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The iTrust search and retrieval network aims to provide trustworthy access to information on the Web by mak-
ing it difficult to censor or filter information. The declustering algorithm, presented in this paper, randomizes
the network in a manner that reduces the clustering, or cliquishness, of the network. This randomization also
reduces the necessary amount of cooperation between nodes by ensuring that a connection to any node is
short-lived and can be replaced with a connection to another node from a large pool of known peers. Thus,
the declustering algorithm reduces the expectation of cooperation among peers, which represents the degree to
which the nodes rely on, or act on, information provided by their peers. In general, the smaller the expectation
of cooperation, the less susceptible the network is to malicious attacks. Simulation results demonstrate that the
declustering algorithm succeeds in randomizing the neighbors of a node in the network and, thus, in reducing

the likelihood of malicious attacks.

1 INTRODUCTION

Peer-to-peer (P2P) networks (Wikipedia, 2011a) have
grown to have large user bases, more than 150 mil-
lion users in recent years (i-Safe America, 2011). To
manage their ever increasing numbers of users, P2P
networks have employed a myriad of clever methods
to increase scalability and efficiency. Those methods
often relate to the way in which the peers connect to
each other in the overlay network, or in how the peers
search for information in the network. They usually
depend on some form of centralized management and
control of the overlay network, even when the under-
lying network is peer-to-peer. However, if a network
needs to be resilient to censorship and malicious at-
tacks, those methods might not be appropriate or ade-
quate. The core assumptions that are made in existing
P2P networks do not hold in a P2P network that has
robustness as its primary goal. The assumptions that
a majority of the nodes in a P2P network are coop-
erative, and that only a small minority of the nodes
are subversive, might no longer hold; in fact, just the
opposite might be true.

In response to these concerns, and to reduce de-
pendence on centralized search engines for the Web,
we have created a P2P system called iTrust (Chuang

et al., 2011; Michel Lombera et al., 2011). iTrust is
based on the concept that large companies like Google
and Yahoo! might not be unbiased in the search results
they provide and that alternatives need to be available.
Furthermore, other powerful entities, e.g. repressive
governments, might censor or disable systems, such
as search engines, that are capable of providing unre-
stricted access to information on the Web. To com-
bat these threats, iTrust aims to provide reliable in-
formation search and retrieval that cannot easily be
censored or disabled, as well as a robust network that
is resilient to malicious attacks. iTrust provides these
services by using probabilistic information dissemi-
nation techniques in addition to declustering, a heuris-
tic that iTrust peers can use to help randomize their
neighbors in the overlay network.

The declustering algorithm uses randomization to
reduce the clustering, or cliquishness, of the net-
work. This randomization also reduces the necessary
amount of cooperation between nodes by ensuring
that a connection to any node is short-lived and can
be replaced with a connection to another node from
a large pool of known peers. In other words, using
randomization, the declustering algorithm reduces the
expectation of cooperation among peers, which repre-
sents the degree to which the nodes rely on, or act on,
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information provided by their peers. In general, the
smaller the expectation of cooperation, the less sus-
ceptible the network is to malicious attacks.

The rest of this paper is organized as follows.
Section 2 describes some of the methods commonly
used in P2P networks and discusses why they are not
applicable to a network with iTrust’s objectives. Sec-
tion 3 provides an overview of iTrust, including how
iTrust exploits randomization to distribute metadata
and requests for information. Section 4 introduces
our novel declustering algorithm, which can be used
to maintain certain properties of iTrust’s overlay
network. Section 5 includes results from simulations
of iTrust with the declustering algorithm, for several
different kinds of networks and analyzes their sig-
nificance with respect to the goals of iTrust. Finally,
Section 6 presents conclusions and future work.

2 RELATED WORK

2.1 P2P Networks

Although most P2P networks have some similarities,
they are often differentiated by two key factors: cen-
trality and structure.

Centrality is the degree to which a network relies
on specific nodes. A network is centralized if it re-
quires a single dedicated server to function, whereas
a network is a pure P2P network (the opposite of cen-
tralized) if all nodes are of equal importance. In be-
tween these two kinds of P2P networks are hybrid
P2P networks, which might have a hierarchy of nodes
where the nodes at different levels of the hierarchy
have different levels of importance. One of the first
and best known examples of a hybrid P2P network is
the enhanced Gnutella network (Gnutella, 2000; Rasti
et al., 2006), which is discussed in more detail below

Structure is the extent to which the P2P overlay
network is managed. Management can be as sim-
ple as a set of rules governing connections between
nodes, or as complex as an environment that guaran-
tees where information resides in the network. Net-
works in which the overlay network is heavily con-
trolled are referred to as structured, whereas networks
with little or no control over the overlay network
are referred to as unstructured. An example of a
structured P2P network is the Chord network (Stoica
etal., 2001); Chord employs a Distributed Hash Table
(DHT), which is discussed in more detail below.

2.1.1 Gnutella

Gnutella (Gnutella, 2000) with its enhancements

(Rasti et al., 2006) is of interest, because it can be
classified as a hybrid P2P network. Although the
network is decentralized, it has so-called ultrapeer
nodes that form a backbone for the other nodes. Ul-
trapeers are more or less regular nodes that have suffi-
cient computation and communication resources and
that choose to promote themselves to ultrapeer status.
On reaching ultrapeer status, a node connects itself to
other ultrapeers in order to extend the backbone. An
ultrapeer collects data about its leaf (non-ultrapeer)
neighbors, so that it can propagate queries, and so
that it can respond to queries in the leaf node’s stead,
passing a message to a leaf node only when necessary.
This combination of roles dramatically increases the
scalability of the Gnutella network.

However, this convenience comes at a cost. Ultra-
peers become prime targets for attacks, because the
loss of an ultrapeer can disproportionately harm the
network. Moreover, if a node connects to only ma-
licious ultrapeers, it can become completely isolated
from the rest of the network. Of these two vulnera-
bilities, the former reduces the robustness of the net-
work to targeted attacks (Albert et al., 2000), whereas
the latter allows for easier censorship. The Gnutella
network has enjoyed a large measure of success; how-
ever, these characteristics make it unsuitable as a net-
work whose primary objective is trustworthy informa-
tion search and retrieval, without censorship or filter-
ing of information.

2.1.2 Freenet

Another P2P network of interest, especially because
its goals are similar to those of iTrust, is Freenet
(Clarke et al., 2000). Like iTrust, Freenet is con-
cerned with limiting censorship by providing a means
for information to be accessed reliably in a distributed
manner. It attempts to achieve this goal by using its
own routing protocol, which routes requests to nodes
that have been observed to do well with similar re-
quests. An advantage of the Freenet routing proto-
col is that it does not require any network-wide in-
formation or structure to be applied by an individual
node; the same is true of the iTrust declustering al-
gorithm, which attempts to randomize nodes in the
network and reduce the severity of malicious attacks.
Although both techniques are used to increase the ef-
fectiveness of their respective P2P networks, the aim
of iTrust’s declustering algorithm along with proba-
bilistic search is to mitigate the effects of malicious
attacks, whereas Freenet’s routing protocol provides
efficient routing but might be overly optimistic when
considering the number of possibly malicious nodes
present in the network.
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2.1.3 Distributed Hash Tables

Another common approach to building P2P networks
involves the use of an organizational structure called a
Distributed Hash Table (DHT), such as that of Chord
(Stoica et al., 2001). In essence, DHTS use a specific
type of function that maps a keyspace onto the nodes
in the network. Every node in the network becomes
responsible for a set of keys that are mapped to it.
Clever mappings are used to create a strict ordering
between keys and the nodes responsible for the keys,
allowing the node responsible for a key and the target
information to be found quickly. Moreover, when a
node joins or leaves the network, only adjacent nodes
are affected, where adjacency is determined by the or-
dering of the key/value pairs. This last property mini-
mizes the work necessary during network churn, joins
and leaves, and provides excellent scalability.

Despite these advantages, DHTs have a significant
weakness in that, if a malicious node gains control
over a target area of the keyspace, it becomes respon-
sible for a portion of the keys in the network and can
refuse searches based on those keys. This vulnerabil-
ity enables an attacker to take a strategic position in
the network and censor a particular key or set of keys.
Although DHTSs are often used in completely decen-
tralized networks that, otherwise, are difficult to at-
tack, the ability to censor specific information is the
problem that iTrust is designed to defeat.

2.2 Random Networks

Much research has been done on random networks,
and two properties have emerged, the small-world ef-
fect and the power-law degree distribution.

The small-world effect is the property that there
exist short paths between any pair of nodes in the net-
work. Many years ago (Milgram, 1967), it was shown
that the small-world effect applies to social networks,
and that individuals are adept at finding such short
paths using only their local neighborhood informa-
tion. We aim for a similar effect in iTrust. A node
maintains connections to only a small number of peer
nodes, which form its neighborhood. The neighbors
of a node forward messages generated by the node to
their neighbors.

The power-law degree distribution (Wikipedia,
2011b) is the property that the probability of the node
degree varies as a power of the degree. This property
results when networks expand continuously by the ad-
dition of new nodes, and new nodes attach preferen-
tially to already well-connected nodes (Barabasi and
Albert, 1999). Power law networks concentrate many
connections at a relatively small number of nodes,
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which is a disadvantage for iTrust, because malicious
manipulation of such highly connected nodes might
distort the distribution of information. iTrust aims for
networks in which all nodes are equal, which will not
happen by chance but is an explicit objective of i Trust.

To comply with both the small-world effect and
the power-law degree distribution, several researchers
(Makowiec, 2005; Ree, 2006) proposed rewiring a
constant-size network based on the preferential at-
tachment of new nodes to already well-connected
nodes. Likewise, in our declustering algorithm, we
consider a relatively small neighborhood of a node
and rewire it, but for the purposes of achieving ran-
domization and resistance to malicious attacks.

In our experiments and results presented in Sec-
tion 5, we consider the Erd6s-Rényi, Barabasi-Albert,
and Watts-Strogatz networks in the context of our
declustering algorithm for iTrust. We briefly intro-
duce these networks below.

2.2.1 Erd6s-Rényi Network

The Erd6s-Rényi network is a classic random net-
work, where any two nodes are connected accord-
ing to a fixed probability. Because every edge has
an equal chance of existing, independent of all other
edges, the degree of any node follows a binomial dis-
tribution (Erdds and Rényi, 1960).

2.2.2  Watts-Strogatz Network

The Watts-Strogatz network is initially constructed by
placing nodes on one or more dimensional regular lat-
tices, e.g. circle or grid, and connecting each node
to its n nearest neighbors. Furthermore, the model
adds random rewiring of edges so that the resulting
network has a small diameter (Watts and Strogatz,
1998). Real networks have been observed to have
small diameters (Travers and Milgram, 1969). When
the rewiring probably is chosen to be zero, the net-
work is identical to the original lattice.

2.2.3 Barabasi-Albert Network

The Barabasi-Albert network is created incrementally
by preferentially attaching new nodes to already well-
connected nodes (Barabasi and Albert, 1999). This
process leads to a graph with a power-law degree dis-
tribution. Many real networks have degrees that fol-
low a heavy-tail power law degree distribution.
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Figure 1: The iTrust random, probabilistic search strategy.

3 THE ITRUST P2P NETWORK

To address potential Internet censorship and other
problems associated with centralized search engines,
as well as to avoid the aforementioned P2P network
vulnerabilities, we are developing the iTrust P2P net-
work (Chuang et al., 2011; Michel Lombera et al.,
2011). iTrust is intended to be robust against attacks
as well as capable of disseminating information even
in the presence of attempts to suppress it, i.e., iTrust
is intended to be censorship resistant. iTrust attains
these goals by making use of a random, probabilistic
search strategy.

The nodes that participate in an iTrust network are
referred to as the participating nodes or the member-
ship (Figure 1(a)). Some of the participating nodes,
the source nodes, produce information, and make
that information available to other participating nodes
(Figure 1(b)). The source nodes also produce meta-
data that describes their information, and distribute
the metadata, along with the URL of the information,
to a subset of the participating nodes chosen at ran-

dom. Other participating nodes, the requesting nodes,
request and retrieve information. Such nodes gener-
ate requests that contain keywords, and distribute the
requests to a subset of the participating nodes chosen
at random (Figure 1(c)). Nodes that receive a request
compare the keywords in the request with the meta-
data they hold. If a node finds a match, which we
call an encounter, the matching node returns the URL
of the associated information to the requesting node
(Figure 1(d)). The requesting node then uses the URL
to retrieve the information from the source node. A
match between the keywords in a request received by
a node and the metadata held by the node might be an
exact match or a partial match, or might correspond
to synonyms.

In iTrust, each node maintains a list of cooperat-
ing peers, nodes that distribute metadata and that is-
sue search requests. Every node needs such a list from
which to draw random subsets of nodes for distribu-
tion of metadata and requests. In our existing im-
plementation of iTrust (Chuang et al., 2011; Michel
Lombera et al., 2011), all nodes maintain a list of sub-
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stantially all participating nodes, which works quite
well for memberships of a few hundred or thousand
participating nodes. For memberships of millions of
participating nodes, the cost of the membership list,
and the cost of maintaining the membership, as nodes
join and leave the membership, can become exces-
sive. Consequently, in this paper, we investigate P2P
networks in which each node holds a list of partici-
pating nodes that form a small, random subset of the
membership, i.e., a neighborhood of the node. Be-
cause it can be difficult to ascertain whether a given
node is cooperative or malicious, we must ensure that
the subset is sufficiently random. By making a ran-
dom choice of a subset from the list of known partic-
ipating nodes, attempts to poison the list with a large
number of malicious nodes can be mitigated.

Even unstructured networks, such as iTrust, can
develop many unwanted features when left to their
own devices. Real networks tend to form cliques
and have degree distributions that follow a power
law (Adamic et al., 2001; Watts and Strogatz, 1998).
Cliques are undesirable, because they can decrease
the ‘efficacy of searches and can compartmentalize
the network. Degree distributions that follow power
laws tend to have a few hub nodes that become single
points of failure, which is a real problem for hybrid
hierarchical P2P networks. Because of these char-
acteristics of real networks, it is useful to create a
method that can be applied to a network to influence
its structure towards a more robust, random variant.
Moreover, it is of utmost importance that this method
is fully distributed and is applicable at the individual
node level, and that it does not require global context
or understanding of the entire network.

4 DECLUSTERING

4.1 Expectation of Cooperation

Traditional strategies for P2P overlay networks de-
pend on a high level of cooperation between peers in
the network, and degrade rapidly if cooperation is in-
sufficient. Our declustering algorithm aims to achieve
a high level of functionality even at lower levels of co-
operation between peers. It is based on the idea that
there is an expectation of cooperation between peers
in the network, which represents the degree to which
nodes rely on, or act on, information provided by their
peers. The expectation of cooperation can be thought
of as the set of assumptions made during peer commu-
nication, e.g., that the information provided by other
nodes is trustworthy. In general, the smaller the ex-
pectation of cooperation, the less dependence there is
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Figure 2: The minimum expectation of cooperation can be
imagined as the point at which network functionality begins
to degrade rapidly.

to exploit, and the less susceptible the network is to
attack. Thus, by decreasing the expectation of coop-
eration between peers in the network, the robustness
of the network can be improved.

Moreover, an individual node should not require
a given level of cooperation from its neighbors but,
rather, it should require a given level of cooperation
from the network. That is, the expectation of coop-
eration should be not only as small as possible, but
also as focused on the network as possible, rather
than on a subset of the participating nodes. Figure 2
shows the traditional strategy and our proposed strat-
egy, which achieves a high level of functionality even
at lower levels of cooperation between peers. The fig-
ure shows the minimum expectation of cooperation,
i.e., the point below which network functionality be-
gins to degrade rapidly.

The inability to use more advanced search tech-
niques that rely on a greater expectation of coopera-
tion is partially offset in iTrust by probabilistic search
techniques that make even message flooding scalable
(Banaei-Kashani and Shahabi, 2003).

4.2 Definitions

For our declustering algorithm, we represent the net-
work as an undirected graph, where the nodes in the
graph correspond to nodes in the network and the
edges in the graph correspond to connections between
the nodes in the network. The degree of a node is the
number of edges emanating from it. We use the fol-
lowing terminology in our descriptions of the declus-
tering algorithm, the simulation, and the results.

A neighbor of a node is a node that is directly con-
nected to the node, i.e., such that there exists an edge
between the two nodes. The neighborhood of a node
comprises all of the neighbors of the node, i.e., all of
the nodes to which the node is directly connected. A
neighborhood is a random, small subset of the mem-
bership of the iTrust network, as shown in Figure 3.
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. Neighbors of Source Node

O Neighbors of Requesting Node

Figure 3: A large membership with small neighborhoods about a source node and a requesting node.

The network view of a node is the number of the
node’s neighbors plus the number of the neighbor’s
neighbors. Our concept of the network view is taken
from Gossple (Jelasity et al., 2007; Bertier et al.,
2010), where the idea is used in peer management.

A clique is a group of nodes that are highly con-
nected among themselves. The global clustering co-
efficient of a network measures the “cliquishness” of
the network, i.e., how common and how large the
cliques in the network are. In our declustering al-
gorithm, we use the Watts-Strogatz version of the
global clustering coefficient, the calculation of which
is given in Figure 7.

A hub is a node with a significantly higher than av-
erage degree. The hub degree is the number of edges
emanating from the hub, i.e., the number of nodes to
which the hub is directly connected.

The network diameter is the distance between the
two nodes in the network that are farthest apart. More
formally, the network diameter is the largest path
length of all of the shortest paths in the solution for
the all pairs shortest paths problem.

The match probability is the probability that a re-
questing node receives one or more responses from
nodes that hold metadata that matches the keywords
in its request.

4.3 The Declustering Algorithm

Our declustering algorithm can be used to assuage
the potential problems, introduced by real networks
and malicious attackers, through randomization of the
neigborhoods of the nodes, i.e., the connections made
by the nodes. The algorithm is so named because its
main purpose is to reduce the global clustering coeffi-
cient of the graphs to which it is applied. The declus-
tering algorithm can be used by any individual node
in the network, which makes it particularly useful if
cooperation between nodes is expected to be minimal.

The basic idea of the declustering algorithm is pre-
sented in Figures 4 and 5. A node makes a list of all of
its neighbors and all of its neighbor’s neighbors and
then randomly selects new neighbors from the com-
bined list. If applied enough times and by different
nodes, the desired end result is that the network will
become “sufficiently random.” Declustering might be
seen as an attempt to de-structure the network by re-
moving any patterns or trends that are present in it.

In the iTrust network with the declustering algo-
rithm, we assume that there are N participating nodes
in the membership and n participating nodes in a
neighborhood of a node. A source node distributes
its metadata to m participating nodes in its current
neighborhood, and a requesting node distributes its
request to r participating nodes in its current neigb-
horhood. If the nodes choose nodes for their neigh-
borhoods at random and if the source nodes (request-
ing nodes) distribute their metadata (requests) at ran-
dom to the nodes in their neighborhoods, then the
metadata (requests) are distributed at random to the
participating nodes in the iTrust membership. If m
and r are sufficiently large with respect to N, then the
probability of one or more matches is high. For exam-
ple, if N = 1000 participating nodes, n = 150 partic-
ipating nodes, the metadata are distributed to m =50
participating nodes, and the requests are distributed
to r = 50 participating nodes, then the probability of
one or more matches is p = 0:928023, which we ob-
tain using the formula given in (Chuang et al., 2011,
Michel Lombera et al., 2011).

5 SIMULATION AND RESULTS

5.1 Metrics

To analyze the results of our simulation quantitatively,
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distribution with mean M.

1. For any given node X, place all of X’s neighbors, and X’s neighbor’s neighbors into a set S.
In the set S, duplicate entries are not allowed, and each node occurs only once. After the first step is
complete, S is the set of all nodes that are visible to the node.
2. Remove all edges incident to X, in effect clearing its neighborhood.
3. Select M new neighbors from S without replacement, where M is the number of neighbors that node X
originally had. Alternatively, randomly select each node in S with probability

The latter method allows each node to vary the number of neighbors it has, but to retain roughly
the same number of neighbors. However, doing so leads to an increassed variance in the degree
distribution of the network, and is not used in our simulations.

M

S to obtain a binomial

Figure 4: The declustering algorithm.

e
3

(@) Initial neighbors. (b) Discover nodes.

(c) Drop neighbors. (d) Pick new neighbors.

Figure 5: Example of the declustering algorithm.

we recorded the following metrics: the maximum hub
degree, the average network view, the global cluster-
ing coefficient, the average network diameter, and the
match probability.

Determining the maximum hub degree is simply a
matter of finding the most highly connected node in
the network. The average network view is also easy
to calculate by averaging the network views of ev-
ery node during the declustering process. The global
clustering coefficient is not as easy to calculate. We
use the Watts-Strogatz version of the global cluster-
ing coefficient; it is defined as the average of the
local clustering coefficients of all nodes in the net-
work. The local clustering coefficient calculation is
described in Figure 7. The experiments related to
the network diameter were performed separately from
those for the other metrics.

5.2 Simulation

Because the declustering algorithm requires a graph
as input, and the structure of the graph can affect the
results of the declustering, we input three different
types of graphs to the algorithm multiple times, the
Erdds-Rényi graph, the Barabasi-Albert graph, and
the Watts-Strogatz graph, shown in Figure 6.

For the hub degree, network view, clustering co-
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efficient and match probability, we performed the
following steps. First, we created the initial net-
work graph and recorded information about it. Then,
we applied our declustering algorithm to the graph
in several successive passes. In the first pass, the
declustering algorithm is applied to the original graph
and information about the once declustered graph
is recorded. In the second pass, the declustering
algorithm is applied to the once declustered graph
and information about the twice declustered graph is
recorded. In the third pass, the declustering algorithm
is applied to the twice declustered graph and informa-
tion about the thrice declustered graph is recorded.
For the network diameter, we performed separate
experiments from those for the other metrics. First,
we created the initial network graphs for each model
and then we removed the nodes with the most con-
nection, one-by-one, until the diameter of the network
increased. We then recorded the number of nodes re-
quired to be removed before the diameter changed.
This number is used as a gauge to determine the
amount of work required to harm the network.
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Erdés-Rényi Graph (Erd6s and Rényi, 1960): Has very low clustering coefficients and is very robust to random
and targeted failures. Used as the baseline.

Watts-Strogatz Graph (Watts and Strogatz, 1998): Has very high clustering coefficients. Used to investigate
the ability of declustering to lower clustering coefficients.

Barabési-Albert Graph (Barabasi and Albert, 1999): Node degrees follows a power law distribution, which
results in the formation of a few very large hubs. Used to investigate the ability of declustering to remove

(a) Erdds-Rényi graph(P = 0:4)

(b) Watts-Strogatz graph
(K=4;b=0:0)

hubs and smooth out the node degree distribution curve.

(c) Barabési-Albert graph
(m=mg=2;a=1)

Figure 6: Three types of random graphs with n = 10.

isj Gsi b
> .

1. To calculate the local clustering coefficient of node X, put all of X’s neighbors into a set S.
2. Find E, the number of possible edges between all nodes in S. For an undirected graph, this number is

3. Find e, the number of edges that exist between nodes in S. The local clustering coefficient for node X is
given by £. Note that this quantity is always less than or equal to 1.

Figure 7: Algorithm for calculating the local clustering coefficient.

5.3 Results

5.3.1 Hub Degree, Network View, Clustering
Coefficient, Match Probability

The results of the simulation of iTrust with the
declustering algorithm for the hub degree, network
view, clustering coefficient, and match probability are
shown in Table 1. These results were obtained for an
iTrust network with a membership of N = 1000 par-
ticipating nodes and with neighborhoods that contain
n = 150 participating nodes, where the metadata are
distributed to m = 50 nodes within the neighborhood
of a source node and the requests are distributed to
r =50 nodes within the neighborhood of a requesting
node. The table shows the results of the simulation of
iTrust for three passes of the declustering algorithm
for the three graphs.

First and foremost, one of the most interesting yet
somewhat expected results is that the metrics for the

Erdds-Rényi graph change very little despite declus-
tering. The reason is that the declustering process
very nearly emulates the construction of the Erdés-
Rényi graph — it attempts to distribute edges in
the graph at random. Declustering also causes the
other graphs to transform slowly into Erd6s-Rényi-
like graphs, as is shown for the Watts-Strogatz and
Barabasi-Albert graphs. The global clustering co-
efficient of the Watts-Strogatz graph, with an edge
rewiring probability of O, is very quickly reduced.
Even after a single declustering pass, its global clus-
tering coefficient is consistent with that of the Erdés-
Rényi graph.

This effect is noteworthy because of the fact that
real networks tend to have larger global clustering co-
efficients than Erdds-Rényi graphs and, thus, can ex-
hibit sub-optimal performance using iTrust’s search
and retrieval strategy, due to their increased cluster-
ing. In networks similar to the Watts-Strogatz graph,
declustering not only increases the match probability
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Table 1: Results of the simulation of iTrust with the declustering algorithm.

Maximum | Average Global Match
Hub Network | Clustering | Probability
Degree View Coefficient

Erd6s-Rényi Graph
Initial 192 1000 0.1502 0.9282
1st Pass 187 1000 0.1501 0.9283
2nd Pass 187 1000 0.1501 0.9282
3rd Pass 190 1000 0.1499 0.9279
Watts-Strogatz Graph
Initial 150 301 0.7450 0.2858
1st Pass 187 1000 0.1506 0.9286
2nd Pass 185 1000 0.1503 0.9283
3rd Pass 180 1000 0.1501 0.9290
Barabasi-Albert Graph
Initial 492 1000 0.2399 0.9652
1st Pass 246 1000 0.1533 0.9297
2nd Pass 187 1000 0.1505 0.9281
3rd Pass 186 1000 0.1508 0.9283

Table 2: More results of the simulation of iTrust with the declustering algorithm.

4|

Network Diameter

5|

6|

7 | s

Average Number of High-Degree Nodes Removed

Erd6s-Rényi Graph 270 352 374 386 394
Watts-Strogatz Graph 207 329 366 378 389
Barabasi-Albert Graph 112 236 274 307 331
Barabasi-Albert Graph 259 342 363 380 388
Once Declustered

of iTrust but also ensures sufficient network edge ran-
domness to decrease the possibility of malicious at-
tacks in the network.

In the same vein, the large hubs of the Barabasi-
Albert graph are a potential vulnerability despite the
fact that they increase the search success rate. In
this case, the ability of declustering to remove hubs
and smooth the node degree distribution curve is ex-
tremely useful for increasing the robustness of the net-
work. Real networks tend to have degree distributions
that follow a power law (Adamic et al., 2001; Price,
1976), and hubs similar to those of the Barabasi-
Albert graphs.

5.3.2 Network Diameter

The results of the simulation of iTrust with the declus-
tering algorithm for the network diameter are shown
in Table 2. These results were obtained for an iTrust
network with a membership of N = 500 nodes and
with neighborhoods of n = 50 nodes on average. The
table shows, for each network and for network diam-
eter between 4 and 8, the number of nodes that had to
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be removed before the diameter changed to the net-
work diameter shown.

Each removal disabled the node in the network
with the highest degree and removed all of its con-
nections to other nodes. Because networks with small
diameters are preferable, the results show that the
structure of the Barabasi-Albert graph is less robust
against targeted attacks than the Erds-Rényi graph.
Moreover, the Barabasi-Albert graph exhibits a no-
ticeable improvement in robustness after only a sin-
gle declustering pass. The difference in performance
between these two graphs is most likely due to the
uneven distribution of edges in the Barabasi-Albert
graph, which allows a larger proportion of edges to be
removed from the network with the removal of a hub.

For the Watts-Strogatz graph, with N =500, n =
50 and an edge rewiring probability of 0, as used in
Table 1, the diameter is initially 10 due to its ring
lattice structure. Therefore, for the network diameter
experiments, we used an edge rewiring probability of
0.1 instead, which gave the initial network a diameter
more comparable to that of the other networks. This
version of the Watts-Strogatz graph ended up splitting
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the difference between the Barabasi-Albert graph and
the Erd8s-Rényi graph in terms of robustness.

6 CONCLUSIONS

We have described a declustering algorithm for the
iTrust search and retrieval network. The objective of
iTrust is to provide trustworthy access to information
on the Web by making it difficult to censor or filter in-
formation. The declustering algorithm decreases the
expectation of cooperation between peers in the iTrust
network and, thus, improves the robustness of the net-
work. The expectation of cooperation represents the
degree to which the nodes rely on, or act on, informa-
tion provided by their peers.

The simulation results demonstrate that the
declustering algorithm succeeds in randomizing the
neighbors of a node. This randomness not only helps
mitigate malicious attacks, but also allows for eas-
ier analysis of the functionality of the network. The
simulation results also show that even networks with
high global clustering coefficients or extremely large
hubs can be transformed into Erd8s-Rényi-like graphs
very quickly when declustering is used. In some
cases, only one pass is required to achieve the de-
sired outcomes of lower global clustering coefficients
and fewer nodes with high degrees. These findings
support the idea that techniques applied on a node-
by-node basis can be used to ensure certain network-
wide properties in pure P2P networks, both unstruc-
tured and loosely structured.

While declustering might be useful for iTrust, and
its objective of preventing censorship or filtering of
information accessed over the Web, it might not be
useful for P2P networks that have different objec-
tives. The declustering technique might sacrifice po-
tentially useful network features; however, it accom-
plishes its goal of making the network more robust.
Subsequent versions of iTrust might use information
gathered from forwarded queries to help in the declus-
tering process. Future work in this area might inves-
tigate other techniques like declustering that work to
create robust networks by supporting and promoting
high levels of network churn.
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