
CPCPU: COREFUL PROGRAMMING ON THE CPU
Why a CPU can Benefit from Massive Multithreading

G. De Samblanx1;2, Floris De Smedt1;2, Lars Struyf1, Sander Beckers1, Joost Vennekens1;2

and Toon Goedemé1

1Campus De Nayer, Lessius, Belgium
2Department of Computing Science, K.U.Leuven, Leuven, Belgium

Keywords: GPGPU, CUDA, OpenCL, Massive Multicore.

Abstract: In this short paper, we propose a refreshing approach to the duel between GPU and CPU: treat the CPU as if
it were a GPU. We argue that the advantages of a massive parallel solution to a problem are twofold: there
is the advantage of an excessive number of simple computing cores, but there is also the advantage in speed
up by having a large number of threads. By treating the CPU as if it was a GPU, one might end in the best
of two worlds: the combination of high performing cores, with the massive multithreading advantage. This
approach supports the paradigm shift towards massive parallel design of all software, independent of the type
of hardware that it is aimed for.

1 INTRODUCTION

By introducing the concept of a ‘general purpose
GPU’,manufacturers of graphical processors promote
the use of their hardware more as a replacement of a
CPU than as a classical numerical coprocessor. Nev-
ertheless, the CPU is still the core in a system that
sources out the bulk of its work (Beckers, 2011).But
maybe it is time to turn the table. In this text we ex-
plore the advantages of using a CPU in the role of a
‘supporting’ GPU.

Note: the experiments in this article were run on a
Intel i5-2400 Quadcore 3.1Ghz and a NVidia GTX480
graphical card.

2 THE POWER OF GPGPU

In recent years, a large interest arose around the use
of graphical processing units (GPU) for general com-
puting purposes. Advocates of GPU programming
claim that the use of these ‘massive’ number of par-
allel working units will lead to a cheap but vast army
of computational power. NVidia predicts for its Tesla
hardware combined with CUDA software technology,
a speed advantage factor of 100 by the year 2021 –
that is 100�, not 100% speed up (Brookwood, 2010).
ATI observes a more humble factor of 19� with cur-
rent technology (Munshi, 2011). Using OpenCL, the

ViennaCL benchmarks (Rudolf et al., 2011) report a
speed up factor between 3 and 18, depending on the
application, with minimal optimization. So the idea
is: laying your hand on few teraflops at the cost of a
netbook, who could refuse?

Even though the old school parallel computing
community has been reluctant to admit it, massive
parallelism is a different paradigm. The classical ap-
proach is to divide an algorithm in a sequential and a
parallel part. Then the parallel part is executed on the
multiprocessor. In contrast, massive parallel comput-
ing often requires a new algorithm design (Beckers,
2011).

But it also suffers from Amdahl’s law. Simply
stated, Amdahl’s law says that the speed (up) of an
algorithm is limited by its sequential fraction S, since
only the parallel fraction P = 1� S can benefit from
parallelization:

speedup =
1

S+ P
#cores

:

If the number of parallel cores becomes very large, as
is the case in a GPU, the speedup levels off at approx-
imately 1=S. Therefore, it might be a good idea to
use faster cores, instead of more cores, and jump to a
higher performance curve, as is shown in Figure 1.
Notice that if we would replace the ’number of cores’
on the x-axis by a ’number of threads on a limited set
of cores’, then the results even get worse. Additional

196 De Samblanx G., De Smedt F., Struyf L., Beckers S., Vennekens J. and Goedemé T..
CPCPU: COREFUL PROGRAMMING ON THE CPU - Why a CPU can Benefit from Massive Multithreading.
DOI: 10.5220/0003904901960199
In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2012), pages 196-199
ISBN: 978-989-8565-00-6
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



Figure 1: Amdahl’s law: computational speed versus the
number of cores; logarithmic scale with S = 5%.

overhead discourages this approach mst strongly.

3 PEAK PERFORMANCE IS NOT
A CONSTANT NUMBER

The real-life peak performance if a computer core is,
unlike commercial statements, not a constant number.
It depends on the size and the type of the problem that
runs on the hardware. E.g. problems that are too small
do not result in an optimally filled hardware pipeline,
whereas large problems do not fit in local memory.
A typical ’peak’ performance curve as a function of
the problem size has the staircase-pyramid shape as
shown in Fig. 1. To the left of point A, the curve rises

Figure 2: The evolution of peak performance as a function
of the problem size (log scale).

while the pipline fills up and overhead decreases. At
the right of point B, the performance drops when the
different caches fail to store the data. In this example,
the region B-C uncovers the Level1 cache, whereas
C-D shows the L2 cache. The curve was drawn by
running repeatedly the very simple BLAS1 routine
snorm2 on one CPU core (Duff et al., 2002). This

is a routine with almost no overhead.
The problem with this curve is that the region A-

B of maximal performance is also the region where
this performance is not really needed: the problem is
too small. In practice, this performance will probably
be hidden behind the overhead of setting up the next,
small problem. For very large data, beyond point D,
on the other hand, the performance is at the level of
really cheap hardware.

Moreover, performance can only be achieved by
optimization. Optimization implies the mapping of an
implemented solution on specific hardware; in some
cases, it can make the porting of software to different
hardware awkward. In practice, one starts by mak-

ing a sequential design that is easier to debug. Then,
as many parts of the design as possible are imple-
mented in parallel. after which they are optimized and
mapped on the hardware.. If the software is ported
from/to CPU/GPU afterwards, then the optimization
must be redone in a very fundamental way.Sometimes
the whole algorithm must be thought over again.
With this discussion paper, we propose a different ap-
proach: avoid the choice between CPU/GPU, but try
to design the software solution from the start within
a massive parallel paradigm. As we will argue in the
following paragraph, this is not necessarily bad for
the CPU. In fact, the CPU may even benefit from be-
ing treated like a GPU.

4 CPU MASSIVE
MULTITHREADING

Let us review the graph of Amdahl’s law. It is easy to
see that the ‘number of cores/threads’ on the x-asis of
Figure 1 are related directly to the problem size-per-
thread:

size per thread =
total problem size
number of threads

+overhead:

By ignoring the overhead, we can combine Fig. 1
and Fig. 2. The points A-D appear in reverse order
on the combined graph, since the problem size is re-
lated to the inverse of the number of cores. Becaouse
these points indicate where the performance of one
core jumps to a higher/lower curve, they indicate the
points where an application jumps to a faster/slower
Ahmdal curve, as is shown in Figure 3. The good
news here is that the A-B region of maximal perfor-
mance, is located much more to the right of the curve
(where the problem size is large). So with a fixed

CPCPU: COREFUL PROGRAMMING ON THE CPU - Why a CPU can Benefit from Massive Multithreading

197



Figure 3: Combination of Amdahl’s law with single-core
performance; performance speed versus log(number of
cores).

problem size per thread, the implementation will run
faster for larger problems. On a GPU, the problem
size per thread is not fixed. It depends on the num-
ber of cores versus the overall problem size, which
are both fixed. But on a CPU with e.g. 4 cores, the
number of threads can vary in a continuous fashion to
any number, changing the problem-size-per-thread at
will.

Figure 4 shows the results of this experiment on
our test system. We ran the same problem from Fig-
ure 1 using 1 to 480 threads on a quadcore Intel i5.
Since every core runs at about 3GHz, a maximal per-
formance of 12GFlops can be expected – assuming
1 flop per clock cycle. Obviously, the performance
doubles when going from 1 thread to 2 and quadru-
ples for four threads. But all of those four imple-
mentations level off around the same point at approx-
imately 1GFlops. In other words, for problems larger
that 2 megabytes, the four cores combined perform as
poorly as only one. Now, if we run the same prob-

Figure 4: Running snorm2 with 1 to 480 threads, on 4 cores
for increasing problem size (logarithmic scale).

lem with 48 to 480 threads on the 4 CPU cores, then
the region of maximal performance clearly shifts to
the right. This ‘optimal’ region also tends to be much

broader, remember that the x-axis is labeled logarith-
mically. Very little performance is lost in the extra
overhead of launching the threads.

Of course, this level of optimisation could also be
achieved by classical optimization and by probing the
speed of the internal busses and the size of the caches.
But by massive multithreading, the number of threads
is an optimization parameter that is quite independent
of the hardware. This makes the porting and the reuse
of software easier.

5 CONCLUSIONS

With the advent of massively multicore GPUs came
the new programming paradigm of massively paral-
lel computing. In this paper, we have argued that the
usefulness of this new paradigm need not be limited
to the GPU: there are sound theoretical reasons to ex-
pect that the same programming style may also be
beneficial for programs run on CPUs. In particular,
it may helps to shift the performance curve towards
the end of the spectrum where performance is most
needed, i.e., the large instances. At the negligible cost
of solving the small instance slightly less quickly, the
number of instances that can actually be solved can
be drastically increased, as demonstrated by the pre-
liminary experiment discussed in this paper.

A second advantage is of course that, by using the
same programming paradigm on both CPU and GPU,
the choice between those different types of hardware
can be postponed. A suitably designed algorithm
may be deployed on either one with only minimal
changes. Moreover, if a platform-independent paral-
lel programming language such as OpenCL is used, it
may not even be necessary to change the implemen-
tation either.

It is not necessary to know at design time how
many cores the hardware will have, since the num-
ber of threads (not cores) is a possible optimization
parameter. While executing these threads, CPUs can
address a larger amount of memory than GPUs and
have still more efficient pipelines. On the other hand,
the CPU cores are definitely much lower in number.

Finally, debugging software on a CPU platform is
much better supported than on a GPU. So if designed
software can be transferred between CPU and GPU as
if they were highly similar, then the debugging prob-
lem of GPUs is somewhat relieved.

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

198



ACKNOWLEDGEMENTS

Parts of this research is funded by the IWT project
”S.O.S. OpenCL - Multicore cooking”.

REFERENCES

Beckers, S. (2011). Parallel sat-solving with opencl. In
Proceedings of the IADIS Applied Computing.

Brookwood, N. (2010). Nvidia Tesla GPU computing, rev-
olutionizing high performance computing.

Duff, I. S., Heroux, M. A., and Pozo, R. (2002). An
overview of the sparse basic linear algebra subpro-
grams: The new standard from the blas technical fo-
rum. ACM Trans. Math. Softw., 28:239–267.

Munshi, A. (2011). OpenCL and heterogeneous computing
reaches a new level. AMD DeveloperCentral.

Rudolf, F., Rupp, K., and Weinbub, J. e. a. (2011). Vien-
naCL User Manual. Institute for Microelectronics,
TU Wien.

CPCPU: COREFUL PROGRAMMING ON THE CPU - Why a CPU can Benefit from Massive Multithreading

199


