

BUSINESS RULE ENGINE-BASED FRAMEWORK FOR SaaS
APPLICATION DEVELOPMENT

Zhang Xiuwei1,2,3, He Keqing1, Wang Jian1, Wang Chong1 and Li Zheng1
1State Key Lab of Software Engineering, Wuhan University, Wuhan, China

2Computer School, Wuhan University, Wuhan, China
394005 Troops of PLA, Jiuquan, China

Keywords: Business Rule Engine, SaaS, Multi-tenancy, Personalized Customization.

Abstract: Software as a Service (SaaS) is becoming a new direction of software industry in the new cloud computing
era. In order to satisfy business policy changes and personalized requirements from different tenants in SaaS
applications, business rule management must support multi-tenancy and online customization. This paper
proposed a framework based on business rule engine, decoupling of business logic rule from SaaS
application, which makes SaaS application more robust and maintainable. It takes business rule as an
independent and online maintainable part of SaaS application, which could allow tenants to safely upgrade,
delete or create rules during runtime. Finally, a practical case study of absence approval-process in
attendance management system evaluates the effectiveness of the framework.

1 INTRODUCTION

With the emergence of Cloud Computing and
maturity of Service Oriented Architecture (SOA),
the SaaS delivery model has gained popularity, due
to advantages such as lower start-up cost and
reduced time to market. A SaaS vendor owns and
takes the responsibility of maintaining a single
application for multiple tenants who may have
similar but also varying requirements (Kapuruge, et
al., 2011). The service vendor delivers software
functionalities with one single instance software
application running for all of its tenants. The most
ideal case for SaaS vendors is that every tenant feel
comfortable using a completely standardize offering.
However this ideal case usually does not happen in
enterprise software application area. Normally, this
one instance is used by different tenants having
different personalized requirements in terms of data,
process rules, and business rules (Kwok, et al.,
2008). Typically, business data and logic integrate
with other functionalities. In SaaS application,
configurability, multi-tenancy and scalability are the
three key attributes to evaluate the maturity of SaaS
application.

In today’s business environment of relentless
change, software configurability is inevitable since

changes generated by business policies and
operations need to be propagated onto the support
software application. A software system is directly
related to the business system within which it
operates and is thus a manifestation of some
business requirements for operational control and
support of decision making (Wan-Kadir and
Loucopoulos, 2003). Typically, business rules have
been bundled in program code or in database
structures, so it is very hard to upgrade. No matter in
large enterprises or small and medium enterprises
(SME), the business rules change very fast and need
to be adjusted timely. Business Rule Group (BRG)
believes that rules are a first-class citizen of the
requirements world. Traditional information
management systems for business process
configuration are not easy to maintain and are
difficult to expand. This problem becomes
increasingly prominent. There may even be a
situation where business rules changes can cause the
entire system to change (Liu, et al., 2010).

In SaaS application, many tenants are running on
one instance with the availability of 24*7. It is
unimaginable to modify or upgrade the business rule
for one tenant by suspending the whole application.
Meanwhile, it is a horrible disaster for one tenant to
modify its own business rules and affect other
tenants’ rules. In order to dealing with this kind of

345Xiuwei Z., Keqing H., Jian W., Chong W. and Zheng L..
BUSINESS RULE ENGINE-BASED FRAMEWORK FOR SaaS APPLICATION DEVELOPMENT.
DOI: 10.5220/0003919603450354
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 345-354
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

situation, the SaaS application’s business rules need
to be customized with a flexible method, which
enables organizations of any size to build, execute,
manage, and evolve its own rule-oriented
applications. A rule engine can be viewed as a
sophisticated interpreter of if-then statements. It can
reach a conclusion from a set of facts feed into it and
trigger an appropriate action. So we can use the
characteristic of rule engine to separate the business
logic out of the SaaS application to support online
customization and multi-tenancy with the isolated
rule file with specific tenant who has personal
customization of business rules. Therefore rule
independency and isolation is an essential part in the
development of SaaS application. In this paper, a
business rule engine-based framework was proposed
to help the development of SaaS application with the
personalized customization of business rules, which
is convenient for tenants to change the business rules
on-the-fly and minimize the downtime of the
application during the business rule upgrading or
modification.

In this paper, we only focus on the business
rule’s online customization and multi-tenancy
support, other parts customization like process data,
UI elements, localization, performance monitor and
so on are out of the scope. The next section
identifies the related work and section 3 provides a
clear and concise description of the background.
Section 4 demonstrates our framework and provides
explanation for our framework. Section 5 presents
the implantation representing our case study and is
used to exemplify the potential of our approach.
Section 6 draws conclusions from our work and
identifies the possibilities for future work.

2 RELATED WORK

Business rule customization of software is not a new
issue. And many researchers have done a lot in
traditional applications. Initially, rule based software
tools originate from work carried out in the artificial
intelligence (AI) research community. Companies
were faced with the need to combine domain
expertise with the flexibility to write lots of “if x,
then y” statements over a wide range of variables
without resorting to spaghetti code (Gichahi, 2003).
Orriens (2003) and Vasilecas (2009) have two main
views in dynamic business rule driven software
system design. One of them is to design predefined
executable processes and execute them by using
rules in software system, where processes and
execution rules are derived from business rules using

transformations. And another one discussed in the
work (Vasilecas, 2009), where business rules and
facts describing current business system state are
loaded into inference engine of the software system
and transformed into software system executable
data analysis process according to the results of
logical derivations. Computer scientists and
programmers began developing rule languages and
the corresponding engines that could handle the
conditions and actions needed to satisfy the wide
range of rules. The most successful approach for
doing this has proven to be the Rete algorithm
(Forgy, 1982). Many rule-engine tools and
application development support environments was
applied like Blaze Advisor Builder, BRS RuleTrack,
Business Rule Studio, Haley Technologies, ILOG
Rules, Platinum Aion, etc (Karami and Iijima, 2010).

In SaaS applications, there are still lots of
differences in business rule customization with
traditional applications. These differences include:

 The business rule customization or
configuration for SaaS applications should
support multitenant architecture and each
tenant should have their own customization.

 Not to affect other tenants, SaaS providers
could not suspend the system when some
tenant wants to modify or upgrading the
business rules.

 The customization will be executed by
administrator of tenant, not by developers of
SaaS provider.

 The customization of the business rules should
be simplified and friendly.

Above mentioned differences between SaaS
applications and traditional software have raised
many researches in this new area. Guo (2007)
proposed a multi-tenant supported framework to
support better isolations among tenants in many
aspects such as security, performance, availability,
administration etc. Zhang (2007) proposed a SaaS-
oriented service customization approach, which
allows service vendors to publish customization
policies along with services. If tenant’s
customization requirement is in agreement with
policy after being verified, vendors will update
service accordingly. This approach will inevitably
burden service providers because of tenants’
reasonable customization requirement increments.
Gong (2009) developed ECA process orchestration
architecture to create flexible processes. This
architecture based on both knowledge rules
(separating knowledge from processes) and event-
condition-actions (ECA) mechanisms to provide the
highest level of flexibility. Configurability of SaaS

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

346

issue was addressed in Ref (Nitu, 2009) who
researched the configurability like user interface,
workflow, data and access control from the different
aspect of SaaS. From the customization and
configuration perspective, Sun (2009) explored the
configuration and customization issues and
challenges to SaaS vendors, clarifies the difference
between configuration and customization. A
competency model and framework has been
developed to help SaaS vendors to plan and evaluate
their capabilities and strategies for service
configuration and customization. In the Ref (Shi, et
al., 2009), a flexible business process customization
framework for SaaS was proposed to solve problems
caused by orchestrating SaaS business process
through BPEL specifications. Kapuruge (2011)
discussed the challenges arising from single-instance
to multi-tenancy, and presented an approach of
Serendip4SaaS to define business processes in SaaS
applications.

To the best of our knowledge, no related work
has combined the rule engine and decision table with
the SaaS application for multi-tenancy support and
online customization. Compared to them, our work
was focused on the perspective of business rule
customization and configuration. In our framework,
each tenant can update their personalized business
rule in SaaS application by online selecting and
modifying corresponding rules. Rule engine was
utilized as the essential part to improve the
flexibility and multi-tenancy for SaaS application,
which makes business rule as an independent and
maintainable part of application.

3 BACKGROUND

3.1 Business Rule Engine

In business, a lot of actions are triggered by rules:
“Order more ice-cream when the stock is below 100
units and temperature is above 25° C”, “Approve
credit card application when the credit background
check is OK, past relationship with the customer is
profitable, and identity is confirmed”, and so on.
Traditional computer programming languages make
it difficult to translate this “natural language” into a
software program. Business rule engine enables
anybody with basic IT skills and an understanding of
the business to turn statements as running computer
code (Browne, 2009). A business rules engine is a
software system that executes one or more business
rules in a runtime production environment. It will
test data objects quickly in the workspace, pick out

rules which meet requirement from loading rule sets,
and generate an instance of rule execution. Figure 1
shows the architecture of rules engine. Pattern
matcher decides which and when rules will be
implemented. The implementation sequence of rules
picked from pattern matcher is arranged in agenda
so that execution engine can execute the rules or
other actions in order. The underlying idea of a rule
engine is to externalize the business or application
logic. Business rules are expressions that describe
and control the processes, operations and behaviour
of how an enterprise, and the applications that
support it, performs. Rules assert influence over
business or system behaviour by recommending
actions to be undertaken. A rule provides its invoker
a directive on how to proceed. Further, rule policies
provide a generalized mechanism for specifying
frequently changing practices, freeing system
components from the burden of maintaining and
evaluating evolving business and system
environments (Jeng, et al. 2004).

Agenda

Pattern
Matcher
(RETE)

Facts

Working
Memory

Knowledge
Base

Action

Facts Rules

Rule Engine

Figure 1: Basic architecture of rule engine.

3.2 Decision Table

A decision table is a tabular representation used to
describe and analyze decision situations, where the
state of a number of conditions determines the
execution of a set of actions. Many variations of the
decision table concept exist which look similar at
first sight (Vanthienen, 2009). Decision tables are
best suited for representing business rules that have
multiple conditions. Adding one condition is done
by simply adding one row or column. Like the
if/then rule set, the decision table is driven by the
interaction of conditions and actions. The main
difference is that in a decision table, the action is
decided by more than one condition, and more than
one action can be associated with each set of
conditions. If the conditions are met, then the
corresponding action or actions are performed
(Vasilecas, 2006). A column in the entry portion of

BUSINESS�RULE�ENGINE-BASED�FRAMEWORK�FOR�SaaS�APPLICATION�DEVELOPMENT

347

the table is known as a rule. Values which are in the
condition entry columns are known as inputs and
values inside the action entry portions are known as
outputs. Outputs are calculated depending on the
inputs and specification of the program. Figure 2
depicts the basic principle of the decision table.

Decision	rules	
for	the	case	
(Decision	Logic)	

Some	case	
requiring	a	
decision	
(Inputs)	

Making	Decision	
Outcome	
for	the	case

Potential	
outputs	

Figure 2: The basic principle diagram of decision table.

4 FRAMEWORK

The SaaS application operating on the proposed
SaaS platform is one packaged business application
with web-based user interface to multiple tenants.
Based on the features of business rule engine, we
design and implement a framework for development
of SaaS application with an online business rule
customization. The architecture of framework is
shown as Figure 3. The essence of this framework is
to separate business logics and business rule, and
make the business rule as an independent and
maintainable part, support multi-tenancy. The
objective of this framework is to reach a flexible and
competitive scenario in which it would be easier and
faster to react when changes in demand or business
appear.

Visual Rule Definer
(like Guvnor)

Rule Converter
（DSL File）

SaaS Application

SaaS Operation Platform

PaaS Business Logic Layer

IaaS

Tenant A Tenant B Tenant C Platform AdminRule
 EditorA EditorB

Rule File Set

Rule Engine

Rule Metadata

Rule Repository

Deploys
 Spcifies

Figure 3: The business rule engine-based framework.

4.1 Basic Units of the Framework

The proposed framework includes the following
major interrelated parts: BR definer, BR engine, BR
repository, SaaS application and SaaS deployment
system.

BR definer acts as a web-based tool or sub-
system that helps visually manage and create new
business rules, where the business policy can be
changed online by manager, business analysts, and
software developers.

BR Converter is an essential auxiliary tool of
rule engine and responsible for convert the
visualized rule from definer to BR engine
understandable language. It also can translate the
decision table to a specific executable language.

BR engine is a central component which is
responsible for computation and evaluation of the
business rules according to the user's invocation and
request. It can automatically assert the business rules
for specific tenant according to the rule load
metadata from repository.

BR repository is a repository that stores the
rule-related information and supports the flexibility
of rule expression. This component contains two
major parts, rule files set is used to store the
information of business rules including decision
table, “When...Then” based rule file, and DSL file
(Domain Specific Language) and so on. The stored
business rules in the repository are determined based
on the target system's specifications. Rule Metadata
is another important part of repository which
includes the tenant customization and configuration
information for specific tenants. Metadata was
stored in repository as management information to
support multi-tenancy.

SaaS application includes basic functionalities
and business logic layer. And we have separated the
business policy out of code and as an independent
part for upgrading and modification.

SaaS deployment system includes SaaS
operation platform (Platform as a service) and IaaS
(Infrastructure as a Service). In SaaS platform,
administrator will be responsible for management
and deployment of SaaS application. IaaS as a basic
part for SaaS deployment including hardware and
storage part and so on. We will not explain more
details about the SaaS deployment system because
this article is focused on the connection between
Business Rule Management(BRM) and SaaS
application.

Rule editors can configure various business rules
in terms of workflow, activity type, and business
policy by using the Rule Definer tool. Tenant’s

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

348

business rule configured information is stored
separately in tenant-specific metadata repository.
Rule engine-based framework generates
polymorphic service for individual tenant using
tenant-specific metadata at runtime. Through the
polymorphic service, tenant users feel as if they are
using their own business application while service
instance is shared by every tenant.

4.2 Capabilities of the Framework

SaaS application based on this framework will be
supported with the following capabilities, which also
was the basic requirement for SaaS application
development.

Support of Business Rules Management
Enterprises run their businesses with repeatable
business processes driven by general business rules
for specific situations and customers. These
capabilities allow enterprises to execute business
functionality using independent rule services made
up of executable, declarative rules, rather than being
forced to integrate the logic as code into a system.

Support of Online Maintenance
Current Enterprise applications require a new
application maintenance paradigm that can deliver
faster, easier application modification. Business rule
changes are first identified by the users of the system.
The fastest and safest way to empower these users is
to give them the tools they need to make the
application changes themselves. This can be
achieved by giving them access to easy-to-use rule
maintenance that allows them to maintain the
policies, procedures and rules for which they are
responsible.

Support of Multi-tenancy Customization
As the number of tenants with subscribed SaaS
application grows, specific personalized business
rules are needed for most tenants. In this framework,
we bind Tenant ID with rule files and store the
metadata in repository. In order to support multi-
tenancy, the most important part is the safety of
specific rules with specific tenants. In this
framework, the metadata of rules resolved this
problem.

4.3 Lifecycle of Business Rules in SaaS

In business world, some rule policies are changed
periodic and others are altered disorderly depending
on market competition and development. Rule life-

Figure 4: Lifecycle of business rules.

cycle in SaaS is illustrated in figure 4 including rules
creation, edition, activation, deletion, et al. The
whole lifecycle of business rule should be
considered in SaaS development.

Rules Creation
The creation of rules is done by rule editors. A new
rule is available for editing but has to be approved
for deployment.

Rules Edition
Rule edition is the modification of the condition part
or the action part of a rule. To keep track of changes,
only new or deployed rules can be edited.
Deactivated rules must be reactivated before they
can be modified.

Rules Deactivation and Reactivation
A rule can be manually or automatically deactivated.
For example, a rule is automatically deactivated on 1
January 2011, if it is time constrained to function
between 01 January 2008 and 31 December 2010.
An editor may manually deactivate a rule especially
when the regulatory changes. Rule editor may
reactivate a manually deactivated rule.

Rules Deletion
Rules that are no longer in use in the system can be
removed from the system by deletion.

BUSINESS�RULE�ENGINE-BASED�FRAMEWORK�FOR�SaaS�APPLICATION�DEVELOPMENT

349

Rules Deployment
Rules are deployed into the repository will be
reacted immediately by making a snapshot of
isolation for the deployed rules in SaaS application.

5 CASE STUDY

5.1 Motivation

In order to evaluate the proposed framework, we
will illustrate a business rule online customization
process via an example. We take Attendance
Management System (AMS) as the domain we do
experiment. AMS is an easy way to keep track of
attendance for enterprises, school activities, church
groups, and community organizations. It has become
as the necessity application for workforce
performance monitoring and evaluation. The
objective of this case was developing a multi-
tenancy supported AMS application with the online
customization. In order to show variation of business
rule for specific tenant, we demonstrate a roadmap
of rule policy from elicitation, presentation to
implementation by the process of absence approval
for sickness in AMS.

In most enterprises, the approval process for
employee who applied for the absence of sickness,
personal reason or salary holiday has different rules.
Here we show a simplified absence of sickness
approval process in AMS as a case to show the
variation of rules for different tenants. The approval
process of absence policy for sickness depends on
the absence days and other conditions like total
absence days in month, total absence days in year,
duration time and so on.

A simplified approval process depending only on
condition of absence days is depicted on Figure 5.
The whole approval process divides into four
situations, if the absence days not exceed the Level-
1’s limit. Only Level-1 approval is needed. If the
absence days over Level-1 and located in the Level-
2’s scope. The approval process will need both
Level-1 and Level-2. Normally Level-2’s approval
will executed after Level-1 approval passed except
for emergency situation. Level-3 and Level-4’s
approval have the similar approval procedure.

The following italic description outline the three
tenants A, B, C who has different approval process
and rule policies.
Tenant A. Absence days for sickness less than or
equal one day will be approved by team leader
(Level-1). From one day to five days absence will be
needed both team leader and Human Resource

Absence Approval
Application

Team Leader
Approval

HR Director
Approval

Deputy‐CEO
Approval

CEO
Approval

Start absence approval
application

To the end

To: higher level
approval

To: higher level
approval

To: highest level
approval

Decision making by rule policy

Level-1 Level-2 Level-3 Level-4

Figure 5: Absence approval process of tenant C.

Department approval (Level-2). And more than five
days will be permitted by Manager (Level-3).
Tenant B. Absence days for sickness less than or
equal two days will be approved by team leader
(Level-1). And more than two days will approve by
Human Resource Department (Level-2).
Tenant C. Absence for sick leave less than or equal
one day will be approved by team leader (Level-1).
From one day to five days absence will be needed
both team leader and Human Resource Department
approval (Level-2). From five days to ten days
absence will be approved by team leader, Human
Resource Department and deputy-CEO approval
(Level-3). And more than ten days need to be
permitted by team leader, HR director, deputy CEO
and CEO (Level-4).

5.2 Representation of Business Rule

Different enterprises have their own rule policies for
absence approval like above mentioned. Here we
take Tenant C’s rules as a case to demonstrate how
to fill these rules into decision table.

Step1, Definition of the Terms
Here we draw up a list of all condition statements
and actions that are mentioned in the text. It is clear
that this example only uses absence days as the
condition to determine which level of approval will
be executed. The following table lists all related
occurrences of these terms in the text.

Table 1: Rule condition statement and action statement.

Condition Statement Action Statement
Absence Days

Absence Days <=1
1<Absence Days<=5

5<Absence Days<=10
Absence Days >10

Permission level
Team leader (L-1)
HR Director(L-2)
Deputy CEO(L-3)

CEO(L-4)

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

350

Step 2, Verification of the Decision Rules
Based on the text of the regulations and conditions,
the condition states and the actions, we now can
proceed by defining the rules, analyzing each line in
the regulation and translating it into a rule. Absence
approval rule of Tenant C was built here as example.

 Absence days for sickness less than or equal
one day will be approved by team leader.

Rule 1: Absence Days <=1

Action: Level-1 Approved (team leader)

 From one day to five days absence will need
both team leader and Human Resource
Department approval.

Rule 2: 1< Absence Days <=5

Action: Level-1(team leader) and Level-2
(Human Resource Director) approval.

 From three days to ten days absence will be
approved by team leader, Human Resource
Department and deputy-CEO approval.

Rule 3: 5< Absence Days <=10

Action: Level-1, Level-2 and Level-3(deputy-
CEO) approval.

 And more than 10 days will be permitted by
team leader, HR Director, deputy-CEO and
CEO.

Rule 4: Absence Days >=10

Action: Level-1, Level-2, Level-3 and Level-
4(CEO) approval.

Step 3, Filling the Decision Table
After specifying the decision rules, it is needed to
fill them into the appropriate combinations in the
decision table as depicted in Table 2. The key point
to keep in mind is that in a decision table, each row
is a rule, and each column in that row is either a
condition or action for that rule. “※ ” indicates
actions in the combination will be activated, and “○”
means action will not activated by rules.

Table 2: Decision table for absence approval rule.

Absence Days (ADs) <=1 1<Ads<=5 5<Ads<=10 >10

Team Leader Approval ※ ※ ※ ※

HR Director Approval ○ ※ ※ ※

Deputy-CEO Approval ○ ○ ※ ※

CEO Approval ○ ○ ○ ※

Step4, Optimization of the Rule Condition
Once a complete validation of the decision table is
finished, the table could be reduced to its minimal
format. The order of the conditions might influence
the number of columns in the contracted table. For
this case, the above condition is already the optimal
one.

5.3 Implementation

In this case, we take Eclipse IDE as the development
environment and java-supported rule engine Drools
as BR engine. Drools introduce the business logic
integration platform that provides a unified and
integrated platform for rule, Workflow, and Event
Processing. Drools 5 is now split into four main
subprojects: (1) Guvnor (BRMS), a centralized
repository for Drools; (2) expert (rule engine); (3)
flow (process/workflow), providing workflow or
process capabilities to the Drools platform; and (4)
fusion (event processing/temporal reasoning),
providing event processing capabilities (Browne,
2009).

Drools expert was used as a rule engine and
Guvnor as a visual business rule definer which allow
browsing and editing the rule set. Generally,
decision table is a useful way to represent
conditional logic in a compact format. This format is
also readily readable and editable by non technical
users and will be suitable for most employees to
understand. Spreadsheets may not be perfect, but
popular and well-understood. So we can use them to
hold the data that we supply to the business rules.
Then use spreadsheets to hold the actual rules in a
decision table format. Drools decision tables can
utilize a spreadsheet (such as Excel, CSV) as the
means to capture decision logic in a user friendly
way. Because of the convenience of decision table
and supportability of Drools, the decision table was
adopted as business rule representation style in our
application. The following figure is the snapshot of
the executable Drools decision table for absence
approval process of Tenant C.

BUSINESS�RULE�ENGINE-BASED�FRAMEWORK�FOR�SaaS�APPLICATION�DEVELOPMENT

351

Figure 6: Snapshot of Drools based on decision table.

In this decision table, the first three lines are the
head information includes RuleSet, Import and
Notes. RuleSet lets Drools know where the header
table begins. Import lets Drools know which
package these rules live in and other imported
additional JavaBeans. Notes line is the comment
information and ignored as it means nothing to
Drools. The following part is the main body of
decision table. The left part of the decision table is
the CONDITION cells, which makes up the “WHEN”
part of the rule. The right part of the decision table is
ACTION cells which give the “THEN” part of the
rules. In Drools, the “WHEN” part of the rules define
the preconditions. The “THEN” part defines
conclusions, decision, actions, or just a new fact
deduced from the knowledge base. The <
preconditions > is also referred to as the left-hand
side (LHS) of the rule, whereas the < conclusions >
is referred to as the right-hand side (RHS). So, we
also can express rules as follow:

LHS (< rule name >) = < preconditions >
and
RHS (< rule name >) = < conclusions >

The first row of decision table could be rendered like
the following DRL rules:
rule "absence approval"
when

em(absence_days>0&&absence_days<1);
then

Tenant.sentToApproval (Level 1);
update (em);
end;

The fragments code for execution of decision table
is demonstrated in Figure 7. It almost has the same
executable code compare with the execution of the
DRL rule files.

In order to support the online customization of
business rule, it is necessary to use visual rule
definer. Guvnor Editor is a user-friendly web editor
which is powerful enough to modify rules. Tenants

Figure 7: Fragment of Java code for implementation.

can fill in the rule name and rule description, set the
priority of this rule and choose templates to define
business rule in line with their requirements. The
modification of decision table will need to download
the decision table and modified it, then uploads it
with Guvnor. Otherwise, in order to keep the
isolation of business rules for different tenant, we
build the tenant-based security policy on the login
page with different password for different tenant to
prevent the violation of the rules modification. The
visual rule definer of Gnuvor is shown as Figure 8.

Figure 8: Snapshot of decision table creation in Gnuvor.

5.4 Prototype Application

The SaaS application of AWS prototype was
developed followed the proposed framework which
has successfully integrated business rule engine into

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

352

Figure 9: Snapshots of SaaS application of AMS.

SaaS application. Figure 9 shows a snapshot of the
AMS prototype system, which was successfully
deployed on the SaaS platform of RGPS Cloud
Service Supermarket (Zhang et al., 2011). The
testing work and performance evaluation is now
ongoing and will be completed in other paper.

6 CONCLUSIONS

In this paper, we have overviewed BR engine based
framework and separated three main components
used for such a SaaS application development.
Depending on the proposed framework, it may be
possible to ensure different level of agility by an
instant deployment of changes in the business policy
and immediate reaction to the changes on the market
or competition by changing existing business rules.
Such advances allow SaaS application to be more
transparent, flexible and cost reduction. Although
BR engine based application have more complex
development process in an initial phase, but such a
system is more efficient in further maintenance and
modifications for numbers of tenants with frequently
changing regulations and business policy. Although
the proposed approach is convenient and effective to
modify the rule file and manage the requirement
changes by Rule Engine, it also brings lots of extra
performance consumptions. The consumptions
mainly include the following parts: the time of
compiling rule files, the time of rule matching and
the time of rule conflict resolution and the time for
management of rule metadata.

The work presented here, still in its earlier stage,
on the one hand，business rule isolation for multi-
tenant was not completely resolved by the Guvnor.
So still need to do more work on visual definer for
specific SaaS application. On the other hand, the
performance evaluation work still need to be done in
the future to make sure that the multi-tenant request
response time to in a reasonable and tolerant time.

Moreover we also need to do more experiment to
verify the efficiency of the framework.

ACKNOWLEDGEMENTS

This research project was supported by the National
Natural Science Foundation of China under Grant
No. 60970017 and No.61100018, the Fundamental
Research Funds for the Central Universities under
Grant No.3101034 and No.201121102020004, the
Specialized Research Fund for the Doctoral Program
of Higher Education No.20090141120020.

REFERENCES

Browne P., 2009. JBoss Drools business rules. Packt
publishing. Birmingham-Mumbai.

Forgy C., 1982. Rete: A Fast Algorithm for the many
pattern/many object pattern match problem. Artificial
Intelligence,19 (1982), pp 17–37.

Gichahi H.K.,2003. Rule-based process support for
enterprise information portal. [online]Available at<
http:// www.sts.tu-harburg.de/ pw-and-m-theses/ 2003/
gich03.pdf> [accessed 29 Sep 2011].

Gong YW., Janssen M., Overbeek S., et al. 2009. Enabling
flexible processes by ECA orchestration architecture.
ICEGOV 09 Proceedings of the 3rd international
conference on Theory and practice of electronic
governance, pp.19-26.

Guo CJ., Sun W., Huang Y., et al., A framework for native
multi-tenancy application development and
Management. The 9th IEEE International Conference
on E-Commerce Technology and The 4th IEEE
International Conference on Enterprise Computing, E-
Commerce and E-Services(CEC-EEE 2007), pp.551-
558.

Jeng JJ., Flaxer D., Kapoor S., 2004 . RuleBAM: A rule-
based framework for business activity Management.
2004 IEEE International Conference on Services
Computing, pp.262-270.

Kang SJ., Kang SW., Hur SJ. A design of the conceptual
architecture for a multitenant SaaS Application
Platform. Computers, Networks, Systems and
Industrial Engineering (CNSI), 2011 First ACIS/JNU
International Conference, pp.462-467.

Kapuruge M., Colman A., Han J., 2011. Achieving multi-
tenanted business processes in SaaS applications. In
WISE 2011, LNCS 6997, pp. 143–157.

Karami N., Iijima J., 2010. A logical approach for
implementing dynamic business rules. Contemporary
Management Research Vol 6(1), pp. 29-52.

Kwok T., Nguyen T. N., Lam L., 2008. Software as a
Service with Multi-tenancy Support for an Electronic
Contract Management Application. 2008 IEEE

BUSINESS�RULE�ENGINE-BASED�FRAMEWORK�FOR�SaaS�APPLICATION�DEVELOPMENT

353

International Conference on Services Computing, pp
179-186.

Liu C., Dong XP., Yang ZQ.,2010. Research of modern
enterprise intelligent system based on rule engine and
workflow. 2010 Intelligent Computing and Intelligent
Systems (ICIS), pp. 594-597.

Nitu, 2009. Configurability in SaaS (software as a service)
applications. ISEC’09, Proceedings of the 2nd India

software engineering conference, pp.19-26.
Orriens B., Yang J., Papazoglou M.P., 2003. A framework

for business rule driven service compostion.
Technologies for E-Services, Vol(2819), pp.14-27.

Shi YL., Luan S., Li QZ, et al, 2009. A flexible business
process customization framework for SaaS. ICIE 09,
WASE International Conference on Information
Engineering, pp.350-353.

Sun W., Zhang X., Guo CJ.,et al. Software as a Service:
Configuration and Customization Perspectives. IEEE
Congress on Services, SERVICES 2008, pp.18-25

Vanthienen J., 2009. Ruling the business: about business
rules and decision tables. [online]Available at: <http://
www.econ.kuleuven.be/tew/academic/infosys/members/
vthienen/download/papers/br_dt.pdf> [accessed 25
Sep 2011].

Vasilecas O.,2009. The framework for the implementation
of business rules in ERP. Informacijos mokslai,Vol
(49), pp.146-157.

Vasilecas O., Smaizys A., 2006. Business rule based data
analysis for decision support and automation.
International Conference on Computer Systems and
Technologies, CompSysTech’06. pp.191-196.

Wan-Kadir ,W.M.N., Pericles L. 2003. Relating evolving
business rules to software design. Journal of Systems
Architecture 50 (2004), pp.367–382.

Zhang K., Zhang X., Sun W., et al., 2007. A policy-driven
approach for software-as-services customization. The
9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International
Conference on Enterprise Computing, E-Commerce
and E-Services (CEC-EEE 2007), pp.123-130.

Zhang XW., He KQ., et al., 2011. SaaS service super-
market building model and service recommendation
approach. Journal on Communication (In Chinese),
2011, 32(9A), pp.158-165.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

354

