
DYNAMIC EVOLUTION OF SERVICE ARCHITECTURE IN
MOBILE CLOUD APPLICATIONS

Huiqun Zhao1, Jing Sun1 and Xiaodong Liu2
1Department of Computer Science, North China University of Technology, Beijing, China

2School of Computing, Edinburgh Napier University, Edinburgh, U.K.

Keywords: Service-Oriented Architecture, SaaS in Cloud, Dynamic Evolution, Algebraic Model, Pervasive Systems.

Abstract: Although software services and service-oriented architecture have been researched widely, most existing
research has focused on tools, process and methods of service engineering, and service semantics, and leave
the formal specification of many aspects of SOA unsolved yet. One imminent challenge is the lack of the
fundamental theoretic study of service architecture evolution, which is critical due to the very dynamic
nature of services and service-based systems. This paper contributes to the state of arts by proposing a
methodology that supports dynamic service evolution with respect to an algebra model of SOA. In this
paper we infer and define service evolution as a paradigm of algebraic homomorphism mapping that can
facilitate the analysis of the service architecture evolution with the algebraic method, e.g., the closure and
the consistency of service evolution. In this way we develop two types of different service architecture
evolution: one is for the reconfiguration of service composition inside a service system; and the other is for
the collaboration composition between two service systems. The model has been applied to support the
evolution of cloud-based services (as SaaS) which accept pervasive/mobile accesses. A case study
combining with the transaction management and service adaptation is carried out in a context-aware tourism
service application running in a multi-touch multi-user table providing “intelligent” offering of tourism
information. Conclusions are drawn and future work is identified.

1 INTRODUCTION

Service Oriented Computing is an emerging
paradigm for distributed computing and e-business
processing. The Service Oriented Architecture and
Web Service technique provide a systematic solution
for building an application, for example WSDL,
UDDI, SOAP and BEPL. However, current SOA
technologies and standards are challenged by the
constantly changing environment and user
requirements. Concerns for runtime evolution are
evoked to realize extensible and adaptive service-
oriented applications.

Papazoglou (Papazoglou, 2008) observes the
challenges of service evolution that the service
technologies must be faced to. He classifies four
type of changes in which the service may evolve: 1)
Structural changes, 2) Business protocol changes, 3)
Policy induced changes, and 4) Operational
behavior changes. Mendling and Hafner (Mendling
and Hafner, 2008) propose a novel definition called
service choreography and the service orchestration
for structural changes and protocol changes in

comparison with paper (Papazoglou, 2008), and also
contribute a method to dealing with their evolution.
Andrikopoulos, Benbernou and Papazoglou
(Andrikopoulos et al, 2008) argue that a service
system can provide service evolution management,
which provides an understanding of change impact,
service changes control, tracking and auditing of
service versions, and status accounting. Ryu et al
(Ryu et al, 2008) declare that the business protocol
evolution may raise critical problems: one of the
most critical issues is how to handle instances
running under the old protocol when it has been
changed. Ping Yu, at el (Yu and Ma and Lu, 2005)
introduces a new approach to service evolution.
Taking advantage of experience from software
architecture, especially dynamic software
architecture (DSA) evolution management, they take
service composition into account in runtime
evolution and service evolution is referred to as
dynamic reconfiguration of service architecture. The
method has no formal basic and its viewpoint on
service evolution is different from our algebra model
based approach. Furthermore, many other

271Zhao H., Sun J. and Liu X..
DYNAMIC EVOLUTION OF SERVICE ARCHITECTURE IN MOBILE CLOUD APPLICATIONS.
DOI: 10.5220/0003899102710274
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 271-274
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

researchers pay much more attention to dynamic
service selection and dynamic service composite
which is related service evolution (Zeng and
Benatallah et al, 2004) (Wan and Ulrich and Chen,
2008)(Zend and Sun, et al, 2010).

In this paper, facing the challenge of lacking the
basic theoretic study of service architecture
evolution, we propose a methodology, referred to as
an algebraic model of SOA, which supports the
evolution design of a dynamic SOA system. We then
define and prove two algebra patterns that can guide
service evolution. The proposed algebraic model has
been applied to support the evolution of cloud-based
services (as SaaS), which accept pervasive/mobile
accesses from clients in multiple modal interactions.
To demonstrate the capability of the algebra
patterns, we use the Apto tool to carry out a case
study, which involves the transaction management
and service adaptation in a context-aware tourism
service application.

The reminder of the paper is organized as
follows: Section 2 introduces the algebraic model of
SOA. Section 3 defines the dynamic evolution of
SOA based on its algebraic model. Section 4
presents the case study of pervasive service
evolution in the cloud. Finally, section 5 presents the
conclusion and future work.

2 AN ALGEBRAIC MODEL OF
SOA

In this section, we define an algebraic model of SOA
based software application. The model provides a
foundation for the software design and the further
evolution of the SOA based application. We
formally define the concepts and verified facts of
SOA in the algebraic model, such as service
component definition, service composition as an
operation and its attributes, the descriptive definition
of SOA.
Definition 2.1 (Service Component). A service
software component (or component for short) comes
from several different forms, including a module of
program code, a programming language, a
computational unit under the execution environment
of the language, a data item, or an item of the data
processing result. A component consists of an
interface and an implementation module.

The interface of a service component is a set P of
external ports, P={Porti, i=1,…,n}. Each port Porti
is an 8-tuple: <ID; Pbuli; Privi; Extni; Behai; Megsi;
Consi; NonFunci>, where

ID is the identifier of the component or a code
for interpreting its IP address.

Publi is the set of functions (or activities) the
port provides to the external environment and other
components. The execution of an activity is noted as
x.

Extni is the set of functions (or activities) of the
external environment and other components that the
port interacts with.

Privi is the set of functions (or activities) used
only internally to this port.

Behai is a description of the semantics of the
port’s behavior, consisting of a set of predicate logic
expressions.

Megsi is the set of messages generated at this
port, expressed as event signals.

Consi is the set of constraints to the port
consisting of the initial, pre-and post-conditions for
the execution of the component, and may be
expressed as Cons(init; pre-cond; post-cond). In
general, we can assume that the initial condition is
always satisfied. In these cases, init is omitted in the
expression.

NonFunci is a description of non-functional
aspects of the port, including descriptions for the
service strategy, contract, security, and reliability.

In the SOA software algebraic model, a set of
operations of service composition are defined,
including “trigger”, “use”, “collaboration”,
“parallel”, “repeat”, and “selection”. Among them,
the operation Trigger depicts the behavior of the
message-based component composition, and is
represented as A ⊕ B or x ⊕ y where x and y are the
activities of component A and B respectively.

The SOA algebraic model clarifies the attributes
of SOA as an algebraic system, and provides the
formal algebraic model definition of SOA. We call
SOA=<C,O> the algebraic model of SOA, also the
algebraic expression of SOA. Here, C and O
represent the set of service components and the set
of the operations of service composition. We here
prove that SOA=<C,O> constructs an algebraic
system, that is:

Theorem 2.1. Let SOA = <C, O>, the SOA
forms an algebraic system to each composition
operation in O.

3 DYNAMIC EVOLUTION OF
SOA STRUCTURE

First we give the definition of the evolution of a
service component.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

272

Definition 3.1. Let A and B be two service
components in Dom(U). B is said to be an evolution
from A, denoted Evolve(B;A), if the following
conditions are met:

Dom(B) = Dom(A) (2-2a)
Publ(B) ⊇ Publ(A) (2-2b)
Extn(B) ⊆ Extn(A) (2-2c)
Priv(B) ⊆ Priv(A) (2-2d)
Beha(B) ⇒ Beha(A) (2-2e)
Msgs(B) = Msgs(A) (2-2f)
Cons(B) =Cons(B) or Cons(B)⇒Cons(B)

(2-2g)
NonFunc(B)=NonFunc(A)
or NonFunc(B)⇒NonFunc(A) (2-2h)
The evolution of service component does not

affect the organization of services, therefore has no
direct impact on the architecture, i.e., no change on
the organization of the SOA system. Below we
define the evolution of the architecture and show its
impact on the organization of services in SOA
applications.
Definition 3.2. Let S1=<C1,O1> and S2=<C2,O2> be
two different services. If ∀x∈C1 always holds
∃y∈C2 and y is a mapping to x, then we assert that
there is a mapping between S1 and S2, denoted
f:S1→S2, or y=f(x). If the mapping is full mapping,
then the mapping between the services is full
mapping; if the mapping is one to one, the mapping
between the services is also one to one mapping.

Based on definition 3.2, the definition of SOA
architecture evolution is further refined as follows:
Definition 3.3. Let S1=<C1,O1> and S2=<C2,O2> be
two different services. F is a mapping from S1 to S2.
If ∀x∈C1 and ∀y∈C1 such that f(x⊗y) = f(x) ⊕jf(y),
where ⊗∈O1 and ⊕∈O2, then we say the f is
homomorphic evolution from S1 to S2. S1 and S2
are also said to be homomorphic architecture. If f
is a one-way mapping, then f is said to be a one-way
homomorphic evolution from S1 to S2. If f is a one-
to-one mapping, then f is said to be an isomorphism
evolution from S1 to S2, and S1 and S2 are
isomorphic architecture.

The evolution of service system may be caused
by various reasons: i) service system evolution
which is caused by the evolution of service
components, which is a passive evolution to the
service developer; ii) service system evolution
which is caused by the evolution of the system
architecture, which is considered as an active
evolution. Active evolution means the improvement
of the quality of services and the original service
system. Here we present one type of the architecture
evolution, which only involves the adjustment of the
mode of service composition (operation).

Theorem 3.1： For any SOA=<C,O>, it is always
possible to evolve into a composition of service
components which only involves the composition of
invocation operations Op^ and selection operations
＋.
Theorem 3.2： Let F=a1f1 +…+akfk and G=b1g1
+…+bkgk be two service expressions, then an
isomorphism evolution must definitely exist based
the collaboration operation Θ，which makes the
new service have the isomorphism architecture of
FΘG.

4 CASE STUDY

As a proof-of-concept we implemented a prototype
tool (Apto) for the service evolution with process
variant generation technology (Jaroucheh et al,
2010). We present here a case study for a tourism
service application running in a multi-touch multi-
user table that provides “intelligent” offering of
tourism information. The service is deployed as a
mobile SaaS in the cloud “E-Napier”, which consists
of 40 PCs in grid managed by VMWare. The aim of
this application is to provide users with life
experience when booking for their holidays.
Obviously, since usually different users use this type
of applications simultaneously, considering and
resolving conflicts between users’ preferences (part
of the application context) become important. This
application runs in a travel agency which has some
agreements with other travel tourist agents
distributed in different cities. These agents provide
Web service interface for others to get offers and
book for their trip. To give users a life experience
the application displays customized information
about each city i.e. historic, artistic, etc. according to
the users’ preferences. In addition, it tries to find
their friends who are actually located (or have been)
in these cities.

4.1 Specification of the Original System

The original service system architecture is described
in Figure 1. It employs a transactional mode to
serves each user within one event cycle. It is a big
challenge for a decentralized service system to
maintain atomic event cycle especially when the
user number increasing dramatically.

The algebraic model of original service system
present as 4-1.

1 (1 2 3)
2 (2 3)

Service Agent Agent Agent
Servcie Agent Agent

Θ + +⎧
⎨ Θ +⎩ (4-1)

DYNAMIC�EVOLUTION�OF�SERVICE�ARCHITECTURE�IN�MOBILE�CLOUD�APPLICATIONS

273

 Figure 1: Original service model.

4.2 Architecture Adaptation

To satisfy the increasing business requirement a
substituted service mode has been adopted which
guided by the Theorem 3.2. For keeping the
consistence with our service model theory, the
formal description of the two service modes is given
as follow.

4
(1 1 2 2 3 3)

5 (2 2 3 3)

Service
Service gent Servcie Agent Servcie Agent

Servcie Servcie Agent Servcie Agent

⊗⎧
⎪ Θ + Θ + Θ⎨
⎪ ⊗ Θ + Θ⎩ (4-2)

Meanwhile the formula 4-2 lets Service1
collaborates with Agent1-3 individually in according
with the Theorem 3.2. In order to gather the service
information from the parallel Agent1-3, a service
composition, namely service trigger, is executed.

We have designed and implemented a self-
adaptation approach to the service evolution. When
the user number is below a valve we still use the
original service mode, and if the traffic peak
appears, we then change to the new service mode.

5 CONCLUSIONS

The objectives of the research are to develop an
algebraic model for service evolution at both
architecture and service levels and then to identify
and formally define various service evolution
patterns. Our literature review has shown that the
proposed algebraic model has novel contributions
and similar work has not been done.

Based on the algebraic model of SOA, the paper
discusses the methodology of the dynamic evolution
of service architecture, proposes that service
mapping can be viewed as a basis of the evolution of
service architecture, and consequently views
evolution as a process of system transformation
instead of simply focusing on local adjustment. The
paper proposes two fundamental methods for the
dynamic evolution of service architecture, and

demonstrates the feasibility of the methodology
through both theoretical proof and a practical case
study of cloud-based pervasive service evolution.

In the future we will explore the relationships
between the evolution of service components and
service architecture, and the impact of the cloud
features such as dynamic agility and virtualisation
on the architectural evolution of complex cloud-
hosted SOA systems.

ACKNOWLEDGEMENTS

The work in this paper has been jointly sponsored by
the British Royal Society of Edinburgh (RSE-Napier
E4161) and the Natural Science Foundation of China
(Ref: 61070030).

REFERENCES

Andrikopoulos, V., Benbernou, S. and Papazoglou, M. P.,
2008. Managing the Evolution of Service
Specifications. CAiSE 2008: pp. 359-374.

Jaroucheh, Z., Liu, X. and Smith, S. 2010. A MDD-based
Generic Framework for Context-aware Deeply
Adaptive Service-based Processes. The 8th IEEE
International Conference on Web Services (ICWS'10),
Miami, USA.

Mendling, J. and Hafner, M., 2008. From WS-CDL
choreography to BPEL process orchestration, Journal
of Enterprise Information Management, 21(5).

Papazoglou, M.P., 2008. The challenges of Service
Evolution. Advanced Information Systems
Engineering. LNCS, Vol. 5074/2008, pp. 1-15.

Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B. and
Régis S.P., 2008. Supporting the Dynamic Evolution
of Web Service Protocols in Service- Oriented
Architectures, ACM Transactions on the Web, 2(2).

Wan, C., Ullrich, C., Chen, L. et al., 2008. On solving
QoS aware service selection problem with service
composition. In Proc of the 7th International
Conference on Grid and Cooperative Computing.
Shenzhen: IEEE, pp.467- 474.

Yu, P., Ma, X. and Lu, J., 2005. Dynamic Software
Architecture Oriented Service Composition and
Evolution. Fifth International Conference on
Computer and Information Technology (CIT'05).
Shanghai, China.

Zeng, L. Z., Benatallah, B., Ngu, A. H., Dumas M.,
Kalagnanam, J., and Chang, H., 2004. QoS-aware
middleware for Web services composition”. IEEE
Trans. on Software Engineering, 30(5), pp. 311−327.

Zeng, J., Sun, H., Liu, X., Deng, T., and Huai J., 2010.
Dynamic Evolution Mechanism for Trustworthy
Software Based on Service Composition, Journal of
Software, 21(2), pp.261−276.

 Agent3

City C.

Agent2

City B.

Agent1

City A

Service Event Cycle1

Service Event Cycle2

Service1 Service2

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

274

