
TRACESHEETS
Spreadsheets of Program Executions as a Common Ground between Learners and

Instructors

Soichiro Fujii and Hisao Tamaki
Department Computer Science, School of Science and Technology, Meiji University, Tama, Kawasaki, 214-8571, Japan

Keywords: Tracesheet, Spreadsheet, Introductory Programming Course, Tracing Program Execution, Debugging.

Abstract: We propose the use of spreadsheets representing program executions in introductory programming courses.
Each row of a spreadsheet is a snapshot of the execution at each time step showing the values of variables
and each column corresponds to a particular variable showing the entire history of its updates. We call such
a spreadsheet a tracesheet. We discuss the motivation and potential benefits of the use of tracesheets in intro-
ductory programming courses, discuss some design issues, and report on a preliminary implementation of a
tracesheet generator for Java.

1 INTRODUCTION

It is observed in introductory programming courses
that insufficiently performing students tend to view a
program as a static textual object rather than a dy-
namic object that generates a process. Most of them
are capable of step-by-step tracing of a code but ex-
ercise this ability only when they are forced. Thus,
their preferred way of determining the correctness of
a code is to compare it with what they believe is a
correct code: one given in the textbook, on the black-
board, written by a reliable friend, or posted on the
internet. These tendencies are severe obstacles not
only for debugging but also for the entire process of
leaning to program.

Based on this observation, we believe that the re-
search on programming education should focus not
only on how to teach each subject in most understand-
able manners but also on a long-term methodology
and tools for remedying the above mentioned unde-
sirable tendencies of some students and enhancing
their capability and willingness to use step-by-step
tracing for understanding a code. One might hope
that extensive uses of program animation (Moreno
et al., 2004), (Levy et al., 2003), (Sajaniemi and
Kuittinen, 2003), (Sutinen et al., 2003), (Lahtinen
et al., 1998), (Baecker, 1998), (see (Urquiza-Fuentes
andÁngel Velázquez-Iturbide, 2009), (Shaffer et al.,
2010) for a recent survey) would serve this purpose
well. Program animators, however, are designed for
different purposes. They are meant to help students

understand a code bygiving a graphical and often
conceptual view of the behavior of the code, rather
than encouraging the students to develop such a view
themselves from the given code. Thus, it is possi-
ble that a student perfectly understands how a code
operates through the given visualization and yet is in-
capable (or more likely reluctant) of tracing a simi-
lar or even the same code when left on his/her own.
While the program animators could be adapted for
our present purposes, for example by engaging stu-
dents (which is getting recognized as indispensable
in effective uses of program animation (Hundhausen
et al., 2002), (Urquiza-Fuentes andÁngel Velázquez-
Iturbide, 2009)), we pursue a different approach in
this paper.

Based on experiences in introductory program-
ming courses, we believe in the need of treating the
raw, unabridged, and unstructured description of a
program execution as a first class object that isex-
plicitly shared by instructors and students. When a
program code is shown in traditional programming
courses, the precise execution process specified by
the code is usually implicit. The instructors verbally
summarize the execution of the code and only oc-
casionally spell out the full details of the execution.
Here we recognize a serious gap between the instruc-
tor and students: they are looking at the same code
but may not be seeing the same thing. For the in-
structors, mentally generating the process behind the
code is easy and automatic, so in a sense they see the
process whenever they see a code. On the other hand,

158 Fujii S. and Tamaki H..
TRACESHEETS - Spreadsheets of Program Executions as a Common Ground between Learners and Instructors.
DOI: 10.5220/0003916701580163
In Proceedings of the 4th International Conference on Computer Supported Education (CSEDU-2012), pages 158-163
ISBN: 978-989-8565-06-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

for beginning students, the same mental activity is de-
manding if at all possible and the code they are look-
ing at may remain a purely textual static object in their
view.

Since the instructors’ view of the process behind
the code is structured, they explain the code based on
this structure. This itself is a right approach but, in
doing so, they often forget the fact that their ability to
see the structure comes from their long experience in
which they dealt with the raw execution of the code.
Since the structure of the execution process reflects
the structure of the code, the instructors expect that
students accept their explanations without any diffi-
culty – our experiences show that this expectation is
not always fulfilled. We ascribe the cause of this fail-
ure to the above mentioned gap between the views of
the two parties: since the students do not have the
basis (the raw execution) in their mind to build the
structure on, the structure given to them can be ab-
stract, fragile, and intangible.

In this paper, we propose the use of spreadsheets
to explicitly represent the raw, full detailed execution
of codes. Each row of the spreadsheet represents a
program state at each time step in terms of the values
stored in the variables and each column represents the
changing values of each variable. We call this repre-
sentation atracesheet. Such representations are quite
natural but, to the best of the present authors’ knowl-
edge, no report of their use in programming education
is found in the literature. We are, however, inspired by
the use of spreadsheets in teaching logic design and
computer architecture (Timsit and Zertal, 2010).

First of all, we have to emphasize that a tracesheet
is in no way intended for visualization. Although it is
2-dimensional, it is basically textual and as the num-
ber of variables and the number of execution steps
increase, it becomes painful to read its entries. It is
simply an explicit representation of an awkward ex-
istence, which is usually left implicit, which both the
instructors and students prefer to stay away from, but
which yet is to be closely examined by both parties in
crucial occasions. It is meant to pave the gap between
the instructors’ and students’ views discussed earlier:
by looking at the same explicit representation of the
code’s behavior, the chances of both parties seeing the
same thing would be increased.

In closing this introduction, we compare conven-
tional debuggers with tracesheets in the context of
introductory programming education. It is true that
such debuggers can provide all the information on a
tracesheet. They are, however, not meant to present
such information in their entirety. Rather, they are
designed to help the user navigate through the mas-
sive body of information unsuitable, if not impos-

sible, to be put on a single sheet. For such navi-
gations to be successful, the user must have suffi-
cient knowledge of programming, of debugging and
of the particular debugger being used. For small pro-
grams that appear typically in introductory program-
ming courses, the entire description of program exe-
cution on a tracesheet is manageable through the sim-
ple user interface of scrolling and has a definite advan-
tage for beginning students that no additional knowl-
edge of the tool is required.

The rest of this paper is organized as follows.
In Section 2, we illustrate the possible uses of
tracesheets with a few examples. In Section 3,
we discuss issues to be considered in the design of
tracesheets and describe our decisions. In Section 4,
we describe our preliminary implementation of a tool
that generates a tracesheet from a Java source code.

2 EXAMPLES

In this section, we illustrate the use of tracesheets by
some examples.

Our first example is a simple for-statement. Fig-
ure 1 shows a tracesheet generated from the following
code.

int n = 3;
int s = 0;
for (int i = 0; i < n; i = i + 1) {
s = s + i;

}

Instructors can use this tracesheet in a tutorial in-
troducing for-statements. As they verbally describe
the behavior of the code, they can point to or high-
light the particular entry in the sheet corresponding to
the event they are referring to. While following the in-
structors’ description, students are also able to resolve
many small questions they ask themselves, based on
the entire scenario of execution shown on the sheet.

In our implementation of tracesheets, the initial
values of variables can be edited on the sheet so
that the sheet dynamically changes depending on the
edited values (see Section 3). Thus, for example, af-
ter describing the behavior of the code and the roles
of variables, the instructors may announce that he will
change the initial value ofn to 5, ask the students to
predict the result, and then show the changes on the
sheet for confirmation. Changing the initial value ofs
or i may also be instructive. If the tutorial is done in a
lab, then the tracesheet can be distributed to the PCs
of students and students can play with this feature on
their own until they have full understandings of the
behavior of the code and its dependence on the initial
values of the variables.

TRACESHEETS�-�Spreadsheets�of�Program�Executions�as�a�Common�Ground�between�Learners�and�Instructors

159

Figure 1: Example 1: a simple for-statement.

Tracesheets can be used not only in tutorials but
also in a more personal session between a student and
a (human or automated) instructor. Suppose that a
student submitted the following incorrect code for the
problem of assigning the maximum value ofa, b, and
c to variablemax.

max = a;
if (b > a) {

max = b;
}
if (c > a) {

max = c;
}

When the instructor explains when this code goes
wrong, a tracesheet for such a case, with saya = 1,
b = 3, andc = 2, (see Figure 2) would definitely help
the student to grasp the problem. If the emphasis of
the session is more on letting the students discover
the bugs on their own, then the instructor may provide
the student with the tracesheet with initial values say
a = 1, b = 2, andc = 3, for which the code achieves
the correct result, and ask the student to experiment
on the values to find a case in which the code fails.
Although such an experiment can also be done with
the code itself, the task of finding thecause of the in-
correct result would be much easier on the tracesheet.

We end this section with an example involving an
array. Figure 3 shows a tracesheet generated from the
following incorrect code for selection sort, again sub-
mitted by some student.

for (int i = 0; i < n; i++) {
int m = i;
for (int j = 0; j < n; j++) {

if (a[j] < a[m]) {
m = j;

}
}
int w = a[i];
a[i] = a[m];
a[m] = w;

}

Figure 2: Example 2: the maximum of three with a bug.

To be correct, the inner for-statement must start
with j = i or j = i+1 rather thanj = 0 as in the code.
The entire execution history as given in the tracesheet
may appear intimidating to the student at first. With
suitable guidance of the instructor, however, the task
of locating the problem on the tracesheet should not
be so difficult. For example, the instructor may ask
the student to find the first step at which the values in
the arrays look wrong. A student with a clear abstract
level algorithm in mind should be able to answer this
question fairly easily. Then, the student will be asked
to analyze the cause of the wrong value ofm at that
step. Many students will notice that the range of the
inner for-statement must be corrected. Others will be
encouraged to examine the previous steps that deter-
mined the value ofm. If the student fails to answer the
first question, then probably the discussions must be
directed toward the idea of the algorithm at a higher
level.

A more traditional alternative to the above sce-
nario is to let the students trace the code themselves.
Although this approach has its own advantages, the
problem is that the task is too laborious for many be-
ginning students. We may guide (or force) them, in
the session, to trace the code and discover bugs, but
our experiences show that most of them do not adopt
this practice for their everyday use. Our approach is
intended to make the task less laborious in the be-
ginning phase. Given the tracesheet, the students can
skip the laborious part and can concentrate on exam-
ining the trace. The hope is that, after seeing many
traces explicitly given to them and experiencing suc-
cesses in analyzing them, they will eventually be able,
and willing, to generate traces on their own.

3 DESIGN ISSUES

3.1 Target Language and Subsetting

The idea of tracesheets can be applied to any proce-

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

160

Figure 3: Example 3: incorrect code for selection sort.

dural language. The choice of Java as our target lan-
guage simply comes from a larger project involving
the authors which is aimed at developing contents and
support for leaning Java programming. Having cho-
sen Java, we still have to choose a suitable subset for
the tracesheets to cover. It is clear that we do not need
the entire Java language as described in the language
specification (Sun Microsystems, 1995) in introduc-
tory courses. Whether or not to include the following
features is crucial in the design of tracesheets:

1. dynamic variable declarations,

2. method calls, and

3. objects.

Omission of all of these features would lead to a
simple sheet layout and the induced subset of Java
would still be useful in the very early stages of intro-
ductory courses. Our decision, however, is to include
all of these three features. The reason of this deci-
sion is because method calls and objects are the main
causes of students’ difficulty in understanding the be-
havior of codes and we should at least try to see if our
approach can be used to reduce the difficulty. A con-
sequence of our decision is that our tracesheets must
simulate both a stack, for allocating dynamic vari-
ables, and a heap, for storing objects. This somewhat
complicates the layout of tracesheets (see below). For
very beginning learners, we may need a separate ba-
sic mode in which variables are statically allocated to
fixed columns, as in the examples used in Section 2.

3.2 Sheet Layout

Because of our decision to include dynamic variable
declarations and objects, each column of a tracesheet
corresponds to a memory cell rather than to a variable
as in the examples in Section 2. Thus, columns are
organized into a stack and a heap just as memory cells
are organized into a stack and a heap in standard Java
implementations.

Besides the columns corresponding to memory
cells, we have three columns on the left of the sheet:
the second column shows the code fragment executed
in the step, the first column shows the number identi-
fying the code fragment, and the third column shows
the value of the boolean expression evaluated at the
step if the expression is used as the condition in an
if-statement or a for-statement.

Figure 4: Array allocation in heap.

The tracesheet shown in Figure 4, generated from
the following code, illustrates how an array object is
allocated in heap and how the object is referenced by
a variable. In row 3 of the sheet, variablea is allo-
cated in the stack. Then in row 4, an array object is
created in the heap space, initialized as specified by

TRACESHEETS�-�Spreadsheets�of�Program�Executions�as�a�Common�Ground�between�Learners�and�Instructors

161

the initializer in the code. This array object is refer-
enced by variablea by the column identifier N. Thus,
the column identifiers serve as memory addresses in
the sheet.

10 public class Sample {
20 public static void main(String[] args) {
30 int[] a = {8,33,5,7,11,3};
40
50 int min = a[0];
60 for(int i=1;i<a.length;i++) {
70 if(min>a[i])
80 min = a[i];
90 }
100 }
110 }

3.3 User Interaction

Tracesheets can be read-only: once they are gener-
ated, they do not change unless regenerated from a
modified source code. However, it would be helpful
for them to be interactive, as “engagement” is recog-
nized as a vital factor in determining the effective-
ness of programming education tools (Hundhausen
et al., 2002), (Urquiza-Fuentes andÁngel Velázquez-
Iturbide, 2009). We may expect a tracesheet to re-
spond to

1. a change of the initial value of a variable, or

2. minor changes in a code fragment,

as the changes are typed directly into the sheet. We
believe that both types of interactions are useful. The
ease of implementation, however, differ substantially
between the two types. The first type of interactions
can be implemented without difficulty using the usual
feature of spreadsheet applications: automatic recal-
culation of the entire sheet upon a change in a single
cell. Implementing the second type of interactions us-
ing the same feature is not theoretically impossible
but would be extremely complicated.

Moreover, we envision various uses of tracesheets
in an interactive learning system where more sophisti-
cated user interactions are necessary. For example, to
learn the semantics of a new programming construct,
filling in empty cells of a partially-filled tracesheet
may be helpful. Another example is when a learner
completes a programming task and submits the re-
sulting program to the system. To confirm the un-
derstanding of the learner, the system may ask several
questions regarding the behavior of the submitted pro-
gram, where a tracesheet will be an appropriate media
of communication. It is the topic of our ongoing re-
search to decide what types of interactions are needed
in such situations.

4 IMPLEMENTATION

In this section, we describe a preliminary implemen-
tation of a tracesheet generator for Java. Although the
only frontend supported is Excel (Microsoft Corpora-
tion, 1985) in the current version, it is easy to adapt
the output of the generating engine to any widely used
spreadsheet applications or to custom-made frontends
to be developed for more sophisticated user interac-
tions as mentioned in the previous section.

The Java languages features covered by the cur-
rent version include dynamic variable declarations,
assignments, if-statements, for-statements, break-
statement, and read-only arrays.@Of the primitive
data types, only the “int” type is supported. The next
version currently under development will cover gen-
eral classes and objects, including array objects, and
general methods.

In order to provide user interactions of type 1 as
described in Section 3.3, the entry of each sheet cell
is an Excel formula that evaluates to the value of the
cell. In the subsequent subsections, we describe these
formula entries and how they are generated from the
given Java code.

4.1 Formula Entries

The value of a cell of a column corresponding to a
memory cell is determined by the following:

1. the code fragment being executed, and

2. the values of memory cells in the previous step.

Thus, the formula for such a cell consists of a refer-
ence to the line number given in the first column of the
same row and to the cells of the previous row corre-
sponding to memory cells. For example, the formula
entry in cell F10 of the sheet shown in Figure 4 is as
follows.

=IF(A10=61,"i",IF(A10=62,1,IF(A10=64,F9+1,F9)))

If the current code fragment is the initialization of the
variablei (line number 62), then this formula evalu-
ates to 1. Otherwise, if the current code fragment is
the increment ofi (line number 64), then this formula
computes the value of cell F9 plus 1. If neither of
these apply, then the value of this formula equals the
value of cell F9.

The formula entries are universal in the sense that
they are identical throughout the column except that
the row numbers referring to the current and the pre-
vious rows are adjusted.

The formula in the first column (labeled with
“no”) determines the line number of the current step
based on the line number of the previous step and the

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

162

value of the condition in the previous step. For exam-
ple, the formula entry in cell A3 of the sheet shown in
Figure 4 is as follows.

=IF(A2=0,30,IF(A2=30,31,IF(A2=31,50,
IF(A2=50,51,IF(A2=51,61,IF(A2=61,62,
IF(A2=62,63,IF(AND(A2=63,C2=TRUE),70,
IF(AND(A2=70,C2=TRUE),80,IF(AND(A2=70,
C2=FALSE),64,IF(A2=80,64,IF(A2=64,63,
IF(AND(A2=63,C2=FALSE),90,90)))))))))))))

This formula compares the line number of the previ-
ous step to all line numbers in the program and, pos-
sibly depending on the value of condition in the pre-
vious step, decides the current line number.

The formula for the second column (labeled as
“code”) is straightforward. It compares the current
line number with all line numbers and, when the num-
bers match, returns the string for the code fragment
corresponding to the number.

The formula for the third column representing the
value of the condition, when the current code frag-
ment is a condition expression, is similar to the one
for memory cells.

4.2 How to Generate Formula Entries

In this section, we show how the formula entries of
a tracesheet is generated from a source code of Java
program.

First, we parse the source code and get an Abstract
Syntax Tree (AST) using Eclipse JDT libraries. Then
we analyze the AST and create atransition diagram,
which is a directed graph where the vertices are code
fragments and the edges are transitions. A transition
is unconditional if it represents the usual sequential
flow in the execution. It is atrue-transition it cor-
responds to conditional branches prescribed by an if-
statement or a for-statement and occurs when the con-
dition evaluates to true.False-transitions are defined
similarly. In addition to the transition graph, we com-
pute the list ofupdates for each variable. An update
for a variable is a pair consisting of the line number of
a code fragment that is an assignment to the variable
and the right-hand-side expression of the code frag-
ment.

Given the transition graph and the list of updates,
it is rather straightforward to generate formula entries
of the tracesheet. We omit the details.

5 CONCLUDING REMARKS

We have proposed the use of tracesheets in introduc-
tory programming courses, discussed the motivation
and potential benefits of their use, and described a

preliminary implementation of a tracesheet genera-
tor for Java. We plan to evaluate the effectiveness of
tracesheets through their use in actual classes and ses-
sions and in a web-based programming course we are
developing.

REFERENCES

Baecker, R. (1998). Sorting out sorting: a case study of soft-
ware visualization for teaching computer science. In
SoftwareVisualization: Programming as a Multimedia
Experience, pages 369–381. MIT Press.

Hundhausen, C. D., Douglas, S. A., and Stasko, J. T.
(2002). A meta-study of algorithm visualization ef-
fectiveness.Journal of Visual Languages and Com-
puting, 13(3):259–290.

Lahtinen, S.-P., Sutinen, E., and Tarhio, J. (1998). Auto-
mated Animation of Algorithms with Eliot.Journal
of Visual Languages and Computing, 9(3):337–349.

Levy, R. B.-B., Ben-Ari, M., and Uronen, P. A. (2003). The
Jeliot 2000 program animation system.Computers
and Education, 40(1):1–15.

Microsoft Corporation (1985). Microsoft excel.
http://office.microsoft.com/en-us/excel.

Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M.
(2004). Visualizing programs with Jeliot 3. InPro-
ceedings of the Working Conference on Advanced Vi-
sual Interfaces, pages 373–376. ACM Press.

Sajaniemi, J. and Kuittinen, M. (2003). Program anima-
tion based on the roles of variables. InProceedings of
the 2003 ACM symposium on Software visualization,
pages 7–16. ACM Press.

Shaffer, C. A., Cooper, M. L., Alon, A. J. D., Akbar, M.,
Stewart, M., Ponce, S., and Edwards, S. H. (2010).
Algorithm Visualization: The State of the Field.ACM
Transactions on Computing Education, 10(3):1–22.

Sun Microsystems (1995). Java.
http://www.oracle.com/technetwork/java/index.html.

Sutinen, E., Tarhio, J., and Ter ¨asvirta, T. (2003). Easy Al-
gorithm Animation on the Web.Multimedia Tools and
Applications, 19(2):179–194.

Timsit, C. and Zertal, S. (2010). Using spreadsheets to teach
computer architecture. InCSEDU 2010 2nd Interna-
tional Conference on Computer Supported Education,
pages 101–105. INSTICC.

Urquiza-Fuentes, J. and́Angel Velázquez-Iturbide, J.
(2009). A Survey of Successful Evaluations of Pro-
gram Visualization and Algorithm Animation Sys-
tems. ACM Transactions on Computing Education,
9(2):1–21.

TRACESHEETS�-�Spreadsheets�of�Program�Executions�as�a�Common�Ground�between�Learners�and�Instructors

163

