
VISoR
Virtual Machine Images Management Service for Cloud Infrastructures

João Pereira and Paula Prata
Instituto de Telecomunicações (IT)

Department of Informatics, University of Beira Interior, Covilhã, Portugal

Keywords: Cloud Computing, Virtual Images, Storage Systems.

Abstract: Virtual machine images represent one of the most valuable components in providing a cloud infrastructure, so
managing them becomes a key concern in such systems. Each one of the Infrastructure-as-a-Service (IaaS)
offers provides its own version of a local image repository. This fact raises problems when managing multiple
environments with different IaaS, or when migrating from one to another, because such images management
services are mainly designed to interact with its corresponding IaaS and its own storage system. This article
presents VISoR, a work-in-progress project, whose main goal is to achieve an agnostic service for managing
virtual machine images among different cloud offers.

1 INTRODUCTION

Cloud computing brought the capability to provide
access to a wide range of machines as virtual machine
(VM) instances, whose number varies depending on
the amount of required resources. Cloud computing
platforms are no longer confined to local clusters of
machines, they are growing, and today they vary from
machines within a single data center to networks of
data centers spread all around the world. These facts
led to the expansion of VMs uses, as they are one
of the key features of the emerging Cloud Comput-
ing paradigm (Buyya et al., 2009). Managing large
amounts of virtual images being deployed over mul-
tiple distributed machines could become an exponen-
tial bottleneck, so the way to manage them is very im-
portant (Begnum, 2006). Providing the capability to
manage virtual images through an organized, reliable
and scalable service is very important, as the num-
ber of such systems continues to grow, it is necessary
to produce tools capable of simplifying the work of
those dealing with them.

Current cloud Infrastructure-as-a-Service (IaaS)
frameworks provide their own version of an image
repository, although they present limitations and in-
compatibilities between them, as they do not allow
storing images and the needed information about
them (metadata) in a compatible way between differ-
ent IaaS. Their implementation suffers from some nat-
ural limitations, such as the storage systems compati-

bility and its design that is tied to their own needs and
requirements. Facing the cloud computing paradigm,
sometimes there is the need to manage a couple of dif-
ferent IaaS in the same infrastructure, bringing hard
integration problems when managing available vir-
tual images. Users of such frameworks should not
be constrained in choosing the right tools for the
job and switch back and forth between them as they
need, maintaining a centralized agnostic image man-
agement service repository.

Having said that, our work differs from such ap-
proaches as we present VISoR (which stands for Vir-
tual Images Service Repository), a service providing
a generic purpose and multi-cloud repository, com-
pletely open-source and designed from bottom to top
not to fit in a specific platform or purpose, but de-
signed to overreach sharing and interoperability lim-
itations among different IaaS and storage systems.
This provides the ability to enable the storing and
managing of virtual images among different clouds,
in the same generic repository. Also, placing the
cloud as first target audience is not a limitation for
other use cases, given the agnostic design concerns,
the service can be successfully applied to a wide range
of image management environments.

The remainder of this paper is organized as fol-
lows. In Section 2 we discuss the background of IaaS
offers, its image management solutions and storage
systems. In section 3 we present the service features.
In section 4 we outline the security risks and the ap-

401Pereira J. and Prata P..
VISoR - Virtual Machine Images Management Service for Cloud Infrastructures.
DOI: 10.5220/0003903104010406
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 401-406
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



proach to contain them. The architecture of the sys-
tem, its components and its description is detailed in
Section 5. The status of the system implementation
and future work are described in Section 6 and finally,
in Section 7 we present the paper’s conclusions.

2 BACKGROUND

Currently there are many IaaS offers, among which
we highlight the Amazon Web Services (AWS), Eu-
calyptus, OpenStack, OpenNebula and Nimbus, as the
primary IaaS targets for VISoR. Following we con-
duct an overview about these IaaS and their image
services and storage systems.

Amazon AWS (Amazon, 2006) is a commercial
platform that provides the capability to use the cloud
infrastructure through their web services. It provides
a wide set of public images shared by users and also
let them store their owns, in its storage system called
Simple Storage Service (S3) and in its Elastic Block
Storage (EBS).

Eucalyptus (Nurmi et al., 2009) (Eucalyptus,
2009) is a platform for building private and hybrid
clouds, with one open source version and another
enterprise edition. Eucalyptus provides it own dis-
tributed storage system, called Walrus, which is used
to store the images. It also implements an Amazon S3
compatible interface.

OpenStack (Rackspace, 2010) is an open source
project jointly launched by Rackspace and NASA,
providing software for building private and public
clouds. It integrates a distributed storage system, the
OpenStack Swift. It also provides its own image
repository service, called Glance, which integrates
with Swift and optionally with Amazon S3.

OpenNebula (NASA, 2008) (Sotomayor et al.,
2009) is an open source project for building private,
public and hybrid clouds. It also provides an image
repository. Its storage system relies on the POSIX
standard and supports the Network File System (NFS)
and Logical Volume Manager (LVM) too.

Nimbus (Chicago, 2009) is a platform that com-
bines a set of tools to provide clouds for scientific
use cases. It also uses its own storage system for the
cloud, called Cumulus (Bresnahan et al., 2011). Im-
ages are stored in Cumulus and Nimbus also provides
a compatible Amazon S3 interface.

Finally we would also like to mention the Future-
Grid platform (von Laszewski et al., 2011), an inter-
esting testbed for scientific projects installed across
multiple High-Performance Computing (HPC) re-
sources distributed across several USA states, which
also integrates an image service in its architecture for

the FutureGrid platform, towards its inside grids and
clouds management.

Unlike the solutions presented here, VISoR tar-
gets different requirements. Users can expect VI-
SoR to be a free, completely open-source tool. They
can download, customize and use it inside their own
environment (unlike solutions like FutureGrid tools,
which are integrated into the project and are intended
to operate inside it, through the on-line platform por-
tal). VISoR aims to tackle the heterogeneity of exist-
ing IaaS clouds and other use cases which need to rely
on an image repository service, making it possible to
sit it in the middle of these frameworks. Also, VISoR
is not intended to replace a VM instantiation tool or a
cloud management utility, like FutureGrid RAIN (von
Laszewski et al., 2011) and commercial services like
RightScale (RightScale, 2006). It is intended to be
a generic centralized image catalogue and repository,
that can be used to manage images and expose them
to the endpoint cloud hosts.

3 VISOR FEATURES

The VISoR service should be designed considering a
set of features, which we have defined based on its
aims and purposes, leading to the following presented
set in which we rely for designing the system.

• Open Source.If anyone wants to contribute or just
learn how it works, it can be done freely. The de-
velopment process should be community-driven.

• Multi-Interface. The system should provide ac-
cess through more than one interface, being them
a Representational State Transfer (REST) inter-
face, an API and a command-line interface (CLI).

• Modular. It should be designed and implemented
in a modular way, so all subsystems are isolated
and can be easily customized and extended.

• Extensible.The service should provide a way to
add new extensions to it, or rely on it to build new
tools through the defined set of interfaces.

• Flexible. It should be possible to install such a
service by requiring minimal setup operations and
strategically close to the needed resources.

• Scalable. The service should be designed with
scalability in mind, it must adapt to high load re-
quirements.

• Multi-Format. The service should provide com-
patibility with multiple virtual machine images
disk and container formats.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

402



• Cross-Infrastructure.The system must provide an
unified multi-infrastructure service repository, sit-
ting in the middle of different IaaS, including Eu-
calyptus, OpenStack, OpenNebula and Nimbus.

• Multi-Storage. It should provide compatibility
with popular cloud storage systems, by relying on
a seamless abstraction API layer.

4 SECURITY

Given the growth of cloud computing implementa-
tions, there are some risks and security issues that
arise (Heiser and Nicolett, 2008). These security is-
sues and concerns basically address the need to guar-
antee the initial image integrity and the need to pro-
vide a secure way to let users share their images and
retrieve them safely. Sharing virtual images implies
safety concerns, because many of these are made by
third party providers and users share them with many
other users. Existing approaches to cloud security fail
in assessing virtual images security (Wei et al., 2009),
as most of this techniques are not applicable to virtual
images in a dormant state.

It is necessary to take into account all the risks
involved in a VM image sharing activity, mainly ad-
dressing the needs of administrators, publishers and
retrievers of the virtual images present in the image
repository (Wei et al., 2009). For the administrator
it is a risk to have an infected image hosted in the
repository, because when it gets executed it can in-
fect other files. The biggest concern for the publisher
is to not publish images with personal data, like user
accounts and passwords that should not be made pub-
lic. This is common when users launch the virtual
image for some initialization configurations without
taking care to do not expose any sensitive informa-
tion. The biggest risk for the retriever is that he can
retrieve some maliciously crafted image, committed
to the repository by some publisher.

Also, it is extremely important to consider security
threats related with the VM images life cycle, which
can compromise the overall cloud security. Vaquero
et al. exposes a detailed analysis of such threats (Va-
quero et al., 2011). From there, we want to address
the stages that VISoR should pay attention to, being
them the images transportation and storage. By tak-
ing into account these issues and the proposed secu-
rity approach by Wei in (Wei et al., 2009), we address
VISoR risk contention approach with three security
components, being them the Access Control, Track-
ing and Maintenance. We will describe each one of
these components in Section 5.

5 ARCHITECTURE

Based on the design features and security concerns,
we have defined the VISoR architecture (Figure 1).

Client

REST CLI API

Metadata 

Server

Storage

Swift CumulusS3 HDFS FS

Server

Access 
Control

TrackingManagement Maintenance

Figure 1: The VISoR system architecture.

All the system stack is implemented in amodular
way, so given this isolation and separation of compo-
nents, the system becomesflexibleand builds a solid
foundation to provide ascalableservice. The system
relies on a client-server architecture, with four main
components, being them the clients, the main server,
the metadata server and the storage layer.

5.1 Client

This component is responsible for providing access to
the service. We address themulti-interfacefeature by
implementing three different interfaces to the service,
exposing it to a variety of target communities, such as
administrators, developers and end users.
REST. Implementing the REST architecture (Field-
ing, 2000), the RESTful web services are the main
interface to the system. By relying in the HTTP pro-
tocol, we manage to expose the service in a way that
makes it possible to easily integrate it with other web-
based services.
CLI. We also provide a command-line interface,
which provides users with the capability to admin-
istrate and use the full system stack, being the most
important tool to interact with the system.
API. Finally, we provide the API exposed by the
clients class, which provides the capability to interact
with the system through programming.

By exposing these interfaces we are making the
serviceextensible, as new tools, clients and exten-
sions to the system are easy to develop and integrate.

VISoR�-�Virtual�Machine�Images�Management�Service�for�Cloud�Infrastructures

403



5.2 Server

The Server is the core of the system, managing all the
processes and providing access to the resources, be-
ing them the images files and its metadata. It contains
four major components, being them the Access Con-
trol, Tracking, Management and Maintenance.

5.2.1 Access Control

This component is responsible for ensuring that pub-
lisher’s security risks are minimized, by providing a
framework capable of controlling the sharing of vir-
tual images, by leveraging in access permissions. At
storing time, virtual images may be set aspublic or
private, defining whether they must be seen by every-
one or only by its owner or those with granted access
permissions to that image. The owner of the image
is responsible for granting and revoking access per-
missions to other users and groups, with two different
types of permissions, thecheckoutandcommitper-
missions. A checkout permission means that users or
groups of users granted with this permission are al-
lowed to retrieve and use some image. A commit per-
mission implies the existence of a checkout permis-
sion and allows users or groups of users to commit
some modified existing virtual image.

5.2.2 Management

The management component integrates two main
management concerns, being them the users and im-
ages management. This is the main control actor over
users actions and images in the VISoR repository.
User Management. When interacting with the sys-
tem, users are managed by roles and group member-
ships, so the first step from users is to authenticate
themselves providing valid credentials. The system
maintains basic information about each user. The ad-
ministration of user accounts is delegated to the ser-
vice administrator, using the provided CLI tools.
Image Management. This element consists in man-
aging associated metadata about a given image and
the physical image itself. When managing images
metadata, the server handles incoming requests from
clients and redirect them to the metadata server, han-
dling the response back again to clients. When han-
dling the images files upload and download, the server
is responsible for managing the images storage, mak-
ing all the process as transparent as possible for users.

5.2.3 Tracking

This component is responsible for minimizing admin-
istrator’s and retriever’s security risks. It keeps track-

ing and recording operations through the service API,
creating a full history of virtual images life cycle since
they were published in the repository. Also, this com-
ponent will provide statistical data, useful for tracking
the service usage, which can help automating com-
mon tasks, such as reports about images that are never
used and can be deleted. Having statistical data about
the repository usage and images life cycle can greatly
improve administrator’s capabilities.

5.2.4 Maintenance

The maintenance component is responsible for assur-
ing the safety and integrity of virtual images without
harming the system performance. It aims to provide
the capability to scan virtual images looking for mali-
cious software and similar threats, delegating this task
to a scanner through the repository service. This may
be invoked as the administrator prefers, automatically
running the scan based on some event or manually.

5.3 Storage

The storage component represents amulti-storageab-
straction layer that provides seamless integration with
multiple storage systems. This will include integra-
tion with Amazon S3, OpenStack Swift, Cumulus, as
well as the local file system and the Apache Hadoop
Distributed File System (HDFS) (Foundation, 2007)
(Shvachko et al., 2010). Also, given the systemmod-
ularity it is possible to easily extend it with other stor-
age systems compatibility.

The server is responsible for handling clients up-
load and download requests and then interacts with
the storage layer to accomplish that requests, acting
as a bridge between storage systems and endpoint ma-
chines. Users should describe through configuration
options, were can VISoR find a specific cloud storage,
this is, its address and listening port, or user creden-
tials if its an on-line service like Amazon S3. With an
unified interface to multiple storage systems it is sim-
pler to achieve across-infrastructurestorage service,
abstracting the complexity of such heterogeneous sys-
tems.

5.4 Metadata Server

The metadata server handles all the information about
virtual images stored in the VISoR repository. The
metadata is stored in the database and then can be
retrieved from there, with support to all the CRUD
(Create, Read, Update and Delete) operations through
the REST interface defined in Table 1. When issuing
GET requests, it is possible to provide query parame-
ters, filtering and ordering returned results, which are

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

404



Table 1: The REST API exposed by the metadata server.

Method Path Operation

GET /images Return brief metadata of all public images.
GET /images/detail Return detailed metadata of all public images.
GET /images/(id) Return metadata of the given image.
PUT /images/(id) Update metadata of the given image.
POST /images Add metadata of a new image.
DELETE /images/(id) Remove metadata of the given image.

Table 2: Image’s metadata fields, data types, predefined values and access permissions.

Field Type Predefined Values Permission
id Integer Read-Only
uri String Read-Only
name String Read-Write
architecture String i386, x8664 Read-Write
status String locked, uploading, error, available Read-Only
size String Read-Only
access String public, private Read-Write
uploadedat Date Read-Only
updatedat Date Read-Only
accessedat Date Read-Only
accesscount Long Read-Only
owner String Read-Only
checksum String Read-Only
type String none, kernel, ramdisk, amazon, eucalyp-

tus, openstack, opennebula, nimbus
Read-Write

kernel Integer Read-Write
ramdisk Integer Read-Write
disk String none, iso, vhd, vdi, vmdk, ami, aki, ari Read-Write
store String s3, swift, cumulus, hdfs, fs Read-Write
others Key/Value Read-Write

passed through the response’s body. Also, when is-
suing PUT and POST requests, the metadata should
be provided through the body of the request in JSON
(Crockford, 2006) format key/value pairs. The meta-
data server describes images based on the recom-
mended fields listed in Table 2. To achievemulti-
format support, so we provide to users the ability
to use other image properties not listed in Table 2,
by providing additional key/value pairs attributes or
by ignoring some of the optional attributes if they
are not useful. When a new image is being regis-
tered, the service defines a unique identifier, theid and
the uniform resource identifier, theuri, for it. Users
should provide thename, thearchitectureof the oper-
ating system and theaccesspermission. Optionally,
it is possible to provide thestore, which indicates in
which service they want to store the image. Thesta-
tus of the image is defined by the system, where the
’locked’ state means that the image was already reg-
istered without an upload, the ’uploading’ status in-
forms that the image is being uploaded, the ’error’

status reports that there was an error on the image up-
load and finally, the ’available’ status defines that the
image is already available. Also defined by the sys-
tem are theowner, which identifies the image pub-
lisher, the imagesize, its checksum, as well as the
uploadedat and updatedat timestamps. The sys-
tem also maintains other two tracking fields, being
them theaccessedat timestamp and theaccesscount
which counts the number of accesses. Optionally,
users can define other fields, which are the imagedisk
format, type, as well as if the image has some asso-
ciatedkernelor ramdiskimage already stored in the
repository, providing itsid for these fields.

6 STATUS AND FUTURE WORK

Currently we have already implemented the metadata
server with a MongoDB and an MySQL database
backend. We decided to adopt a NoSQL system, be-
yond the classic SQL approach with MySQL, as these

VISoR�-�Virtual�Machine�Images�Management�Service�for�Cloud�Infrastructures

405



modern tools target the use case where our service
fits, providing good performance and scheme free ca-
pability (Cattell, 2011). Additionally we have imple-
mented the main server, following an event-driven ap-
proach, using a framework based on the Reactor Pat-
tern (Schmidt, 1995). We are currently working on
the storage options expansion, which already includes
the S3 and FS stores, and in the API security approach
implementation.

We expect to expose more insights on API inter-
nals and detail our main server implementation with
the described security approach in future work. Out-
side of the article scope are the technologies choices
and the analysis of the overall system structure and
performance, which we expect to conduct soon in fu-
ture work too. We also want to proceed with a more
in-depth analysis of the integration of VISoR with the
described target IaaS and custom modification that
can surge from such analysis.

7 CONCLUSIONS

In this paper we have presented our work towards VI-
SoR, a virtual image service that is being developed to
address the need to keep a centralized generic reposi-
tory, while managing multiple environments with dif-
ferent IaaS. VISoR will support multiple IaaS and
storage systems and for its design we focused on se-
curity and performance towards an efficient and scal-
able virtual images management service. Given this,
we expect it to be the agnostic service that will act
as a holder between multiple heterogeneous systems
that rely on virtual images management capabilities.
The source can be accessed, as documentation and
further information, through the project web page at
http://www.cvisor.org.

REFERENCES

Amazon. (2006), Amazon web services (aws) [online].
Available: http://aws.amazon.com/ [Accessed on Jan-
uary 2012].

Begnum, K. (2006). Managing large networks of virtual
machines. InProceedings of the 20th Large Installa-
tion System Administration Conf., pages 205–214.

Bresnahan, J., LaBissoniere, D., Freeman, T., and Keahey,
K. (2011). Cumulus: an open source storage cloud for
science. InProceedings of the 2nd int’l workshop on
Scientific cloud computing, pages 25–32. ACM.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and
Brandic, I. (2009). Cloud computing and emerging
it platforms: Vision, hype, and reality for delivering

computing as the 5th utility.Future Gener. Comput.
Syst., 25:599–616.

Cattell, R. (2011). Scalable sql and nosql data stores.ACM
SIGMOD Record, 39(4):12–27.

Chicago, U. (2009), Nimbus, cloud computing for science
[online]. Available: http://nimbusproject.org [Ac-
cessed on January 2012].

Crockford, D. (2006), Rfc 4627, the application/json me-
dia type for javascript object notation (json) [online].
Available: http://www.ietf.org/rfc/rfc4627 [Accessed
on January 2012].

Eucalyptus. (2009), Eucalyptus infrastructure as a service
[online]. Available: http://eucalyptus.com [Accessed
on January 2012].

Fielding, R. T. (2000).Architectural styles and the design
of network-based software architectures. PhD thesis.

Foundation, A. S. (2007), Hadoop distributed file system
[online]. Available: http://hadoop.apache.org/hdfs/
[Accessed on January 2012].

Heiser, J. and Nicolett, M. (2008). Assessing the security
risks of cloud computing.Gartner Report.

NASA. (2008), Opennebula, the open source toolkit
for cloud computing [online]. Available:
http://opennebula.org [Accessed on January 2012].

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., So-
man, S., Youseff, L., and Zagorodnov, D. (2009). The
eucalyptus open-source cloud-computing system. In
Proceedings of the 9th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid, pages
124–131, Washington, DC, USA. IEEE.

Rackspace, N. (2010), Openstack, open source software
for private and public clouds [online]. Available:
http://openstack.org [Accessed on January 2012].

RightScale, I. (2006), Cloud computing management plat-
form [online]. Available: http://www.rightscale.com
[Accessed on January 2012].

Schmidt, D. C. (1995). Reactor: an object behavioral
pattern for concurrent event demultiplexing and event
handler dispatching, pages 529–545. ACM, USA.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R.
(2010). The hadoop distributed file system. In2010
IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–10. IEEE.

Sotomayor, B., Montero, R., Llorente, I., and Foster, I.
(2009). Virtual infrastructure management in pri-
vate and hybrid clouds.Internet Computing, IEEE,
13(5):14–22.

Vaquero, L. M., Rodero-Merino, L., and Morán, D. (2011).
Locking the sky: a survey on iaas cloud security.Com-
puting, 91:93–118.

von Laszewski, G., Diaz, J., Wang, F., Younge, A. J., Kul-
shrestha, A., and Fox, G. (2011). Towards generic
futuregrid image management. InProceedings of the
2011 TeraGrid Conference: Extreme Digital Discov-
ery, pages 15:1–15:2, NY, USA. ACM.

Wei, J., Zhang, X., Ammons, G., Bala, V., and Ning, P.
(2009). Managing security of virtual machine images
in a cloud environment. InProceedings of the ACM
workshop on Cloud computing security, CCSW ’09,
pages 91–96, NY, USA. ACM.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

406


