
QDSL - QUALITY DOMAIN SPECIFIC LANGUAGE FOR
CLOUD COMPOSITE APPLICATIONS

Short Research Paper

Ethan Hadar1, Irit Hadar2 and Donald F. Ferguson3
1CA Technologies, Inc., Herzelia, Israel

2Department of Management Information System, University of Haifa, Haifa, Israel
3CA Technologies, Inc., New York, NY, U.S.A.

Keywords: Domain Specific Language, Quality Assessment, Service Level Agreements, Cloud Service Quality, Cloud
Modeling.

Abstract: Quality Domain Specific Language (QDSL) is a model-driven approach providing a taxonomy, model, and
visual editing tool for evaluating and benchmarking the quality of composite applications in cloud
environments. Our language and associated modeling tool provide visual and textual means for constructing
mathematical algorithms needed for computing aggregated quality assessment of cloud services. QDSL
enables the illustration and definition of metrics, measurements and indicators, relationships for
computation, and transformation functions that normalize the measurements into relative quality scoring. As
a result, QDSL provides a structure that guides overall quality assessments. The computation algorithm is
structured in a visual manner and associates the quality assessments graph with the structure of the cloud
composite application in a hybrid environment. QDSL supports transformation from physical measurements
into scoring comparative assessments of benchmarked provided IT solutions. This paper presents a basic
model for QDSL and examples of usage. A prototypical eclipse EMF modeling tool of QDSL is used for
communication, whereas commercial monitoring tools implement the instantiated models for evaluating
service qualities.

1INTRODUCTION

In the cloud domain, composite IT services and
composite applications may be implemented across
hybrid cloud environments (Ferguson and Hadar,
2010; 2011) with interchangeable alternatives,
differing in their quality levels (Adam and Doerr,
2007). The increasing number of offerings from
different vendors for the same conceptual cloud
service generates an economic attraction.
Specialization in these services presumably
increases the quality of the services (Donzelli and
Bresciani, 2004). Alternative services should be
evaluated systematically and concisely. Such
semantic definitions (Frank et al., 2009; Gruber,
1995; Franch and Carvallo, 2003) and computation
methods that can be understood by all stakeholders
(Kupfer and Hadar, 2008) are captured in this paper
as QDSL: Quality Domain Specific Language.

The need to provide a service as quickly as
possible drives service agility. Risk is associated

with evaluating the ability to perform a task, and
accordingly, all the associated Costs. Agility, Risk
and Cost are considerations for selecting a cloud
provider and service instead of constructing
solutions on-premise. The IT team evaluates service
alternatives, and selects the best cloud service
according to quality requirements. There are several
challenges in evaluating cloud services involving
different aspects (Franch and Carvallo, 2003). The
technical aspects require the ability to: (1) collect
metrics from the vendors’ cloud services; (2) convert
these metrics into a set of scores that enable rating;
(3) define methods of aggregation and the relative
contributions of each measurement, compound, or
derived metric; and, (4) compare these scores with
other similar services according to an agreed
standard, such as the Service Measurement Index
(SMI) (Zachos, 2011). Social aspects include the
ability to: (1) add social indicators of the perceived
quality of a cloud service or vendor as surveyed by
consumers; (2) increase the trust level of people

228 Hadar E., Hadar I. and F. Ferguson D..
QDSL - QUALITY DOMAIN SPECIFIC LANGUAGE FOR CLOUD COMPOSITE APPLICATIONS - Short Research Paper.
DOI: 10.5220/0003913102280233
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 228-233
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Simplified conceptual model of QDSL.

evaluating the services according to the integrity and
fidelity of the data presented; (3) control the level of
importance of each metric and the overall
contribution according to the individual
considerations of the evaluator.

Benchmarking cloud services is based on
comparing the scores of the functional and non-
functional characteristics of a service. Such
characteristics can be Quality, Agility, Risk,
Capability, Cost, and Security.

QDSL is a modeling language for describing the
computation structures for evaluating the
characteristics of cloud services and composite
applications. These evaluation ratings are computed
based on certain objective (metrics) and subjective
(indicators) measurements. The measurements are
extracted from monitored cloud services or their
composite IT system and application structures. The
measurements' assessments define the score of the
service or its ingredient characteristics, and
aggregate them according to the preferences of the
evaluator (consumer). Finally, the aggregated
characteristic of a service is evaluated against that of
other similar services. QDSL characteristics
prioritization is applied to measurements as part of
the mathematical score computation process, as well
as the importance of different characteristics. QDSL
enables one to define an algorithm for computing
characteristics. It is used when combining
measurements (monitored or derived metrics and
indicators) and weighting (prioritization) factors
according to the evaluator’s specific aggregation
considerations.

Using QDSL’s graphical editor enables the
modeler to capture, share, and reuse characteristics
structures as presented in Figure 3. These models
can be rapidly instantiated into run-time models and
machine-readable formats, executed on computation
engines that aggregate the metrics and produce
characteristics dashboards.

In the next sections a partial view of a
conceptual model is described to illustrate the
QDSL. Several examples are presented, and a brief
description of a prototypical tool is provided.

2 THE QDSL CONCEPTUAL
MODEL

The QDSL domain encompasses conceptual binding
cloud composite applications, measurements and
quality characteristics. A simplified view of QDSL
specifications is provided in Figure 1, while
subsequent sections present selected entities and
relationships. In QDSL, measurements are
monitored via a brokering service, using connectors
defined as Measured Objects. The monitored
Composite Application entities have associated
functional and/or non-functional characteristics.

The QDSL universe encompasses three main
domains:

1. Composite Application Domain, which
comprises the entities under evaluation:
Service, Software, Computer System, and
Composite Application.

QDSL�-�QUALITY�DOMAIN�SPECIFIC�LANGUAGE�FOR�CLOUD�COMPOSITE�APPLICATIONS�-�Short�Research
Paper

229

2. Characteristics Domain, which defines the
criteria for evaluation, such as functional and
non-functional properties.

3. Measures Domain, which provides the
supporting data: Assessments, Rating
Requirements, Measurements, and Measured
Objects.

2.1 The Composite Application
Domain

The Composite Application Domain (Figure 2)
supports the constructing of logical software
components (including libraries, operation systems,
and applications) and services, and assigns them to
computing applications. Each characteristic should
be associated to each of these entities (Service,
Software, Composite Application, or Computer
System). A Measured Object (from the Measures
Domain) retrieves data from a measured entity
associated with a certain capability, such as the CPU
utilization, or fixed cost of a service per month.

Figure 2: The Composite Application Domain.

Figure 3 depicts a QDSL model of a shopping
cart e-commerce composite application. The
Composite application sub-services (catalog,
ordering, and billing) and their associated costs are
modeled. In this example, the billing service is
provided by the billing engine software that runs on
Amazon EC2 infrastructure. The EC2 has a relative
hardware cost score that is derived from the Amazon
service. This Amazon service has a price statement
Measured Object, populating information into the
pay-per-server Measurement. This measurement is
transformed into the Assessment Score using the
pay-per-server Range Requirement. Accordingly,
the hardware cost of the Amazon infrastructure is
calculated, and contributes its portion to the overall
composite application cost.

Figure 3: Composite Application associated with the
Characteristics Domain.

2.1.1 Definitions

Entity is defined as a Base Configuration Item
entity, implemented and well known in the standard
IT configuration management database (CMDB)
systems. It is an abstract element, which is not
presented as a selectable modeling entity in the
QDSL visual editor.

Software Component is a logical software
entity that implements a functional behavior,
captured as a collection of installed files, and runs
on a Hardware Component. A Software component
exhibits the behavior of an IT Service.

Computer System entity represents a computer
system. The Type element classifies the computer
as a "Server," "Mainframe," "Personal Device," etc.
Its sub-elements define its hardware, IP networking,
proxy/management protocol, and computer-related
information.

A Composite Application entity is a common
term for the end-to-end IT solutions that implement
business services. IT implementations of business
services, or any cloud services for that matter, are
composites of hardware, software, applications, data,
network, etc., where the function needed for the
service is driven from several different sources,
regardless of ownership of these sub-modules. More
specifically, when examining the end-goal of an IT
service to cater for business (or other) cloud
services, the delivered application is the one that is
perceived as the service in question. Thus, the
resources comprising such a service (e.g., network
elements and servers) are a means to delivering the
service solution.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

230

2.2 The Characteristics Domain

An IT service or composite application is assessed
by monitored Measurement, representing a certain
Characteristic of a Service (Figure 4). A
characteristic can be computed either from other
sub-characteristics, or directly from an associated
Assessment.

Figure 5 exemplifies a computation structure of a
cost Characteristic. In this example, the cost
Characteristic scoring is derived from the labor cost
Characteristic score, which is computed from the
salary measurement. The contribution considers only
10% of an employee’s monthly payment, according
to the financial system. The overall cost is equally
averaged with a computed cost extracted from a
relative cost assessment of an Amazon server,
according to an hourly rate.

Figure 4: The Characteristic Domain.

2.2.1 Definitions

Characteristics entity describes the quality
attributes of a service or a component or any Entity
type. Characteristic examples are security, usability,
testability, maintainability, extensibility, scalability,
portability, interoperability, and availability. As an
example, availability is defined as the ability of a
component (software, hardware, or any
Configuration Item) or IT Service to perform its
agreed function when required. Availability is
determined by Reliability, Maintainability,
Serviceability, Performance, and Security, and is
usually calculated as a percentage. This calculation
is often based on agreed service uptime and
downtime.

Computed From relationship is linking (1)
another Characteristic entity that provides weighted

Figure 5: Complex structure of characteristic and
assessments dependency.

aggregation of an existing Score, or (2) an
Assessment that is linked to Measurement (metric or
indicator), which provides the Score value by
calculating the Scores equation presented below.
The Compute Method of the Computed From
relationship enables aggregation according to several
possible mathematical functions. These functions
can be: a summation by adding or removing values,
Max, Min, Average, and weighted average. All
functions are multiplied by a Weight attribute that
reflects the level of importance of the targeted
element. When normalized, the sum of all targeted
Characteristic Weights should be 1.

The Score attribute is a percentage
representation. The calculation method of the Score
is defined in Equation 1 in the Measures Domain
section. It is important to note that in the case that a
Characteristic is computed from other sub-
Characteristics, it must be supported by an
Assessment entity to provide the initial Score value.

Computed Value type attribute describes the
type of the numerical value: percentage (default),
count, ratio, or Boolean. Scores that are not of the
same type cannot be jointly aggregated.

Quality Status attribute indicates whether or not
the requirements for all the underlying Assessments
and sub-Characteristics are met. True represents a
healthy system, and False represents that a Service
Level Agreement (SLA) or requirement is not
achieved. Another condition for a True value is that
all underlying scores are greater than 0.0.

Compute Characteristic () - enables
construction of a dedicated algorithm to calculate the
Score or computed values of the entity.

QDSL�-�QUALITY�DOMAIN�SPECIFIC�LANGUAGE�FOR�CLOUD�COMPOSITE�APPLICATIONS�-�Short�Research
Paper

231

2.3 The Measures Domain

The Measures Domain (Figure 6) contains elements
that retrieve data based on metrics (machine or
automation driven) and indicators (people, statistics
driven) using Measurements. In turn, Measurements
access specific connectivity to the real world via
Measured Objects. Each Measured Object is
associated with an entity from the Composite
Application Domain (see Figure 1), and is
transformed into Characteristic’s Scores by the
Assessment entity according to an accepted range
levels. A single Assessment may have many Rating
Requirements, consequently catering for multiple
business goals and different stakeholders.

Figure 6: The Measures Domain.

2.3.1 Definitions

Measurement entity data contain the monitored
data of an Entity or configuration item, by producing
a metric. The resultant Measured Value attribute
must be nonnegative and additive, meaning that the
value of two non-overlapping Measurements equals
the sum of their individual Measure Values.

Assessment entity captures a method for
aggregating or converting Measurements into Scores
that are evaluated by the Characteristics entity
utilizing associated Rating Requirement’s Threshold
values. The assessment captures the level sets of a
Service/Operation Level Agreement (SLA/OLA).
The calculation of SLAs or Scores is triggered on-
demand by an external entity, using the
ComputeAssessment () method.

Rating Requirement entity defines the accepted
range of values that are used when the Measured
Value is assessed, computing the associated
Characteristics entity’s Score (percentage, distance,
or ratio). Many Characteristics exist for a single
Measurement, depending on the structure of the
Composite Application. Fundamental to cloud
environments, the evaluation structure reduces the

quantity of Measured Objects, improving
monitoring capacity. This many-to-many
relationship between Characteristics Assessment and
Measurement supports the scalability and multi-
tenancy of monitored cloud services, where a single
monitoring tool can support many observers, and
vice versa. Scores calculation is based on many
quality requirements of different stakeholders,
expressed as an acceptable Rating Range for a
quality attribute of a service. Accordingly, multi-
tenants can use the same QDSL system, and exhibit
different levels of satisfaction with the same
evaluated service, due to different Rating
Requirements.

Scores are thus computed in equation 1 as:

Scorei=۔ە
ۓ 100.0 if ACV≥RRUi(ACV-RRLi)(RRUi-RRLi) if RRUi>ACV>RRLi

0.0 if ACV≤RRLi ۙۘ
ۗ

 (1)

where i indicates the relevant Rating Requirement,
ACV is the Assessment Computed Value, RRLi is
Rating Range Lower Limit of the i Rating
Requirement, and RRUi is Rating Range Upper Limit
of the i Rating Requirement. The Score is provided
to the relevant i Characteristic.

Has a Tension with relationship highlights that
deeper evaluation is needed when examining an
Assessment. The different values (tensions) are:
• Constructing: the contribution is sufficient to

construct another Assessment.
• Supporting: the contribution is needed but is not

sufficient to support another Assessment.
• Destructing: the contribution conflicts with

another Assessment and cannot co-exist.
• Degrading: the contribution diminishes the

affected Assessment outcomes, however, not
entirely.

Legal Reliability reflects the fidelity of the data
sources and their information reliability. True
represents reliable. For example, automated,
machine driven metrics have a higher reliability
level than human, manually generated information.

Threshold Settings is an array of acceptable
range. defines a Threshold as the value of a metric
(key performance indicator) that should generate an
alert or take a management action. For example:
"Priority1 incident not solved within 4 hours"; "more
than 5 soft-disk errors in an hour"; or, "more than 10
failed changes in a month".

Measured Object entity enables connection to
and monitoring of a Configuration Item (CI) and
provides the measured data. Agents, connectors,
adapters and other installed or remotely accessed

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

232

API are examples. In the cloud domain, due to
encapsulation and abstraction of the physical assets
by means of virtualizations, most of these measured
objects are connectors that abstract remote
monitoring calls.

3 QDSL IMPLEMENTATION

The QDSL prototypical visual modeling tool was
developed based on the Eclipse Modeling
Framework and ECORE models, including DSL
constraints language, such as Object Constraints
Language (OCL). The QDSL tool enables people to
interact with the design environment of IT quality
assessments using visual modeling editors.

The QDSL tool enables modelers to model
visually the algorithm for computing the quality
assessment and express how to capture basic
measurements. QDSL graphically associates the
needed transformation that captures measurements
into a comparable, normalized scoring system,
including methods for aggregation, average, or
accumulation of scores across composite application
characteristics. The tool exports the visual
represented models to machine-readable files
(XMLs) that can be interpreted by a run-time
computation engine, according to the defined visual
algorithm. The approach restricts the relations
between the computation elements by adhering to a
constrained environment (using OCL), prohibiting
human error.

The codified models can be transportable to real-
time monitoring and computation tools. One of these
tools, termed CA Business Insight, commercially
implements structured measurements, known as the
Service Measurement Index (SMI) (Zachos, 2011).

4 DISCUSSION AND
CONCLUSIONS

The Quality Domain Specific Language (QDSL) and
its associated modeling tool enable modelers to
capture quality assessment algorithms for evaluating
cloud services. Using QDSL graphical editors and
its underlying Domain Specific Model enables
modelers to capture cloud services’ qualities
accurately and concisely, share algorithms, and
reuse quality structures. By rapidly instantiating the
model into machine-readable format, QDSL models
can be executed on computation engines that
aggregate the metrics and produce benchmarking

and quality dashboards. The QDSL-based
conceptual model supports a multi-tenancy approach
for both reduction of monitored information and
tailored derived dashboards (personalization, role
based), functioning as a cloud service for evaluating
composite applications quality.

REFERENCES

Adam, S., Doerr, J., 2007. On the Notion of Determining
System Adequacy by Analyzing the Traceability of
Quality. Advanced Information System Donzelli, P.,
Bresciani, P., 2004. Improving Requirements
Engineering by Quality Modeling A Quality-based
Requirements Engineering Framework. Journal of
Research and Practice in Information Technology,
Vol. 36 Issue 4, pp. 277-294.

Ferguson, D.F., Hadar, E., 2010. Constructing and
evaluating supply-chain systems in cloud-connected
enterprise. In 5th international conference on software
and data technologies, ICSOFT 2010, Athens, Greece,
July 2010

Ferguson, D.F., Hadar, E., 2011. Optimizing the IT
business supply chain utilizing cloud computing. The
8th International Conference on Emerging
Technologies for a Smarter World (CEWIT2011),
Long Island, Hauppauge, New York, November 2-3,
2011.

Frank, U., Heise, D., Kattenstroth, H., Ferguson, D.F.,
Hadar, E., Waschke, M.G., 2009. ITML : A Domain-
Specific Modeling Language for Supporting Business
Driven IT Management. Proceedings of the 9th
OOPSLA workshop on domain-specific modeling
(DSM), OOPSLA 2009, Orlando, Florida, US,.

Gruber, T., 1995. Towards principles for the design of
ontologies used for knowledge sharing. International
Journal of Human-Computer Studies, 43(5/6), pp.
907-928.

Kupfer, M., Hadar, I., 2008. Understanding and
Representing Deployment Requirements for
Achieving Non-Functional System Properties. In
International Workshop on Non-functional System
Properties in Domain Specific Modeling Languages,
affiliated with MoDELS, Toulouse France, September
2008.

Zachos, K., Lockerbie, J., Hughes, B., Matthews, P., 2011.
Towards a framework for describing cloud service
characteristics for use by chief information officers. In
Requirements Engineering for Systems, Services and
Systems-of-Systems (RESS), pp: 16 – 23, Trento, Italy,
Aug 2011

Franch, X., Carvallo, J.P. 2003. Using quality models in
software package selection. IEEE Software, vol. 20(1),
pp.34–41

QDSL�-�QUALITY�DOMAIN�SPECIFIC�LANGUAGE�FOR�CLOUD�COMPOSITE�APPLICATIONS�-�Short�Research
Paper

233

