
OpenCF-R: R IN THE CLOUD�

J. C. Castillo, F. Almeida, V. Blanco and A. Santos
Dpto. Estadistica, I. O. y Computacion, University of La Laguna, Tenerife, Spain

Keywords: Cloud Application Portability, Parallel Computing, Web Services, Dynamic Service Generation, R.

Abstract: One of the main goals of cloud computing-oriented environments is to offer access to distributed resources
through interfaces and technologies based on web services. OpenCF is a portable framework that shares
these goals and can be used as a development platform that offers hardware and software as a service. We
include in this paper how to adapt an OpenCF portal to add and execute statistical package R routines. Thus,
we contemplate the option that user can launch or incorporate R scripts as a new service dynamically to the
portal, making remote computing easier for inexpert users. Automatic management and dynamic aggregation
of R services are showed as new concepts in this context.

1 INTRODUCTION

Nowadays, cloud computing environments present
the following features (Mark Baker and Laforenza,
2002): multiple administration domains, heterogene-
ity, scalability and dynamicity or adaptability. Large-
scale systems add the difficulty of manage large
amounts of resources. Web services standards pro-
vide an increased level of usability, extensibility and
interoperability between pairs of services. The adop-
tion of these technologies in the context of Grid and
Cloud Computing has improved the efficient use of
computing resources. Projects such as Globus (Fos-
ter, 2006), OpenCF (Santos et al., 2007), OpenNeb-
ula, or Nimbus (Sempolinski and Thain, 2010) have
been generated based on web services technologies to
manage computing resources, monitoring or manage-
ment systems and scheduling, among others.

Open Computational Framework (OpenCF) pro-
vides access to resources in high performance com-
puting for inexperienced users. The main goal is to
reduce technology and knowledge walls to that users
face when trying to access High Performance Com-
puting Systems (HPCS). Web services technologies
has been widely adopted in the OpenCF implementa-
tion. Performance monitoring systems or description
of computational resources are offered to users as web
services. Proposes to decouple the different services

�This work has been partially supported by the EC
F(EDER) and the Spanish MICINN (Spanish MEC through
I+D+I contract, TIN2008-06570-C04-03, and TIN2011-
24598).

developed through a task scheduler, since these ser-
vices can be used by third-party client applications.
Its composition leads to a distributed meta-scheduler
based on a web services platform that provides a wide
range of applications.

Figure 1: OpenCF-R providing services for HPC system
description.

One of the main problems facing users of HPC is
the portability of applications or scripts. The compila-
tion of source code or execution of binaries is strongly
linked to the platform where user wants to operate,
limiting the ability of a plurality of existing infrastruc-
ture. Interpreted languages (like Perl, Matlab, IDL,
Mathematica or Python) are a fairly robust alternative
to circumvent this problem, because performance in

468 C. Castillo J., Almeida F., Blanco V. and Santos A..
OpenCF-R: R IN THE CLOUD.
DOI: 10.5220/0003901504680471
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 468-471
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



these languages has been gradually approaching com-
piled languages (Newhall and Miller, 1998).

In this paper we contribute with new facilities
to the OpenCF architecture to support task perfor-
mance of interpreted languages. The proposed so-
lution, OpenCF-R, enables automatic generation of
services as well as incorporation of new services dy-
namically. The user will be able to incorporate new
computing services that would be available to other
researchers. We have used the R language (Eddel-
buettel, 2011) as a proof of concept: all main routines
in R has been exported as new platform of services, in
OpenCF-R the user is able to launch R scripts as a ser-
vice to be executed in the HPC platform and, the end
user is enabled also to upload R scripts to be added
as a new web service in OpenCF-R dynamically. The
project Ricardo (Das et al., 2010) follows a similar
objective, however, OpenCF-R is a general purpose
tool, allowing the use of scripts for users avoiding the
use of low level jaql sentences to invoke R. Although
Ricardo allows to manage large scale data base the
know-how required for the user is higher.

The paper is structured as follows: we will talk
briefly about interpreted languages in 2; section 3
summarizes OpenCF infrastructure; and support for
these languages in OpenCF-R will be covered in sec-
tion 4. Finally we conclude the paper with some con-
siderations and comments on the project in 5.

2 INTERPRETED LANGUAGES

The increase in interpreted languages such as Python,
Visual Basic, MATLAB, IDL, Maple and Mathe-
matica, for algorithm development, prototyping, data
analysis and graphical user interfaces (GUI) is an im-
portant trend in software engineering. However, using
interpreted languages in HPCs is currently a challenge
in academic and scientific enviroments.

From the standpoint of scientific, most of the so-
lutions provided to problems dealt with interpreted
languages are partial solutions, such as using an in-
terpreted language to establish a calculation and then
interact with a calculation core written in a compiled
language (eg: C, C++, Fortran) (Kepner et al., 2000).
However, this trend has been changing in recent years
and we can find solutions to problems with high de-
gree of computing such as SOLVCON (Chen, 2011),
Python software environment for solving partial hy-
perbolic differential equations.

3 THE OpenCF ARCHITECTURE

OpenCF is a open source computational framework
based on web services technologies. Facilitating ac-
cess to distributed resources through web interfaces
while simultaneously ensuring security is one of its
main goals, as well as portability, generality, modu-
larity and compatibility with a wide range of HPCs.
In order to keep a modular design, two modules (see
(Santos et al., 2007)) are given in the OpenCF pack-
age, namely, the server (side) module and the client
(side) module. Modules can be independently ex-
tended or even replaced to provide new functions
without altering the other system components.

The client is the interface between the end user
and the system. We can find three submodules:

� The client DataBase, it has been implemented as
a relational MySQL database and it is accessed
through PHP scripts.

� The client Query Processor consists on a web
interface through which users can interact with
server’s functionalities, such as listing available
services, launching tasks or checking task’s state.

� The client Collector manages the job’s server-
generated output.

The server manages all job-related issues, mak-
ing them available at the service and controlling their
state and execution. When Apache catches a new
query from the client, it allocates a new independent
execution thread to create a new instance of the server
module. Server submodules:

� The Query Processor is a set of PHP scripts that
distributing the job among the different compo-
nents. Queries addressed for the computational
system are dispatched to the Queue Manager In-
terface, and the rest of the queries are served by
the Query Processor. The web service is also
generated and served by this module.

� The Queue Manager Interface handles the in-
teraction with the HPCs Queue System. The
server needs to know how a job will be executed
and how to query the status of a job being exe-
cuted on the server supporting it.

� The Scripts Generator produces the scripts
needed for the job execution under the various
queue systems. Research is ongoing into mak-
ing this module compatible with the Job Sub-
mission Description Language (JSDL) GridFo-
rum proposal as an alternative to the XML doc-
ument currently used to describe a job.

� The Launcher is the interface between OpenCF
and the operating system; it forks the process to

OpenCF-R:�R�IN�THE�CLOUD

469



be executed, returns its identification and unlocks
the thread handling the client query. The imple-
mentation is Perl-based to be independent from
the architecture. In future versions of the OpenCF
accounting system, this module will be responsi-
ble for collecting and reporting on individual and
group use of system resources.

� The Collector is the client interface which deliv-
ers the output data produced by an executed job.
Once a job has finished, the Collector automat-
ically sends an e-mail to the user.

4 OpenCF-R: R IN THE CLOUD

Most development environments based on Web ser-
vices offer facilities to include services that are acces-
sible through a web interface. However, it is true that
these environments do not provide general automatic
mechanisms for adding new web services from user
codes. Typically, export a service involves rewriting
or adapt server and describing the service by a XML
interface, meaning in practice to develop a laborious
task for the developer. When the number of services is
limited is a manageable task, however, when the num-
ber of services to manage are more than a certain size
(hundreds or thousands of services), it must negotiate
with automated tools to manage them.

One of the problems found during the design of
OpenCF-R is the hard work needed to add new ser-
vices to it. If the number of routines that we offer
is limited for addition work is acceptable, only has
to define the job description and verify that the code
match the requirements of OpenCF-R. However, if
you want to work with a greater number of jobs we
have to create an automated mechanism.

The solution developed in this work is based on
source code analysis to export as work. Generally, li-
braries analyze the source code and generates a XML
description. This way of working fits seamlessly
OpenCF-R as the description of the work used is also
based on XML. At most it would be necessary XSLT
transformation of the output generated by the library
to be translated into the schema used by OpenCF-R.

The objective of adapting OpenCF to run inter-
preted languages scripts was only the beginning of a
long way to go. Adding R a test platform was ob-
tained for the dynamic generation of web services and
other utilities (code execution uploaded by the user
and offers the main functions of R as web services).
The main problems encountered were:
� To identify the routines that would be exported as

services. The list of services to be exported must
be known in advance.

� To identify the types of data associated with the
services. End users must enter the arguments of
the service to run through the web interface of the
client. A generic specification is needed to de-
velop the service interface, and simple enough to
be manageable in practice by a non expert user.

� It is very difficult to guess input and output argu-
ments to a routine by analyzing only the header of
the routine. We could develop a heuristic based
on the use of const, pointers, etc.. but it should
be adjusted to each type of code. Another solution
is to write down the codes, for example, using the
syntax given in the comments to describe each of
the arguments (eg: based on javadoc).

� To generate the service interface, the help infor-
mation for the user and the binary code to provide
new services.

4.1 Main R Functions as a Services

Using a Python script and the library rpy (integrat-
ing python and R), we parsed th R doc and, for every
function, was generated a XML file that describes it
as a web service (i.e., specifying its input arguments,
output, description and service name). A executable
wrapper was written in perl to run a call to selected
function of R with the arguments passed by the web
service. This web service is added as some of the
functions of the R base package and the package utils.
Not all functions of R can be offered as a web service
(eg, arithmetic operators, functions with no generic
argument types, etc). To avoid incorrect services, a
list of unsupported features as web services is given
to avoid the incorrect XML file generation.

4.2 R Script Launching in OpenCF

A key objective of the project is that the user can
launch their own scritps to machine computation.
Running R scripts provided by the user in isolation
was achieved as a web service. To do this, we have
created a XML file describing the service in question,
which requires the name of the main script file to ex-
ecute and a R or zip file with the scripts necessary for
the execution. Arguments of script are read from a R
workspace file sent as input argument. Running the
R script provided could generate several file results
so, as a result of the service, the user downloads a zip
containing all the files of the service.

4.3 Dynamic Web Services Generation

The objective of the dynamic web services generation
in OpenCF is to provide to the servers more offering

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

470



Figure 2: To add a new service dynamically.

services in a semi-automatically way. This service al-
lows an user to define a new web service that runs a R
script uploaded to the server for it. To add a new ser-
vice, you need the script (or scripts) in R and a XML
file describing the work, as shown in figure 2.

With this we obtain a new web service present
on the server that launched the execution ready to be
called by clients of OpenCF.

5 CONCLUSIONS

Web services-based technologies have emerged as
a technological alternative for computational web
portals. Facilitating access to distributed resources
through web interfaces while simultaneously ensur-
ing security is a major goal in most of the existing
tools and development environments. OpenCF-R, the
open source computational development environment
that we have developed, shares these objectives and
adds others, such as portability, generality, modular-
ity and compatibility with a wide range of systems of
High Performance Computing.

With the incursion of the interpreted languages
we have added an extra value to OpenCF-R, expand-
ing the chances for end users and making the plat-
form even more independent and flexible as regards
the management of tasks by system managers and the
execution of them by users. With the ability to add
web services dynamically achieves a greater degree
of freedom and participation by users, further stream-
lining the process to run a task into the HPCS.

REFERENCES

Chen, Y.-Y. (2011). Software framework for solving hyper-
bolic partial differential equations.

Das, S., Sismanis, Y., Beyer, K. S., and McPherson, J.
(2010). Ricardo: integrating r and hadoop. In SIG-
MOD’10, Indianapolis, Indiana, USA.

Eddelbuettel, D. (2011). High-performance and parallel
computing with r.

Foster, I. (2006). Globus toolkit version 4: Software for
service-oriented systems. IFIP International Confer-
ence on Network and Parallel Computing, 3779:2–13.

Kepner, J., Gokhale, M., Minnich, R., Marks, A., and De-
Good, J. (2000). Interfacing interpreted and com-
piled languages to support applications on a massively
parallel network of workstations (mp-now). Cluster
Computing, 3:35–44.

Mark Baker, R. B. and Laforenza, D. (2002). Grids and
grid technologies for wide-area distributed comput-
ing. Softw., Pract. Exper., 32(15):1437–1466.

Newhall, T. and Miller, B. P. (1998). Performance mea-
surement of interpreted programs. Lecture Notes in
Computer Science, 1470:146–156.

Santos, A., Almeida, F., and Blanco, V. (2007).
Lightweight web services for high performace com-
puting. European Conference on Software Architec-
ture ECSA2007, 4758.

Sempolinski, P. and Thain, D. (2010). A comparison and
critique of eucalyptus, opennebula and nimbus. Cri-
tique, November:417–426.

OpenCF-R:�R�IN�THE�CLOUD

471


