study.
Section 4 describes the proposed coordination frame-
work. The details of its realization are given and ex-
emplified through the case study in Section 5. Section
6 outlines some technical details about our experi-
mental cloud infrastructure. Finally, Section 7 con-
cludes the paper and outlines some future directions.

2 STATE OF THE ART

As stated in (Litoiu et al., 2010), notwithstanding the
increasing interest and diffusion of cloud computing
projects (see, e.g., EU’s FP7 RESERVOIR3 and the
VOLARE (Papakos et al., 2010) projects), “there is no

3http://www.reservoir-fp7.eu/

clear vision on how different layers of the cloud, pos-
sibly in different administrative domains, can collabo-
rate to satisfy stakeholders goals”. To this purpose, in
(Litoiu et al., 2010) a conceptual optimization model
is proposed for satisfying the performance character-
istics both locally for each cloud layer (e.g., an SaaS
user requires an average application response time,
and the maximum hardware utilization is wished by
the IaaS providers) and globally, considering an inter-
layer cooperation. This paper has been inspired by the
work in (Litoiu et al., 2010) and proposes a tight in-
terlayer coordination schema for optimizing resource
allocation able to deal with the adaptation of cloud-
based applications.

Several research efforts have been devoted in the
last years to the definition of approaches and frame-
works for supporting optimization decisions for sin-
gle cloud layers. Most of them typically adapt a
cloud-based application by adopting different service
discovery and rebinding policies (see, e.g., (Papakos
et al., 2010)), varying application parametrization
and properties or modifying the application structure
(Baker et al., 2010), such as the flow of the activi-
ties or processes. These adaptation approaches suffer
for the lack of models/techniques for analyzing the
quality attributes of a cloud system (Dai et al., 2009),
and are not driven by quality attribute trade-offs by
considering the particular features of the cloud com-
puting domain. Traditional web service composition
methods, for example, need to be enriched (Zou et al.,
2010) because service providers will likely publish
their web services at different cloud platforms, such
as Windows Azure Platform and Amazon S3. Fur-
thermore, existing algorithms for workflow schedul-
ing are not designed for multiple workflows with mul-
tiple QoS constrained scheduling and do not specifi-
cally take into account the features of the cloud com-
puting (Xu et al., 2009).

The adaptation actions suggested by these ap-
proaches are not typically driven by the dynamic re-
source allocation with tight cooperation between the
layers. On the opposite, as claimed in (Yau and
An, 2009), the resource allocation approaches can-
not support dynamically modifying runtime environ-
ment changing for example, the workflow composi-
tion, QoS requirements, or workflow priorities and
resource status. Strategies have been developed, for
example, for maximizing the profit of an application
provider under constraints on a maximum user re-
sponse time for each user class (or a minimum class
throughput) (Li et al., 2009), or optimizing the power-
performance tradeoff, and the adaptation benefit and
cost of infrastructure providers (Jung et al., 2010).

With respect to the state of the art mentioned
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above, our approach (to the best of our knowledge)
is the first one that supports the adaptation of a cloud-
based application (including both the static and dy-
namic behavior) while resources are allocated with a
tight cooperation between the cloud layers. The adap-
tation actions may differ for adaptation cost and/or the
resulting system quality while changing the resource
allocation settings.

3 RUNNING CASE STUDY

This section presents a smartphone application used
throughout the paper to exemplify our approach. The
application, calledMultimedia Service App, provides
an end-user multimedia (text and video information)
service to subscribed users. The news includes text
and topical videos available in MPEG2 format. Be-
sides, we assume that the smartphone user can re-
quire to theMultimedia Service Appa geographical
map showing its locations (Alrifai and Risse, 2009).

Figure 1 shows the software architecture of the ap-
plication using the OSOA standard notation Service
Component Architecture (SCA) (SCA, 2007). It is
a thin client/server application: the server part is the
real application hosted on the cloud, while the client
(not shown in the figure) is assumed to be external and
connected via a wireless network to theMultimedia
Service App. TheMultimedia Service Appis a com-
posite application4 that makes use of several services
for sending news to the client. The service (or service-
oriented component)ClientInterfaceprocesses infor-
mation on the client’s behalf. It interacts with the core
serviceMultimediaService, and also with the service
Compressionto adapt the news content to the wireless
link. The serviceMultimediaServicecoordinates the
services:Transcodingto adapt the video content for
the smartphone format,Translationto adapt the text
for the smartphone format and draw the geographical
map, the serviceMergingto integrate the text with the
video stream for the limited smartphone display, and
Locations Databaseto collect information about the
localization of cells and thus provide a map showing
the user location.

In this work we will consider the following three
functionalities: (i) require news in textual format, (ii)
require news with both textual and video content (iii)
provide a geographical map with user location.

4The SCA standard provides the composite concept as
a means to assemble heterogeneous service-oriented com-
ponents into logical groupings. An SCA composite usually
contains a set of components, services, references, the wires
(communication channels) that interconnect them.

Figure 1: SCA assembly of the Multimedia Service App.

4 A CLOUD COORDINATION
FRAMEWORK

This section presents a three-layered coordination ap-
proach (see Figure 2) based on three frameworks (one
for each cloud layer) – composing theCloud Coor-
dination Framework– that dynamically perform re-
source allocation. Each framework provides a set of
manager componentsthat handle the requests coming
from the other layers. Such components of a frame-
work interchange sensors data (related to measures of
the optimization) and actuators data (to drive the op-
timization) with the managers of the other layers thus
performing a continuous optimization activity.

The IaaS layer aims at maximizing the use of its
Hardware Resources (HRs). Such resources are vir-
tualized and offered as computing services (e.g., stor-
age, CPU and memory). The IaaS layer handles ser-
vice requests from the PaaS layer, such as Virtual
Machines (VMs) with particular performance charac-
teristics on memory, storage and processing capacity.
The PaaS layer, which offers platform services to the
SaaS layer, aims at optimizing the profit by maximiz-
ing the number of applications it hosts and minimiz-
ing the resources it uses, and penalties it pays. The
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Figure 2: The Cloud Coordination Framework and its envi-
ronment.

PaaS layer uses resources of the IaaS layer by request-
ing VMs and storage and deploying application con-
tainers5 on the VMs. Finally, the SaaS layer, provides
services to end users and maximizes the profit, for ex-
ample setting the revenue proportional to the number
of users or to the throughput. It deploys the applica-
tions in PaaS containers considering topologies spe-
cific to each application.

In this section we describe how our coordination
framework allows the combination of the adaptation
– performed at the SaaS layer and driven by quality
attributes – of a cloud-based application and of re-
source allocation – performed at all layers. In fact, a
system quality (such as the perceived system reliabil-
ity for a user application) formalized as Service Level
Agreement (SLA) depends on the interaction between
certain layers, i.e., to a specific contract among the
stakeholders of the layers. If an adaptation request is
triggered in the SaaS layer, then the layer has to com-
bine the software adaptation actions and the resources
already owned or newly requested to the PaaS layer.
The PaaS layer, in turn, must find an optimal decision
to satisfy the resources requested from the SaaS layer
through resources it already owns (deploying addi-
tional containers) or demand more to the IaaS layer.
In the last case, the IaaS, for example, must deploy
and allocate additional VMs in an optimal manner.
Considering quality analysis and implementation of
layers’ coordination, different strategies can be used

5A container is a computing infrastructure for hosting
and running applications (one or more services).

depending on factors mainly related to the use of our
framework forevolution(at re-design time) orself-
adaptation(at run time) (Bucchiarone et al., 2010).

4.1 A Coordination Scenario

Figure 3 shows a concrete example of coordination
scenario as it would be performed by our coordina-
tion framework for the adaptation of a cloud-based
application. Below, we describe the main steps of
this process, which could be merely adopted in case
of evolution. In case of self-adaptation, we should
define simpler models and faster approaches must be
adopted for their solution in order to allow a prompt
run-time adaptation.

Step 1: SaaS Framework Defines Adaption Ac-
tions. The SaaS framework defines software adap-
tation actions for addressing the required changes
(claimed by a user or triggered by a monitor mod-
ule) by using the multi-objective optimization (Cen-
sor, 1977). A solution of such an optimization, called
Pareto solutionor Pareto front, is the one that mini-
mizes a set of objectives (e.g., adaptation cost, proba-
bility of failure and response time) under quality con-
straints, such as on the required minimum level of re-
liability.

More formally: Let AS be theadaptation space
(i.e. the search space of our optimization process ob-
tained considering the set of all possible candidate so-
lutions) defined as the Cartesian product of the option
sets of all application-specific adaptation actions, let
sbe a candidate solution, letC⊆ ASbe a set of candi-
date solutions evaluated so far, and letq be a quality
criterion with a domainDq, and an order≤q on Dq
so thats1 ≤q s2 means thats1 is better than or equal
to s2 with respect to quality criterionq. Then, candi-
date solutions is Pareto-optimal with respect to a set
of evaluated candidate solutionsC, iff:

∀s′ ∈C ∃q : fq(s)≤q fq(s
′)

If a candidate solution is notPareto-optimal, then
it is Pareto-dominatedby at least one other candidate
solution inC that is better or equal in all quality cri-
teria. Analogously, a candidate isglobally Pareto-
optimal, if it is Pareto-optimal with respect to the set
of all possible candidatesAS.

The solutions may differ in the adaptation actions
for adapting the applications or the resource alloca-
tion (e.g., the deployment of services on the contain-
ers, which have been previously assigned by the PaaS
layer). If the SaaS layer needs more resources (or
does not find an admissible solution with the contain-
ers assigned by the PaaS layer), then the SaaS frame-
work proposes the Pareto solutions to the PaaS frame-
work. For each solution the resources necessary for
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its application are indicated (e.g., a new deployment
topology) or ranges for container parameters (e.g.,
utilizations, throughput, response times of containers)
are reported. Obviously, the SaaS framework tries to
minimize, other than the cost for the software adap-
tation (e.g., the one for embedding a new service into
the system), the payment for resources to the PaaS
layer.

Step 2: PaaS Framework Tries to Satisfy the
SaaS Demands. Once the PaaS framework analyses
the Pareto solutions obtained from the SaaS frame-
work, it attempts to find feasible resource allocations
or in case of failure, it suggests Pareto solutions to the
IaaS framework. Each solution suggests, for instance,
additional VMs, the allocation of VMs to containers.
Similarly to the SaaS framework, the PaaS framework
tries to minimize the payment for resources to IaaS
layer. Section 5 presents a couple of optimization
models that can be used in our framework at SaaS
and PaaS layers, and shows the benefits of their in-
teraction.

Step 3: IaaS Framework Tries to Satisfy the
PaaS Demands. The IaaS framework analyzes the
Pareto set received from the PaaS framework. Sim-
ilarly to the SaaS and PaaS frameworks, the IaaS
framework finds a Pareto solution that minimize a
set of objectives (e.g., the resources that it does not
use and the penalties it pays) by trying to satisfy the
PaaS requests (e.g., by allocating VMs to processor
or changing VM settings, such as memory, CPU ra-
tio, etc.).

Step 4: Contract Re-negotiation between Layers.
If the layers’ frameworks do not find a resource al-

location for addressing the required systems changes,
then layers’ contracts may be (re)-negotiated, e.g.,
the PaaS layer contracts additional resources with the
IaaS layer or the SLA is re-negotiated. For exam-
ple, in (Papakos et al., 2010), when the context of the
user device changes or the provided level of quality
attributes changes then the required quality levels are
re-negotiated. Note that this step will mostly depend
on runtime adaptation needs.

5 THE OPTIMIZATION MODEL

In this section we present a couple of optimization
models that we use in our framework at SaaS and
PaaS layers together with their application to the run-
ning case study.

Specifically, the proposed SaaS model supports
the adaptation of a cloud application by the service
selection and the resource allocation activities. In
particular, for each elementary service of an applica-

tion it indicates one of its available instances. The
model finds also the optimal amount of resources of
the containers to be allocated to their hosted services.
The model maximizes theProfit of the SaaS provider
and theThroughputof the application (i.e., the aver-
age number of service responses per second) under a
given throughput constraint.

At the PaaS layer, the model aims to maximize
theProfit of the PaaS provider and theThroughputof
the applications, which share a VM, under through-
put constraints (i.e., the throughput of the applications
served by the PaaS layer is assured within a certain
threshold).

5.1 The SaaS Problem Formulation

Let us now better formalize the model. Let us as-
sume a cloud-based application that offers a setF of
functionalities to users through the composition ofn
elementary services. Letsi be thei-th service (1≤ i
≤ n). The affiliation of the services to the function-
alities is represented by the matrixSF(n×F), where
an elementSF[i, f ] is equal to 1 if the functionalityf
includes the servicesi , and 0 otherwise.

Let Ji be the set of instances available for thei-
th service (i.e., the services provided by the SaaS
provider). We assume that the instances available for
the servicesi are functionally compliant with it, i.e.,
each instance provides at least all services provided
by si and requires at most all services required bysi .

Let K be the number of containers. The container
deployment is expressed by the matrixD(n,K), where
the entryD[i,k] is equal to 1 ifsi is deployed on the
containerk, and 0 otherwise. Each container provides
resources to the services, such as CPU time, memory
and bandwidth. As the average number of service-
requests per second arriving to a container one re-
source will become a bottleneck (this is also called
critical resource).

Model Variables.Thexi j (1≤ i ≤ n, j ∈ Ji) vari-
ables are used for selecting an instance available for
the i-th service, namelyxi j is equal to 1 if thesi j in-
stance is chosen, and 0 otherwise.

Furthermore, the variableTf (1 ≤ f ≤ F) repre-
sents the optimal throughput of thef -th functionality.

Function Objective.Maximizing theProfit of the
SaaS provider and theThroughputof the cloud appli-
cation.

TheProfit of the SaaS provider can be expressed
as:

PROF=
n

∑
i=1

∑
j∈Ji

ci j xi j (1)

whereci j is the price (in KiloEuros, KE) charged for
using the servicesi j .
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Figure 3: A coordination scenario for the adaptation of a cloud application.

The Throughputof an application can be formu-
lated as:

TH =
F

∑
f=1

Tf Pr f (2)

wherePr f is the priority required (see (Yau and An,
2009) where the priorities for workflows are consid-
ered) for the functionalityf .

Service Selection Constraint.For each service
si , exactly one instance is chosen (i.e.,∑ j∈Ji

xi j =
1, ∀i = 1. . .n).

Service-request Rates Requirement Constraint.
For each functionalityf the constraintTf ≤ SRf ,
whereSRf is service request rate off , is added.

Throughput Requirement Constraint. For the
functionality f (if TRf ≤ SRf , where TRf is the
throughput required by the users forf ) the constraint
Tf ≥ TRf is added.

Available Critical Resource Constraint.For the
containerk the following constraint is added:
∑F

f=1(∑n
i=1D[i,k] ·Tf ·SF[i, f ] ·bpi f ·∑ j∈Ji

λi j ·xi j ) ≤
Rk, whereRk is the percentage of available critical re-
source of the containerk. Rk can be either a resource
assigned by the PaaS layer or the one required by the
SaaS Framework for finding feasible solutions.bpi f
is the number of invocations ofsi within the function-
ality f , and λi j represents theservice cost, namely
the percentage of critical resource required to serve a
service-request over the total available resource criti-
cal (see (Yau and An, 2009) for more details).

Resource Allocation. Therefore, the amount of
resourceAkh to be allocated to the servicesh deployed
on the containerk is:

Akh = ∑
j∈Jh

λh j ·xh j ·
F

∑
f=1

Tf ·SF[h, f ] (3)

Running Application Example: To solve the
model we have implemented thelexicographic
method(Marler and Arora, 2004) as follows. First we
have solved the optimization model maximizing the
SaaS profit, then we have formulated the optimiza-
tion model that maximizes the throughput of the ap-
plication under the SaaS profit constraint expressed
as a function of the real numberε. Finally, we have
found the set of Pareto optimal solutions by varyingε
(i.e., we have applied theε-constraint approach (Mar-
ler and Arora, 2004)). For the experimentation we
have used the LINGO tool6, which is a non-linear
model solver, to produce the results.

We have parameterized the model with the values
of the available service instances as reported in the
Table 1. We have associated short names to the ser-
vices as illustrated in the first column of the Table 1
(i.e., s1, s2,...,s7), and deployed the services (see the
last column) on three containers. The third column of
the Table lists, for each service, the set of alternatives.
For each alternative: the costci j (in KiloEuros, KE)
is given in the fourth column, the percentage of criti-
cal resource required to serve a service-requestλi j is
given in the fifth column. Finally the number of in-
vocationsbpf i of si within the functionalities 1, 2 and
3 are given in the sixth, seven and eight column, re-
spectively.

The critical resource of the containers is the CPU-
time. Let us consider the following values: the per-
centage of available resource of containers 1, 2 and 3
equal to 90%, 89%, 90% respectively; the priority re-
quired for the functionalities 1, 2 and 3 are 1, 2.5 and
3, respectively. The service request rates of function-

6http://www.lindo.com/

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

360



Table 1: Parameters of the available instances.

Service Service Service Cost Perc. B. p. B. p. B. p. Cont. Dep.
ID name alter. ci j of r. f. 1 f. 2 f. 3 D[i,k]

λi j bp1i bp2i bp3i

s1 ClientInterface s11 6 0.04 3 3 3 D[1,2]
s12 9 0.07
s13 10 0.1

s2 Multimedia s21 4 0.03 5 7 6 D[2,2]
Service s22 12 0.2

s23 14 0.3
s3 Locations s31 8 0.12 0 0 1 D[3,1]

Database s32 10 0.3
s33 16 0.4

s4 Transcoding s41 3 0.04 0 1 0 D[4,3]
s42 10 0.08
s43 14 0.2

s5 Translation s51 2 0.01 1 1 1 D[5,1]
s52 5 0.02
s53 9 0.2

s6 Merging s61 5 0.01 0 1 0 D[6,3]
s62 14 0.03
s63 19 0.2

s7 Compression s71 3 0.09 1 1 1 D[7,1]
s72 9 0.1
s73 15 0.2

Figure 4: Pareto curve returned by the SaaS model.

alities 1, 2 and 3 are considered equal to 27, 30 and 37
req/sec, respectively. Finally, the minimum through-
put of functionalities 1, 2 and 3 are set to 7, 12 and 12
req/sec, respectively.

Figure 4 reports the approximate Pareto curve ob-
tained from solving the model. Each Pareto solution
represents a configuration of services and an alloca-
tion of resources that maximize both the SaaS profit
(in KiloEuros, KE) and the throughput of the applica-
tion (in request/second, req/sec).

Table 2 details the results. Each row of the table
represents the choice of services and the functional-
ity throughput (i.e., a Pareto solution) that the model
suggests. The choice is represented as two vectors.
Each element of the first vector is the name of the
service instance available, whereas each element of
the second one is the functionality’s throughput. Be-
side these vectors, the throughput objective, the SaaS
profit, and the value of theε parameter are also re-
ported.

For example, model results claim that if through-
put objective is equal to 213 req/sec (represented on
the x-axis), then the maximum profit of the SaaS is
87 KE. Such solution point is:[s13, s21, s33, s43, s53,
s63, s73] [T1 = 27 req/sec,T2 = 30 req/sec,T3 = 37
req/sec], where all the replacements services are spec-
ified, as well as the optimal throughput of each func-
tionality. The model results also show that the optimal
solution cost increases (up to 97 KE) while decreasing
the throughput objective (down to 105 req/sec).

5.2 The PaaS Problem Formulation

Let R be the resources (assigned by the IaaS layer)
provided by a VM to itsm hosted applications, such
as CPU time, memory and bandwidth.
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Table 2: Results of the SaaS model.

Pareto Solution
[s13, s23, s33, s43, s53, s63, s73]
[T1 = 7 req/sec,T2 = 12 req/sec,T3 = 22.666 req/sec]
Throu. Obj.= 105 req/sec Cost Obj.= 97 KE
[s12, s23, s33, s43, s53, s63, s73]
[T1 = 7 req/sec,T2 = 12 req/sec,T3 = 24.532 req/sec]ε = 1
Throu. Obj.= 110.597 req/sec Cost Obj.= 96 KE
[s13, s22, s33, s43, s53, s63, s73]
[T1 = 7 req/sec,T2 = 14.352 req/sec,T3 = 37 req/sec]ε = 2
Throu. Obj.= 153.882 req/sec Cost Obj.= 95 KE
[s12, s22, s33, s43, s53, s63, s73]
[T1 = 7 req/sec,T2 = 17.614 req/sec,T3 = 37 req/sec]ε = 3
Throu. Obj.= 162.037 req/sec Cost Obj.= 94 KE
[s11, s22, s33, s43, s53, s63, s73]
[T1 = 7 req/sec,T2 = 21.263 req/sec,T3 = 37 req/sec]ε = 7
Throu. Obj.= 171.157 req/sec Cost Obj.= 91 KE
[s13, s21, s33, s43, s53, s63, s73]
[T1 = 27 req/sec,T2 = 30 req/sec,T3 = 37 req/sec]ε = 10
Throu. Obj.= 213 req/sec Cost Obj.= 87 KE

Model Variables. The variableT̄i (1≤ i ≤ m) repre-
sents the optimal throughput of thei-th application.

Function Objective.Maximizing theProfit of the
PaaS provider and theThroughputof the m applica-
tions.

TheProfit can be expressed as:

PROF=
R

∑
r=1

m

∑
i=1

c̄r · Āri (4)

where ¯cr represents the price (in KE) charged for
using one percent of the resourcer, and Āri is the
amount ofr assigned to the applicationi (7).

Similarly to the SaaS model, theThroughputob-
jective can be formulated as:

TH =
m

∑
i=1

T̄iP̄ri (5)

whereP̄ri is the priority required for the applicationi.
Service-request Rates Requirement Constraint.

For the applicationi the constraintT̄i ≤ S̄Ri , where
S̄Ri is service request rate ofi, is added.

Throughput Requirement Constraint.For the ap-
plicationi (if T̄Ri ≤ S̄Ri , whereT̄Ri is the throughput
required by the users fori) the constraint̄Ti ≥ T̄Ri is
added.

Available Critical Resource Constraint. For
the resourcer the following constraint is added:

7T̄i can be expressed as∑F
f=1 Tf · pexecf , wherepexecf

is the probability that thef -th application functionality will
be invoked. It must hold:pexecf >= 0 and∑F

f=1 pexecf =
1.

∑m
i=1 T̄i · λ̄ri ≤ avr whereavr is the percentage of avail-

able resourcer of the VM, andλ̄ri , similarly to the
service cost, is the percentage of resourcer required
to serve a service-request of the applicationi over the
total available resource critical.

Resource Allocation. Therefore, the amount of
resourcer to be allocated to the applicationi is:

Āri = λ̄ri · T̄i (6)

5.3 Cooperation between SaaS and
PaaS Optimization Models

In this section we outline two examples where the
SaaS and the PaaS model cooperate together. We
show how this latter model allows adapting the
smartphone application, as proposed by the Pareto
solutions in Figure 4, by using the PaaS resource
allocation activity (seeStep 2in Section 4).

Running Application Example: The container 1
of the smartphone application (here also calledapp1)
belongs to a VM, which is also shared by other two
cloud applications (here also calledapp2 andapp3,
respectively).

Let us consider the following values: the price
charged for using one percent of VM’s CPU equal to
2 KE; the VM has the 100% of CPU; the priority re-
quired for theapp1, app2 andapp3 are set to 2, 1.5
and 1, respectively. The probabilities that the func-
tionalities 1, 2 and 3 ofapp1 are considered equal
to 0.3, 0.3 and 0.4, respectively. Thus the average
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service request ratēSR1 and throughput requirement
T̄R1 of app1 are equal to 31.9 and 10.5 req/sec, re-
spectively.

Example 1: PaaS Framework assures the re-
quests of the smarthphone provider and the maximum
throughput for app 2 and app 3.

Let us consider the following values forapp2 and
app3, respectively: the percentages of CPU usage at a
very low average load are 0.6% and 0.8%; the service
request rates are 20 and 24 req/sec; the throughput
requirements are 8 and 9 req/sec.

The PaaS model for the SaaS Pareto point
(153.882 req/sec, 95 KE) – for which the average op-
timal throughput̄T1 of app1 is equal to 21.205 req/sec
– finds the following feasible solution:[T̄1 = 21.205
req/sec,T̄2 = 20 req/sec,̄T3 = 24 req/sec]. The PaaS
profit is equal to 138.68 KE, while the throughput ob-
jective is equal to 96.411 req/sec.

Example 2: PaaS Framework satisfies the smarth-
phone provider, but not the maximum throughput for
app 2 and app 3.

Starting from the initial values of the model pa-
rameters ofExample 1, let us increase to: 2% the per-
centage of CPU required byapp2 andapp3; 24 and
34 req/sec the service requests rates ofapp2 andapp
3, respectively.

The PaaS model for the SaaS Pareto point (213
req/sec, 87 KE) – for which̄T1 is equal to 31.9 req/sec
– finds the following feasible solution:[T̄1 = 31.9
req/sec,T̄2 = 14.8 req/sec,̄T3 = 9 req/sec]. The PaaS
profit is equal to 200 KE, while the throughput objec-
tive is equal to 95 req/sec.

These examples highlight the benefits of the coor-
dination between the SaaS and the PaaS layers. They
show how the SaaS provider is able to adapt the smart-
phone application by using the resource allocation ac-
tivity of the PaaS layer.

6 EXPERIMENTAL
ENVIRONMENT

Today, many cloud applications in the SaaS layer
are implemented using service-oriented assemblies
such as the SCA (SCA, 2007) approach. SCA is an
XML-based metadata component model that copes
with heterogeneity by allowing various implementa-
tion technology (as Java, C++, Spring, PHP, BPEL,
Web services, etc.), middleware programming APIs,
and communication protocols.

We have been conducting our experiments on
a private cloud environment based on the software
framework Eucalyptus (Nurmi et al., 2009). Euca-
lyptus is an open source cloud computing software

framework that implements the IaaS model by allow-
ing users to run and control entire virtual machines on
cloud infrastructure. On the top of such virtual ma-
chines, as application containers we install: the Java
platform enterprise edition (Java EE), Apache Tom-
cat, various web services containers, and (more im-
portantly) the SCA runtime platform Apache Tuscany
(Tuscany, 2010).

The platform Tuscany supports different tech-
nology/protocols (e.g., WSDL binding to con-
sume/expose web services, JMS binding to re-
ceive/send Java Message Service, etc.) and recently,
with the incubation project Nuvem, addresses some
cloud-specific issues. Using this platform, applica-
tions (possibly containing components implemented
in different languages) can be integrated by repre-
senting them in terms of SCA assemblies deployed
and spanned across multipleSCA domains. An SCA
domain typically represents a set of services provid-
ing an area of business functionality that is controlled
by a single organization. As an example, for the ac-
counts department in a business, the SCA domain
might cover all financial related function, and it might
contain a series of composites dealing with specific
areas of accounting, with one for customer accounts,
another dealing with accounts payable (SCAspec,
2007). We use Tuscany as the primary infrastructure
solution for creating and hosting the domains, com-
ponents, etc. These domains are then spread across
the cloud and enterprise infrastructure, thus creating
a composite service-oriented application.

Finally, our optimization framework uses (as we
already mentioned previously) Lingo to solve the op-
timization models at all three layers. Up to now, we
have been focused on the coordination of the SaaS and
PaaS layers, upon each we build a coordination man-
ager component to deal with handling requests. Sim-
ilarly to the Eucalyptus framework that implements
high-level system components in terms of Web ser-
vices, we have chosen to implement each manager
component as a stand-alone Web service exposing
well-defined language-agnostic API in the form of a
WSDL document. In this paper, we focused on the
description of the overall workflow of the compound
managers behaviors. Providing details about the fine-
grained architecture of such managers is out of the
scope of this paper.

7 CONCLUSIONS AND FUTURE
WORK

We have argued the need that cooperation between
the cloud layers should be improved in order to sat-
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isfy the resource allocation in an optimal way thus
avoiding collapsing the cloud. Such layered coordina-
tion schema, as shown in this paper on a smartphone
application, benefits the adaptation of a cloud-based
application. To this extent, a couple of optimization
models – designed for the SaaS and PaaS layers – are
presented, and their application/coordination is also
illustrated through the case study.

Currently, we are implementing a prototype of
our coordination framework to handle multiple dis-
tributed applications and large scale infrastructures
by following both a centralized and a decentralized
paradigm. We intend to apply our approach on real-
istic examples to validate it, study its scalability, and
compare it with existing approaches. We believe that
our approach may provide a valid solution to over-
come some of their drawbacks. For example, using
our approach it would be possible to consider the par-
ticular features of the cloud domain (e.g., services
can be deployed in different clouds) by expressing the
quality attributes of an application as a function of the
dynamic resource allocation.
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