
CHOOSING THE RIGHT CLOUD ARCHITECTURE
A Cost Perspective

Uwe Hohenstein, Reto Krummenacher, Ludwig Mittermeier and Sebastian Dippl
Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, D-81730 Muenchen, Germany

Keywords: Cloud Computing, Cost-driven Architecture, Cloud Application Design, Windows Azure Platform.

Abstract: Cloud computing offers IT resources and services as a utility, and enables a much quicker move to market at
much lower cost, arguably. The initial expenses for effort and hardware are indeed lower, and potential
growth is much easier handled due to the inherited elasticity. However, applications in the cloud can cause
significant operational costs - different from on-premises operational costs - and hence unpleasant surprises
if not architected right. Cost factors should thus become much more of a core consideration when
architecting for the cloud. Different scenarios that are discussed in this paper will show how different
architectural decisions result in significantly different operational costs.

1 INTRODUCTION

Cloud computing has emerged to be the current
highlight in terms of IT as a service. A smart idea is
in principle enough to start a new business
(Armbrust, 2010): no more need for large cost
expenditure, no need for over-provisioning and
wasting expensive resources, for not missing
potential new clients. The main benefits of cloud
computing, without going into technical details yet,
are the elasticity and high availability of (at least
theoretically infinite) hardware and software
resources, the pay-as-you-go pricing model, and the
self-service administration of the resources. In more
economical terms, cloud computing has a very
attractive benefit of turning CAPEX (capital
expenses) into OPEX (operational expenses).

Still, none of these features, functional or non-
functional, comes for free. A scalable architecture is
essential for leveraging scalable cloud infra-
structures (Hamdaqa, 2011), or in other words,
simply deploying existing enterprise software into
the cloud does not make the software any more
scalable or cloud-enabled. Cloud architecture best
practices are offered by most cloud utility providers
(e.g., Amazon AWS (Varia, 2010)) or Microsoft
Azure (Pace, 2010) with illustrations of how to
design for failure, how to leverage elasticity, how to
decouple components and parallelize etc. These
important guidelines of how to bring existing and
new applications to the cloud are common and valid

for all cloud infrastructure offerings, although
optimal software engineering decisions might
certainly depend on the particular cloud utility for
which one implements the cloud-enabled
application.

There is, however, one important aspect, as we
will argue throughout this paper, which is (too often)
forgotten, when specifying solution architectures for
the cloud: the operational costs of running an
application in the cloud. In particular from an
enterprise perspective, the maintenance and
operations costs are highly relevant, and they should
thus have a significant impact on design decisions,
as we exemplify and discuss in this paper. The total
costs of running an application are comprised of
various individual sources such as the charges for
compute instances, storage, bandwidth or different
additional services. Depending on the cost model,
one or the other individual cost source will dominate
the overall bill, and reducing the total cost can only
be done when minimizing the use of these
dominating resources, already when defining the
architecture. Consequently, when architecting for the
cloud, cost factors need to be taken into account, and
one might consider extending the “4+1 Architectural
View Model” by (Kruchten, 1995) with an
operational cost view. While a modular design helps
to reduce maintenance costs and easy evolution, the
operational cost view would enable an architect to
illustrate the impact of the architectural decision on
the overall expenses (Käfer, 2010a).

334 Hohenstein U., Krummenacher R., Mittermeier L. and Dippl S..
CHOOSING THE RIGHT CLOUD ARCHITECTURE - A Cost Perspective.
DOI: 10.5220/0003918803340344
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 334-344
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

The similar line of arguments was expressed by
Todd Hoff on HighScalability.com: “Instead of
asking for the Big O complexity of an algorithm
we'll also have to ask for the Big $ (or Big Euro)
notation so we can judge an algorithm by its cost
against a particular cloud profile.” (Hoff, 2009). It
shows that while turning to cloud deployments cost-
centric architectures becomes even more important,
as the costs are more obviously accountable.
Although, we are certainly by no means arguing that
architectures should be determined by cost
measures, we emphasize that discussions about
architectural alternatives, about pros and cons with
regard to costs have to be taken into account much
more prominently when choosing the appropriate
architecture for the cloud.

Unfortunately, existing work on cost-centric
architectures is very few (cf. Section 5), and most
publications and white papers rather relate to a Total
Cost of Ownership (TCO) comparison between on
premise and cloud deployments, not taking into
account the actual architecture; at business-cloud.de,
the Experton Group has published a TCO Calculator
that helps in assessing the cost advantages of
deploying in the cloud.

With this paper we want to counterwork this
trend, and showcase with concrete examples how
architectures impact the operational costs, once the
decision to work in the cloud has been taken. As a
technical basis for our work we are using the
Windows Azure platform and the corresponding
pricing models. The main reason for working with
Windows Azure in the context of this paper is the
comprehensive PaaS offering that ships with a
complete development and deployment environment
and various relevant by-products such as persistent
storage, access control, or distributed cache. This
has also the advantage that there are no problems
with the licensing of such products, as these are part
of the platform and the cost model. The latter,
moreover, makes the calculation of the architecture-
dependent costs much easier.

In order to clarify the baseline, we continue the
paper with a short introduction to the core concepts
of Windows Azure and its pricing model in Section
2. Then, we present two scenarios that are derived
from real-world business cases, and based on that we
will discuss and analyze the different architectural
alternatives in Sections 3 and 4, respectively. In
Section 5, we outline some related work with cost-
centric aspects. During the practical part of our
investigation, we detected some recommendations
that are worth being reported on in Section 6, before
the paper is concluded with Section 7.

2 WINDOWS AZURE AND ITS
PRICING MODEL

In this section, we give a short introduction and
overview of the core concepts of Windows Azure
including the pay-per-use model. Pricing details
reflect the status quo when writing this paper and
will certainly change again in the future. However,
regardless of the pricing details of a specific cloud
computing platform, the baseline argumentation of
this paper remains the same.

2.1 Core Concepts

Windows Azure provides virtual machines, so-called
compute instances that run Windows Server 2008
and are available in two forms: a Web Role hosts an
IIS (Internet Information Server) and is foreseen to
provide the front-ends for web applications such as
ASP.NET. In contrast, a Worker Role does not
possess an IIS and serves mainly as a host for
backend processes. The Web Roles offer different
thread modes that can be configured, e.g., to have a
thread pool with delegating each request to the next
thread. In contrast to AWS, the compute instances
are redundant with a built-in failover mechanism.

Both types of compute instances can initiate
Internet connections, however, instances of Web and
Worker Roles are not directly accessible via the
Internet. All network traffic coming from outside to
Web and Worker Role instances goes through a load
balancer; each role can specify an endpoint con-
figuration by which protocol (e.g., HTTP(S)) and by
which port it should be accessible. Incoming traffic
is routed to role instances in a round robin fashion.
As a consequence, if there is more than one instance
of a Web Role, subsequent requests will be routed
by the load balancer to different instances. Therefore
it is not an option to use the local file system of a
Web Role for storing HTTP session data. Rather, the
Azure storage mechanisms, which are table storage,
queue storage and blob storage, need to be used for
such kind of data that needs to be processed in
subsequent requests. Similarly, SQL Azure, a
managed SQL service in the cloud, can be used.

Azure table storage allows for storing data in a
manner that is similar to tables, however, it does not
enforce a fixed scheme; a row consists of a couple of
properties and values, which are stored, without any
predefined structure. Azure queue storage allows for
FIFO-style message passing between role instances.
Each message can be up to 64 KB in size. Finally,
Azure blob storage allows for storing binary data
such as images or videos, which can be annotated

CHOOSING�THE�RIGHT�CLOUD�ARCHITECTURE�-�A�Cost�Perspective

335

with metadata. All the Azure storage services can be
accessed via a RESTful interface; i.e., an HTTP
protocol-based web API. This way, all programming
languages with support for HTTP can use of the
Azure storage capabilities, from inside the cloud or
outside. Apart from that, the Windows Azure storage
client library provides a more comfortable way for
accessing the Azure storages.

An application built for Windows Azure runs in
the context of a so-called hosted service, which
defines for instance a public URL prefix as well as
the geographical region. Windows Azure applicat-
ions are uploaded (deployed) to the public cloud
environment via the Azure web-based self-manage-
ment portal to a specific hosted service, either to a
production deployment or a staging deployment. The
production deployment is accessible via the public
URL of the hosted service whereas a deployment
that is uploaded to the staging area is for testing
purposes and thus only accessible via a URL gener-
ated by Azure. Staging and production deployments
can be swapped without service downtime.

2.2 Standard Rates

The standard rates for Windows Azure can be found
in http://www.microsoft.com/windowsazure/offers
/MS-AZR-0003P as of January 2012.

Compute instances, i.e., Web and Worker Roles,
are charged for the number of hours they are
deployed. Even if a compute instance is used for 5
seconds, a full hour has to be paid. There are several
instance categories, small (S), medium (M) etc. As
Table 1 shows, the instance categories scale in a
linear manner with regard to equipments and prices.
That is, a medium instance has double of CPU, disk
etc. than a small instance resulting in a double price.
The exception is an XS instance category.

Table 1: Prices for compute instances.

CPU RAM HDD
(GB)

MBps $ / h I/O
performance

XS Shared 768MB 20 5 0.04 Low
S 1,6GHz 1,7 GB 225 100 0.12 Moderate
M 2 x 3,5 GB 490 200 0.24 High
L 4 x 7 GB 1000 400 0.48 High
XL 8 x 14 GB 2040 800 0.96 High

For Azure table, blob and queue storages, the
costs depend on bandwidth, transaction, and storage
consumption. Storage is billed based upon the
average usage during a billing period of blob, table,
and queue storage. For example, if 10 GB of storage
are utilized for the first half of the month and none

for the second half of the month, 5 GB of storage are
billed for average usage. Each GB of storage is
charged with $0.14 per GB. Storage consumption is
measured at least once a day by Azure. Please note
that the storage consumption takes into account the
physical storage, which consists not only of raw
data, but also the length of the property names, the
data types, and the size of the actual data.

Moreover, any access to storage, i.e., any trans-
action, has to be paid: 10000 storage transactions
cost $0.01. Bulk operations, e.g., bundling several
inserts in one operation, count as one transaction.

All inbound data transfers to the Azure cloud are
at no charge since Spring 2011. The outbound
transfer to the North America and Europe regions is
charged with $0.12 per outgoing GB, the Asia
Pacific Region is more expensive. It is important to
note that the transferred data has some typical XML
overhead according to the protocol.

Data transfer is for free within the same affinity
group, i.e., for compute instances that run in the
same data center. The affinity group can be specified
in the Azure self-service portal.

The costs for SQL Azure are also based upon
monthly consumption. The Web Edition costs $9.99
per month for up to 1GB, and $49.95 for up to 5GB.
The Business Edition allows for larger databases
with similar prices: $99.99 per month for each 10GB
(up to 50 GB).

Finally, we want to mention the Azure Access
Control Service for authentication, which is charged
with $1.99 per 100,000 transactions.

There are also some flat rates where a fixed
number of compute instances is paid. For instance, a
6-month commitment (http://www.Microsoft.com
/windowsazure/offers) mostly offers a 20% off rate
for resources. In case the given quotas (e.g., 750 free
compute hours) are exceeded, standards rates apply
for overages. Furthermore, special offers exist for
MSDN subscribers, BizSpark, or MPN members.
Those specific rates are out of scope for this paper.

2.3 Special Quotas and Limits

There are some quotas active that define upper
thresholds. For instance, every account may run 20
concurrent small compute instances (which is equal
to 10 medium instances or 5 large instances) and
possess 5 concurrent storage accounts, each having
its own credentials for access. Higher numbers can
be ordered, however, require negotiation with the
Azure customer service. Besides this, there are a
couple of technical restrictions such as the payload
limit of 64 K for queues.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

336

3 SCENARIO 1: MASS DATA
STORE

This paper relies on two typical scenarios that occur
quite often in reality. However, the scenarios were
simplified in order to ease the discussion and to
obfuscate the business details.

The first scenario is concerned with mass data
storage. Several data providers (DPs) of given
organizations provide data for a cloud-based mass
data storage. The data in the cloud storage is used
and processed by applications for analysis or other
purposes; e.g., business intelligence or production
process optimization. A more concrete example is a
fleet management system that manages cars; each
car sends data about its current state or position to a
central cloud service. In this case the organizations
are car fleets, the data providers are individual
vehicles or fleet owners, and the collected data is
processed further on to optimize fleet usage or the
traffic management.

The following discussion is based upon several
assumptions; most of them will be relevant for the
presented cost calculations:
• There are 5 organizations with 20 DPs each for a

total of 100 DPs. Each DP sends 10 data items à 1
KB per second to storage. Both the frequency of
10 items per seconds and the payload are assumed
to be constant (varying loads are discussed later in
Subsection 3.5). In summary, 1000 items are thus
arriving per second (100 DPs * 10 items/s) for a
total payload of 1000 KB/s.

• No data will be removed; there is an increasing
amount of data maintained in storage.

• There is a transport latency from outside the cloud
to the inside and vice versa, which might of course
vary depending on the overall network congestion.
However, the impact on the architecture is
neglectably small since we assume an asynchr-
onous HTTP communication link between data
providers and the cloud storage. Hence, the DPs
are just firing without waiting for a confirmation.

Please note the main purpose of this paper is neither
to present a particular application and its costs, nor
to define the cheapest architecture for such. The
given numbers are (realistic) assumptions taken to
calculate and compare occurring costs in the cloud.
Moreover, it is not the intention to assert a certain
type of architecture, rather we want to show how
architectural choices can affect costs more or less
dramatically. We also recognize that changing the
assumed numbers and SLAs could lead to different
costs and ranking of architectures. There are also
further possible architectures that are not discussed.

3.1 The Web Role Approach

A couple of Web Roles (with threads running in it)
receive data from all data providers, no matter of
what organization. Threads of an appropriate
number of Web Roles store data into organization-
specific storages. Thus, every organization has some
cloud storage of its own to maintain its data – not at
last due to security considerations: an organization’s
data must not be accessible by other organizations.
According to the incoming load, more or less Web
Roles can be started, having the IIS load balancer in
front of them.

For the purpose of this paper, we fix some
further system parameters:
• Small compute instances are taken for the Web

Roles.
• We assume that each Web Role can run 10 threads

without system overload. This is a reasonable
number that corresponds to Microsoft’s recom-
mendations (Best Practices, 2011). Our tests have
shown that small Azure compute instances are
already quite busy having 10 threads running.

• Referring to the benchmarks in (MS Extreme
Computing Group, 2011), we assume that storing
data from a Web Role into cloud storage is
typically done in 30ms.

• For client authentication, authorization, and data
pre-processing, some additional 40ms are assumed
at the Worker Role, including a database access
for getting the credentials.

Summing up, this means that the processing of each
incoming storage request in a Web Role has some
70ms compute latency including all storage
accesses. As a consequence, one Web Role thread is
able to handle about 14 requests in a second.
Handling the 1000 incoming items/s (10 data items
per second from 100 data providers) thus requires
minimally 70 threads. According to the assumption
that each Web Role can run 10 threads, 7 Web Roles
with 10 threads each are needed to handle the
requested throughput; otherwise the IIS queue of the
Web Roles will fill up, letting data providers
experience more and more latency. With a constant
load, the IIS queues will never be able to shrink,
which moreover increases the risk of losing data.

According to (Microsoft Extreme Computing
Group, 2011), any Azure storage solution should be
able to handle a write throughput of 1000 items/s
performed by 7 Web Roles with 10 threads.

As stated previously, essential for this paper are
the operational costs of architectures. The monthly
costs for this first solution are as follows:
• The complete inbound traffic to the Web Role is

free of charge; since July 2011.

CHOOSING�THE�RIGHT�CLOUD�ARCHITECTURE�-�A�Cost�Perspective

337

• Seven small Web Roles à 12ct per hour for 30
days cost $604.80.

• Table storage (no removal assumed) with a daily
increase of 82.4 GB (1 GB/month à 14ct) results
in further $178.81 if we consider the worst case
that Azure monitors storage consumption at the
end of a day: 82.4 GB for the 1st day, a total of
2*82.4 GB for the 2nd day etc. sum up to 38316
GB in a month.

• 1000 storage transactions per second lead to
2,592,000,000 per month à 1ct per 10000: $2592.

The total costs are $3375.61. A quick conclusion
shows that transactions produce the main costs; Web
Roles and the storage also affect the costs.

An aspect not yet discussed is access control and
security. Authentication becomes necessary when
working with Web Roles, as those are able to access
all storage components directly. In this architecture,
authorization/authentication can be performed by the
Web Role, which is both an advantage and a
disadvantage: On the one hand, this provides better
flexibility. But on the other hand, an additional
authorization/authentication component is required
that incurs further costs, either for using Azure
Access Control ($1.99 for 100,000 transactions) or
implementing one’s own component. Anyway, the
Web Roles have access to all cloud storages since
they serve all organizations.

Of course, the Web Roles can also perform some
pre-processing, for example, extracting data from
XML input, transforming data, or condensing data.

3.2 Queues at the Front-end

In an alternative architecture, each organization
obtains one dedicated cloud queue at the frontend.
Data providers of each organization then put data
items directly into their respective queue using the
provided REST interface for the queue storage.

Since there is no longer a front-end Web Role,
authorization and authentication becomes an issue: it
must be ensured that a data provider is only allowed
to store in the queue of its organization. In Azure,
the credentials are bound to a storage account, i.e.,
all queue or table storages belonging to the same
account share the same credentials. This implies that
each organization would require an account of its
own as otherwise every DP would inherently get
access to all queues. The quota of five storage
accounts that are granted per Azure account are just
sufficient for our example; otherwise additional
storage accounts would have to be explicitly
requested, however, without any further expenses.

Threads in a Worker Role pick up data items
from the queues and transfer them to cloud storage.

The number of requested Worker Roles (threads)
depends on the time for emptying queues and on the
required timeliness of data in cloud storage. In fact,
the queue length must be close to empty, otherwise
the queue will permanently increase since the
assumed load is constant. If data must be up-to-date
in cloud storage within fractions of a second, more
Worker Roles (threads) are required to perform the
transfer. However, data provider throughput is not
throttled by a too low number of Worker Roles.
There is no risk of data losses since queues are
persistent, but an overflow might become critical.

We assume a queue read latency of 30ms and a
typical storage write latency of 30ms according to
(Microsoft Extreme Computing Group, 2011) for a
total of 60ms. Then, one Worker Role thread is able
to transfer an average of 16.67 items per second; 60
Worker Role threads distributed over 6 Worker
Roles (because of the 1/10 Worker Role/thread ratio)
are required to keep pace with each of the 5 queues
being filled up with 200 items/s. It does not matter
whether Worker Roles are assigned to specific
queues or serve all queues.

Scalability with regard to incoming data is
limited only by the queue throughput. The requested
200 items/s are easily achievable by Azure cloud
queues according to (Microsoft Extreme Computing
Group, 2011). If necessary, more queues could be
set up, e.g., one for each data provider; however, to
note again, the quota for storage accounts is five.
The number of queues and accounts does not affect
the total operational costs as only the queued data
and the transactions are charged but not the number.

The monthly costs for such a queue-based
architecture are computed as follows:
• Incoming requests to the front-end queue are again

for free.
• The background storage costs remain at $191.58.
• The storage transactions for background storage

are also the same $2592 as before.
• There are five newly introduced front-end queues

with each queue getting in average 200 messages
per second. As already mentioned, the Worker
Roles will empty the queues in order to keep pace
with the input stream. But even if there are 10
messages in the queue at any point in time,
requiring 50KB storage (5 queues * 10 KB) over
30 days, results in the micro-costs of 0.0007 ct.

• There are three kinds of inbound and outbound
transactions for the queues, one to read a message,
another to store, and a third one to delete the
message; Azure does not offer a mean to read and
delete with one operation. This means enormous
costs of $7776 = 3 * $2592.

• Six Worker Roles are used each for a price of 12ct

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

338

per hour for 30 days: $518.40.
Concluding the calculation, we quadruple the
transaction costs from $2592 (Subsection 3.1) to
now $10268 with the benefit of reducing 7 Worker
Roles to 6 Web Roles and saving 86.40$ in a month
for computation ($518.40 instead of $604.80). In
addition, there are smallest amounts of costs for
queue storage (0.0007ct). Hence, this architecture
produces costs of $11077.98 per month and is thus
about $7700 more expensive than the previous one.

Technically speaking, this architecture has some
advantages. First, queues allow for more flexible
reactions to load changes. Queues can fill up
(without causing dominating costs) to be emptied at
later points in time, during low load times, if no time
critical data is involved. Consequently, an
interesting alternative to the proposed setting could
have the queues fill up due to fewer Worker Roles,
and use – if cheaper – operating hours at night to
transfer the data items to the backend storage.
Having storage queues filled up does not call upon
the same risks as IIS queues, as storage queues are
persistent. Second, the architecture can rely on
Azure queue authentication as a queue belongs to
only one organization, and the data providers of one
organization can only fill their organization’s queue.
However, authentication becomes less flexible.

As another disadvantage, additional implement-
ation effort is required to set up the Worker Roles in
a multithreaded manner. In contrast, multithreading
is for free in Web Roles because of configurable
instantiation models. Moreover, the transfer has to
be fault-tolerant due to the lack of storage-spanning
transactions, deleting data in the queue and inserting
it into the backend storage. And the implementation
must be able to determine what data from the queue
can be skipped if a crash occurs after transferring to
the backend but before deleting in the queue.

A further disadvantage of this architecture is the
fact that the payload of queue messages cannot
exceed a 64 KB threshold in Azure. Hence, if the
payload is unknown or might increase, a complete
redesign is required: one possibility is to use blobs
for storing data, and to put a reference (URI) to the
blob into the queue. This causes additional storage
and transaction costs for blobs and an additional
delay for data providers due to blob handling.

3.3 Bulk Operations

This architecture is based upon the previous one,
however, attempts to reduce the number of
expensive transactions by means of bulk operations.
Azure provides to this end a mean to build bulks of

operations of the same kind.
At the front-end, there is no opportunity unless

the data providers collect data in bulks and submit
bulks to the queues. However, bulk operations can
be used during the internal processing: a Worker
Role is able to fetch bulks of items from the queue,
to remove them in bulks, and to submit bulks to the
backend storage. This will in fact cause some delay
in processing and lacks a little of less timeliness.
Moreover, some implementation overhead occurs
since it is necessary to wait for complete bulks.
Some fault-tolerance is again required: a Worker
Role might crash while just having cached a bulk.
Data is not lost in that case since queues are
persistent and still contain the data.

Even if the bulk size for queues is limited to 32
at maximum, it is possible to divide the transaction
costs drastically by 32. However, the queue API
offers only the possibility to get data in bulks, but
not to delete bulks. Consequently, the cost for
getting data from the queue can be reduced from
$2592 to $81, but the other transactions stay at
$2592. Moreover, bulk operations are possible for
the backend storage. The table storage offers writing
bulks operations of at most 100 entities and 4MB of
size. This also reduces transaction costs from $2592
to $25.92 for retrieval. Compared to Subsection 3.2
the total transaction costs of $5290.92 (2*$2592 +
$81 + $25.92) remain high.

As an alternative, table storage could be used
instead of queues. It offers bulk operations even for
reads, writes and deletes. The challenge now is to
mimic the queue behavior. One possible way is to
use table storage for each organization and the data
provider’s id as a partition key. Hence, it is easily
and efficiently possible to fetch the eldest 100 data
items for a given data provider (using the timestamp
in a query), to store those items in the backend
storage, and to remove them. In fact, there is some
implementation effort, e.g., to be sure that a bulk of
100 is available in order to avoid polling, and to
coordinate the Worker Role threads, i.e., who is
accessing which table. The transaction costs for the
Worker Role can be divided by 100 from $7776 to
$77.76. This makes the solution a little cheaper than
3.1 since $86.40 for compute instances are saved.

3.4 Direct Access to Cloud Storage

Another approach gets rid of compute instances, i.e.,
Web or Worker Roles, in order to save costs. Data
providers can store their data directly into blobs or
tables; the post-processing applications then access
the data provider’s storage directly.

CHOOSING�THE�RIGHT�CLOUD�ARCHITECTURE�-�A�Cost�Perspective

339

Both blob and table storage are possible in this
type of architecture. However, blob storage has an
important advantage over table storage: it offers
fine-granular security rights. Blobs are stored in
containers and the access rights of each container
can be controlled individually even if the containers
belong to the same account. In contrast, table stores
of the same account share the same credentials.
Hence, blobs are used in the following, each organi-
zation obtaining a container of its own. Note that the
number of containers does not affect the operational
costs.

The throughput depends on the access
capabilities of blobs; the requested throughput of
200 items/s for each organization/container should
be possible. Otherwise, additional accounts or
containers have to be ordered.

The costs in the first month are here as follows:
• The data storage costs remain the same, and sum

up to $191.58.
• The costs for storage transaction are still at $2592.
The conclusion is quickly made. With less than
$2784 operational costs in the first month, this is the
by far cheapest architecture – if applicable. The
major benefit of this architecture is in fact the
reduction of compute instances.

While financially the clear winner so far, techni-
cally this approach brings along several dis-
advantages. First, the backend storage is not shielded
from data providers and the system fully relies on
the authentication of the storage only. Furthermore,
the same storage technology must be appropriate for
both data providers and processing applications at
the backend, but both might have different demands
with regard to throughput or query functionality. If
blob storage (or table storage alternatively) does not
offer the requested functionality for backend
applications, data will have to be transferred into an
alternative cloud storage, which again requires
additional Worker Role(s) and lets become the
architecture similar to Subsections 3.2 or 3.3.

3.5 Load Variations

So far, we have discussed some constant load. We
modify this assumption by assuming the same
overall load per day, however varying over the day.
For example, the load in a typical fleet management
might be higher at 8-9 am and 5-6 pm.

Referring to Subsection 3.1, the IIS queues for
Web Roles fill up during heavy load. The requested
throughput must be handled by setting up additional
Web Roles; the costs should be similar to a constant
load if the data amount and transactions are the same

over the whole day, i.e., there are less Web Roles at
non-peak times. However, we pay a Web Role for
one hour least. Such an hourly rate could produce
higher costs! Moreover, we have to bear in mind the
time for provisioning compute instances.

In Subsection 3.2, the front-end queues fill up,
but no more Worker Roles are required since the
queues are persistent. If there are timeliness
constraints, i.e., if data must be mostly accurate in
the back-end store, additional Worker Roles can
reduce queues. One important question is whether
the throughput of the front-end storage is enough.
Well, there is still the opportunity to react on too
high load with setting up more queues, which
requires much effort if to be performed online.

The same holds for the architecture in 3.3: if the
throughput of the front-end storage is not sufficient,
higher load could be handled with more accounts.

Handling load changes by the number of Web/
Worker Roles, an hourly high load is more positive
than arbitrary load changes since charging is done
for full hours. In this respect, Worker Roles are more
advantageous, because there is a chance of having
less Worker Roles: input throughput can be handled
over a long period of time without corrupting the
required throughput. If the payment model offers a
reduced overnight rate, there will also be a chance of
using Worker Roles over night at less cost.

4 SCENARIO 2: DATA DELIVERY

The second scenario has been originally presented in
(Käfer, 2010b). We suppose a large scale data
delivery service being managed in the cloud: data is
pushed into the system and is maintained in some
central cloud storage. At the front end, customers
expect to obtain their specific data from a cloud-
based delivery service. An example could be found
in logistics where post orders to a wholesale chain
need to be collected, centrally managed and
forwarded to individual suppliers and freight carrier
services. In order to better model this scenario, we
assume the backend storage to be filled once in the
morning by some data provider for the purpose of a
higher throughput. We again postulate some basic
assumptions:
• There are 16000 clients receiving items: 0 items

for 8000 clients (50%), 1 item for 3200 (20%) and
2 items for 3200 (20%), and 5 items for 1600
(10%). This sums up to 17600 items per day
((3200*1 item + 3200*2 items + 1600*5 items).

• Since each item has a payload of 50 KB, a total
daily payload of 880000 KB is produced.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

340

• Searching one item in the storage takes 300 ms
even if none is found.

• 4000 clients all want to fetch their items at 8 am,
12 am, and at 5 pm; 4000 clients are equally
distributed over the remaining times.

• As an SLA, clients should not wait longer than 1.5
seconds for being served.

4.1 The Web Role Approach

In the first architecture, several Web Role threads
serve the clients: clients queue up in the load
balancer in order to ask a Web Role for data: a Web
Role thread accesses the storage to determine the
data for that client and deliver the data while the
client is waiting. The appropriate number of Web
Roles depends on the number of clients and the
given SLAs to clients.

We first focus on the three peak load times: the
architecture has to serve 4000 clients at each peak
time with clients of four types A to D:
A. 800 clients accessing 1 item (served within 300

ms)
B. 800 clients accessing 2 items (within 600 ms)
C. 400 clients accessing 5 items (within 1500 ms)
D. 2000 clients accessing 0 items (within 300 ms)
At first, we need to calculate the number of Worker
Roles that are required to satisfy the SLA of being
served within 1.5 sec. The number of Worker Roles
obviously depends on the arrival of client. The
lowest number of Worker Roles is required in the
following situation:
• 400 times: a client of type C arrives and is served

in 1500ms; each C client requires an own thread.
• 400 times: a sequence of client types B,D,D,D (the

last client of type D finishes before 1500 ms)
• 400 times a sequence of B,D,D,A
• 80 times a sequence of A,A,A,A,A
This optimal schedule is rather unrealistic because it
usually depends on the arrival and the load balancer.
Even in this best case 1280 Web Role threads
(400+400+400+80) are required all together. This
results in 128 Web Roles with 10 threads each.

The costs can be calculated as follows for each
peak time a day (there are three peaks a day):
• 128 Web Roles: Although the Web Roles are only

required for 1.5 seconds, we have to pay for the
full hour à 12ct/h, i.e., $15.36.

• Storage transactions are required for getting and
deleting data. The costs are 0.8ct (4000 clients * 2
accesses * 1ct/10000).

• Outbound data transfer: 4400 items have to be
delivered at each peak time for 3.15ct (4400 items
* 50 KB * 15ct/GB).

• The backend storage is out of scope here.

Hence, we are charged $15.40 for each of the 3 peak
times, i.e., $46.20 for all peak times. In addition, 1
further Web Role is needed for the remaining non-
peak time of 21 hours:
• The Web Role costs $2.52 (21 hours * 12ct).
• Storage transactions (2 times for get/delete): 0.8ct

(4000 clients * 2 accesses * 1ct/10000).
• Outbound data transfer: $2.97 (4400 items * 50

KB * 15ct/GB = 3.3ct).
The total costs are $51.70 ($46.20 + $5.50) per day.

The major disadvantage lies in the fact that every
client checks periodically for newly received data
even if none has arrived. This produces a lot of load
which in turn requires Web Roles.

4.2 Storage-based Architecture

As a storage-based alternative, we introduce a client-
specific storage: there is one account for each client
in case of a table or queue store; using blob storage
and client-specific containers requires only one
global account for all clients, but client-specific
credentials for containers. Worker Roles fetch data
from the global storage and distribute the data to
those client-specific storages. Clients remove their
data from this storage right after pick up.

The client service time depends on the transport
and access latency for storage. If one blob storage
account is used for all client blobs, 4400 accesses
occur at each peak time. In fact, according to
(Microsoft Extreme Computing Group, 2011), the
available throughput is enough to fulfill the SLA
that the waiting time for being served does not
exceed 1 sec.

The number of Worker Roles and their starting
time is only important to deliver items before each
peak time; obviously, starting Worker Roles earlier
reduces the number of required Worker Roles.
Furthermore, the delivery of messages into the
global storage from outside is important. We here
assume that data delivery has finished before any
client wants to receive his data.

If one Worker Role performs a “full scan” on all
incoming 17600 items once a day and assigns the
items to the client storages, then retrieval takes less
than 88 min (5280 sec = 17600 * 300 ms). If one
Worker Role is started with 10 threads, then the
Worker Role must start 9 minutes before the first
peak time. Afterwards, all the items are distributed.

The number of Worker Roles and threads is
mostly irrelevant, since a Worker Role is paid for
each hour in use according to the payment
conditions. The more threads (or Worker Roles) are
applied, the later processing can start, which is of

CHOOSING�THE�RIGHT�CLOUD�ARCHITECTURE�-�A�Cost�Perspective

341

few benefit only. However, a strategy to define
which thread searches what becomes necessary.

Let us now calculate the overall costs for one
day, assuming that client storages are filled in one
step once a day, being ready for the first client.
• The number of Worker Roles is mostly irrelevant;

it determines just when to start delivery at the
latest: 1 Worker Role with 10 threads is enough
and costs 12ct a day.

• Additional storage costs arise for the client
storages from the beginning to the point a client
fetches items. A precise calculation is unnecessary
since even the worst case of keeping the client
items the whole day is ignorable: storing 880000
KB to be delivered in the client storage for one
day costs less than 14ct a month and 0.5ct per day.

• The additional outbound traffic from the backend
store to the distributing Worker Role is for free, if
the storage and the Worker Role are in the same
data center region.

• The daily transactions (17600 gets and deletes à
1ct/10000 for the backend store, 16000 read
accesses for storage in client storage) cost 3.36ct.

• The outbound data transfer from the client storage
to the client costs 12.58ct (880000 KB * 15ct/GB)
a day.

As a conclusion, there is an enormous cost reduction
since much less Worker Roles are used than in
Subsection 4.1: this type of architecture produces
only 17ct per day instead of $51.

A variant of this architecture could transfer data
by the Worker Role threads before each peak time:
then less storage costs are consumed, but three
Worker Roles are required per day. Hence, there is
no benefit because of cheaper storage prices and
more expensive Worker Roles. This approach might
become useful if data will be delivered to the global
storage several times a day.

5 RELATED WORK

A number of researchers have investigated the
economic issues around cloud computing from a
consumer and provider perspective. Indeed,
(Armbrust, 2010) identifies short-term billing as one
of the novel features of cloud computing. And
(Khajeh-Hosseini, 2010) considers costs as one im-
portant research challenge for cloud computing. But
only little research has been done in this direction.

(Youseff, 2008) discusses three pricing models
that are used by cloud service providers: with tiered
pricing, different tiers each with different
specifications (e.g. CPU and RAM) are provided at a
different cost per unit time. A large tier machine has

better equipment but also has higher costs. Per-unit
pricing is based upon exact resource usage; for
example $0.15 per GB per month. Finally,
subscription-based pricing is common in SaaS
products such as Salesforce's Enterprise Edition
CRM that charges each user per month.

(Walker, 2009) performs cost comparisons
between cloud and on-premises. He states that lease-
or-buy decisions have been researched in economics
for more than 40 years. Walker compares the costs
of a CPU hour when it is purchased as part of a
server cluster, with when it is leased. Considering
two scenarios – purchasing a 60000 core HPC
cluster and purchasing a compute blade rack
consisting of 176 cores – the result was that it is
cheaper to buy than lease when CPU utilization is
very high (over 90%) and electricity is cheap. The
other way around, cloud computing becomes
reasonable if CPU utilization is low or electricity is
expensive. Walker focuses only on the cost of a
CPU hour. To widen the space, further costs such as
housing the infrastructure, installation and
maintenance, staff, storage and networking must be
taken into account as well.

(Klems, 2009) also addresses the problem of
deciding whether deploying systems in a cloud
makes economic sense. He discusses some economic
and technical issues that need to be considered when
evaluating cloud solutions. Moreover, a framework
is provided that could be used to compare the costs
of using cloud computing with an in-house IT
infrastructure. Unfortunately, two presented case
studies are more conceptual than concrete.

(Assuncao, 2009) concentrates on a scenario of
using a cloud to extend the capacity of locally
maintained computers when their in-house resources
are over-utilized. They simulated the costs of using
various strategies when borrowing resources from a
cloud provider, and evaluated the benefits by using
performance metrics such as the Average Weighted
Response Time (AWRT) (Grimme, 2008), i.e., the
average time that user job-requests take to complete.
However, AWRT might not be the best metric to
measure performance improvement.

(Kondo, 2009) examines the performance trade-
offs and monetary cost benefits of Amazon AWS for
volunteered computing applications of different size
and storage.

(Palankar, 2008) uses the Amazon data storage
service S3 for scientific intensive applications. The
conclusion is that monetary costs are high because
the service covers scalability, durability, and
performance, which are often not required by data-
intensive applications. In addition, (Garfinkel, 2007)

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

342

conducts a general cost-benefit analysis of clouds,
however, without any specific application.

(Deelman, 2008) highlights the potentials of
using cloud computing as a cost-effective
deployment option for data-intensive scientific
applications. They simulate an astronomic
application named Montage and run it on Amazon
AWS. Their focus was to investigate the
performance-cost tradeoffs of different internal
execution plans by measuring execution times,
amounts of data transferred to and from AWS, and
the amount of storage used. Unfortunately, the cost
calculation is not precise enough because of the
assumption that the cost of running instances on
AWS EC2 is calculated on a per-CPU-second basis.
However, AWS charge on a per-CPU-hour basis:
launching 10 instances for 1 minute would cost 10
CPU hours (not 10 CPU minutes) on AWS. They
found the cost of running instances (i.e. CPU time)
to be the dominant figure in the total cost of running
their application. Another study on Montage
(Berriman, 2010) concludes that the high costs of
data storage, data transfer and I/O in case of an I/O
bound application like Montage makes AWS much
less attractive than a local service.

(Kossmann, 2010) presents a web application
according to the TPC-W benchmark with a backend
database and compares the costs for operating the
web application on major cloud providers, using
existing relational cloud databases or building a
database on top of table or blob storages.

Hence, (Deelman, 2008) and (Kossmann, 2010)
are two studies that take roughly our direction.

6 RECOMMENDATIONS

We want to present a couple of recommendations
that we derived from our investigation.

While a couple of papers such as (Deelman,
2008) have identified compute instances as the
dominating cost factor, we have seen in the first
scenario that transactional costs cannot be neglected.
Here, bulk transactions could help, if applicable.

 Indeed, compute instances are quite expensive,
however, if compared to storage. Hence, one should
try to minimize the number of compute instances, to
allocate only instances when really needed, and to
stop compute instances that are no longer needed.
Strategies to adopt the number according to the
recent load can help to react on varying load. But
caution has to be taken since collecting performance
and diagnosis data produces additional storage and
transaction costs. Note also that stopped compute

instances cause the same costs as running instances:
an instance should be deleted to avoid running costs
while still retaining the service URL.

It is also important that the costs for the staging
area are the same as for the production environment.
Hence, one should not forget to delete staging
deployments between or after test phases.

Acquired resources should be used efficiently.
For example, it is possible to run several web sites
and web applications in one Web Role thanks to full
IIS support. The more cores a compute instance has
(determined by the instance category), the more
parallel work a Web Role can handle. However, in
most cases, it is better to use smaller instance
categories such as XS or S: smaller instances offer a
better scaling granularity while costs scale in a linear
manner. In fact, there are also scenarios where a
higher equipment such as 8 CPUs (XL), larger main
memory, or bandwidth is reasonable, e.g., to allow
multi-core programming to a larger extent.

If the load seems to be quite constant, some
special offers such as a Subscription Offer
(http://www.Microsoft.com/windowsazure/offers),
enterprise agreements or long-term subscriptions
might be a choice to save costs.

7 CONCLUSIONS

Based on Microsoft’s Windows Azure platform
offering, we have argued in this paper for the
importance of taking operational costs into account
when designing the architecture for a cloud-based
offering. Given examples have shown the impact
particular design decisions have on the cost of cloud
applications; this is the important message of the
paper. However, the paper by no means values one
architecture decision over another but emphasizes
the importance of considering the use and type of
storage, compute instances and communication
services already at early stage, in particular with
respect to their impact on the operational costs.

The different architectural approaches and the
resulting overall costs that at least partly diverge
significantly reveal one important problem when it
comes to migrating software to the cloud; the many
dimensions of design decisions, and certainly the
many dimensions of the pricing models. The pricing
ladders not only differ between different providers in
terms of charging units, special offers and free
services, but already within the offers of single
companies, cf. davidpallmann.blogspot.com on
August 14, 2010: “The #1 hidden cost of cloud
computing is simply the number of dimensions there

CHOOSING�THE�RIGHT�CLOUD�ARCHITECTURE�-�A�Cost�Perspective

343

are to the pricing model. In effect, everything in the
cloud is cheap but every kind of service represents
an additional level of charge. To make it worse, as
new features and services are added to the platform
the number of billing considerations continues to
increase”. In other words, there is much more to
cost-effective architecture design than choosing the
number and size of compute instances, or deleting
stopped staging deployments when not used.

While we have supported our arguments with
tangible examples and experiences we have gained
from working with Windows Azure, there is further
work required towards concrete guidelines and best
practices in cost-effective architecture design for the
cloud; also taking into account further features such
as Azure AppFabric Cache, special long-term
subscriptions, and other cloud offerings such as for
example Amazon AWS or Google AppEngine.

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I. and Zaharia, M. (2010): A View of Cloud
Computing. CACM, 53(4), April 2010.

Assuncao, M., Costanzo, A. and Buyya, R. (2009).
Evaluating the cost-benefit of using cloud computing
to extend the capacity of clusters. In HPDC '09: Proc.
of 18th ACM int. symposium on High performance
distributed computing, Munich, Germany, June 2009.

Calder, B. (2010). Understanding Windows Azure Storage
Billing – Bandwidth, Transactions, and Capacity.
http://blogs.msdn.com/b/windowsazurestorage/archive
/2010/07/09/understanding-windows-azure-storage-
billing-bandwidth-transactions-and-capacity.aspx.

Berriman, B., Juve, G., Deelman, E., Regelson, M. and
Plavchan, P. (2010). The Application of Cloud
Computing to Astronomy: A Study of Cost and
Performance. 6th IEEE Int. Conf. on e-Science.

Deelman, E., Singh, G., Livny, M., Berriman, B. and
Good, J. (2008). The cost of doing science on the
cloud: the Montage example. In SC '08: Proceedings
of the 2008 ACM/IEEE conference on
Supercomputing, Oregon, USA, November 2008.

Garfinkel, S. (2007). Commodity Grid Computing with
Amazon S3 and EC2. In login 2007.

Greenberg, A., Hamilton, J., Maltz, D. and Patel, P.
(2009). The Cost of a Cloud: Research Problems in
Data Center Networks. ACM SIGCOMM Computer
Communication Review, 39, 1.

Grimme, C., Lepping, J. and Papaspyrou, A. (2008).
Prospects of Collaboration between Compute
Providers by means of Job Interchange. In
Proceedings of the 13th Job Scheduling Strategies for
Parallel Processing, April 2008, Lecture Notes in
Computer Science (LNCS), 4942.

Hamdaqa, M., Liviogiannis, L. and Tavildari, L. (2011): A
Reference Model for Devloping Cloud Applications.
Int. Conf. on Cloud Computing and Service Science
(CLOSER) 2011.

Hoff, T. (2009). Cloud Programming Directly Feeds Cost
Allocation Back into Software Design. Blog on
HighScalability.com, March 6, 2009.

Käfer, G. (2010a): Cloud Computing Architecture. SEI
Architecture Technology User Network Conf
(SATURN) 2010. http://www.sei.cmu.edu/library/
assets/presentations /Cloud Computing Architecture -
Gerald Kaefer.pdf

Käfer, G. (2010b): Cloud Computing Architecture – How
to reconcile business, technical, and legal
requirements. CloudConf 2010. http://cdn1.hlmc.de/
tl_files/cloudconf/Downloads/Downloads 17.11.2010 /
Cloud Computing Architektur.pdf

Khajeh-Hosseini, A., Sommerville, I. and Sriram, I.
(2011). Research Challenges for Enterprise Cloud
Computing. 1st ACM Symposium on Cloud
Computing, SOCC 2010, Indianapolis.

Klems, M., Nimis, J. and Tai, S. (2009). Do Clouds
Compute? A Framework for Estimating the Value of
Cloud Computing. Designing E-Business Systems.
Markets, Services, and Networks, Lecture Notes in
Business Information Processing, 22.

Kondo, D., Javadi, B., Malecot, P., Cappello, F. and
Anderson, D. P. (2009). Cost-benefit analysis of Cloud
Computing versus desktop grids. In Proc. of the 2009
IEEE international Symp. on Parallel&Distributed
Processing, May 2009.

Kossmann, D., Kraska, T. and Loesing, S. (2010). An
Evaluation of Alternative Architectures for Trans-
action Processing in the Cloud. ACM SIGMOD 2010

Kruchten, P. (1995). Architectural Blueprints – The
“4+1” View Model of Software Architecture. IEEE
Software 12 (6), November 1995.

Microsoft Extreme Computing Group (2011): All Azure
Benchmark Test Cases. Website: http://azurescope
.cloudapp.net/BenchmarkTestCases/.

Microsoft (2011). Best Practices for Developing on
Windows Azure. http://azurescope.cloudapp.net/
BestPractices.

Pace, E., Betts, D., Densmore, S., Dunn, R., Narumoto,
M., and Woloski M. (2010). Moving Applications to
the Cloud on the Microsoft Azure™ Platform.
Microsoft Press, August 2010.

Palankar, M., Iamnitchi, A., Ripeanu, M. and Garfinkel, S.
(2008). Amazon S3 for Sciene Grids: A Viable
Solution? In: Data-Aware Distributed Computing
Workship (DADC), 2008.

Varia, J. (2010). Architecting for the Cloud: Best
Practices. Amazon Web Services, January 2010-2011.

Walker, E. (2009). The Real Cost of a CPU Hour.
Computer, 42, 4.

Youseff, L., Butrico, M. and Da Silva, D. (2008). Toward
a Unified Ontology of Cloud Computing. In Grid
Computing Environments Workshop (GCE '08),
Austin, Texas, USA, November 2008.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

344

