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Abstract: The Cloud Computing paradigm is providing system architects with a new powerful tool for building scalable
applications. Clouds allow allocation of resources on a ”pay-as-you-go” model, so that additional resources
can be requested during peak loads and released after that. In this paper we describeSAVER (qoS-Aware
workflows oVER the Cloud), a QoS-aware algorithm for executing workflows involving Web Services hosted
in a Cloud environment.SAVER allows execution of arbitrary workflows subject to response time constraints.
SAVER uses a simple Queueing Network (QN) model to identify the optimal resource allocation; specifically,
the QN model is used to identify bottlenecks, and predict the system performance as Cloud resources are
allocated or released. Our approach has been validated through numerical simulations, whose results are
reported in this paper.

1 INTRODUCTION

The emerging Cloud computing paradigm is rapidly
gaining consensus as an alternative to traditional IT
systems. Informally, Cloud computing allows com-
puting resources to be seen as a utility, available on
demand. Cloud services can be grouped into three
categories (Zhang et al., 2010): Infrastructure as a
Service (IaaS), providing low-level resources such
as Virtual Machines (VMs); Platform as a Service
(PaaS), providing software development frameworks;
and Software as a Service (SaaS), providing whole
applications. The Cloud provider has the responsibil-
ity to manage the resources it offers so that the user re-
quirements and the desired Quality of Service (QoS)
are satisfied.

In this paper we presentSAVER (qoS-Aware
workflows oVER the Cloud), a workflow engine pro-
vided as a SaaS. The engine allows different types
of workflows to be executed over a set of Web Ser-
vices (WSs). In our scenario, users negotiate QoS re-
quirements with the service provider; specifically, for
each typec of workflow, the user may request that the
average execution time of the whole workflow should
not exceed a thresholdR+

c . Once the QoS require-
ments have been negotiated, the user can submit any
number of workflows of the different types. Both the
submission rate and the time spent by the workflows

on each WS can fluctuate over time.
SAVER uses an underlying IaaS Cloud to provide

computational power on demand. The Cloud hosts
multiple instances of each WS, over which the work-
load can be balanced. If a WS is heavily used,SAVER
will increase the number of instances by requesting
new resources from the Cloud. System reconfigura-
tions are triggered periodically, when instances are
added or removed where necessary.

SAVER uses a open, multiclass Queueing Net-
work (QN) model to predict the response time of
a given Cloud resource allocation. The parameters
which are needed to evaluate the QN model are ob-
tained by passively monitoring the running system.
The performance model is used within a greedy strat-
egy which identifies an approximate solution to the
optimization problem minimizing the number of WS
instances while respecting the Service Level Agree-
ment (SLA).

The remainder of this paper is organized as fol-
lows. In Section 2 we give a precise formulation
of the problem we are addressing. In Section 3 we
describe the Queueing Network performance model
of the Cloud-based workflow engine.SAVER will
be fully described in Section 4, including the high-
level architecture and the details of the reconfigura-
tion algorithms. The effectiveness ofSAVER have
been evaluated using simulation experiments, whose
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results will be discussed in Section 5. In Section 6 we
review the scientific literature and compareSAVER
with related works. Finally, conclusions and future
works are presented in Section 7.

2 PROBLEM FORMULATION

SAVER is a workflow engine that receives workflows
from external clients, and executes them over a set
of K WS 1, . . . ,K. At any given timet, there can be
C(t) different workflow types (or classes); for each
classc = 1, . . . ,C(t), clients define a maximum al-
lowed completion timeR+

c . The number of workflow
classesC(t) does not need to be known in advance;
furthermore, it is possible to add or remove classes at
any time.

We denote withλc(t) the average arrival rate of
classc workflows at timet. Since all WSs are shared
between the workflows, the completion time depends
both on arrival ratesλ(t) =

(

λ1(t), . . . ,λC(t)(t)
)

, and
on the utilization of each WS.

To satisfy the response time constraints, the sys-
tem must adapt to cope with workload fluctuations.
To do so,SAVER relies on a IaaS Cloud which main-
tains multiple instances of each WS. We denote with
Nk the number of instances of WSk; a system con-
figurationN(t) = (N1(t), . . . ,NK(t)) is an integer vec-
tor representing the number of allocated instances of
each WS. When the workload intensity increases,
additional instances are created to eliminate the bot-
tlenecks; when the workload decreases, surplus in-
stances are shut down and released.

The goal ofSAVER is to minimize the total num-
ber of WS instances while maintaining the mean ex-
ecution time of typec workflows below the threshold
R+

c , c = 1, . . . ,C(t). Formally, we want to solve the
following optimization problem:

minimize f (N(t)) =
K

∑
k=1

Nk(t) (1)

subject to Rc(N(t))≤ R+
c for all c= 1, . . . ,C(t)

Ni(t) ∈ {1,2,3, . . .}
whereRc (N(t)) is the mean execution time of typec
workflows when the system configuration isN(t).

3 PERFORMANCE MODEL

In this section we describe the QN performance
model which is used to plan a system reconfigura-
tion. We model the system using the open, multi-
class QN model (Lazowska et al., 1984) shown in

Figure 1: Performance model based on an open, multiclass
Queueing Network.

Fig. 1. Each server represents a single WS instance;
thus, WSk is represented byNk queueing centers, for
eachk = 1, . . . ,K. Nk can change over time, as re-
sources are added or removed from the system.

In our QN model there areC different classes of
requests: each request represents a workflow, thus
workflow types are directly mapped to QN request
classes. In order to simplify the analysis of the model,
we assume that the inter-arrival time of classc re-
quests is exponentially distributed with arrival rateλc.

The interaction of a typec workflow with WSk is
modeled as a visit of a classc request to one of theNk
queueing centers representing WSk. We denote with
Rck(N) the total time (residence time) spent by typec
workflows on one of theNk instances of WSk for a
given configurationN. The residence time is the sum
of two terms: theservice demand Dck(N) (average
time spent by a WS instance executing the request)
and queueing delay (time spent by a request in the
waiting queue).

The utilization Uk(N) of an instance of WSk is
the fraction of time the instance is busy processing re-
quests. If the workload is evenly balanced, then both
the residence timeRck(N) and the utilizationUk(N)
are almost the same for allNk instances.

4 SAVER ARCHITECTURE

SAVER is a reactive system based on the Monitor-
Analyze-Plan-Execute (MAPE) control loop shown
in Fig. 2. During theMonitor step,SAVER collects
operational parameters by observing the running sys-
tem. The parameters are evaluate during theAnalyze
step; if the system needs to be reconfigured (e.g., be-
cause the observed response time of classc work-
flows exceeds the thresholdR+

c , for somec), a new
configuration is identified in thePlan step. We use
the QN model described in Section 3 to evaluate dif-
ferent configurations and identify an optimal server
allocation such that all QoS constraints are satisfied.
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Figure 2:SAVER Control Loop.

Uk(N) =
C

∑
c=1

λcDck(N) (2)

Rck(N) =
Dck(N)

1−Uk(N)
(3)

Rc(N) =
K

∑
k=1

NkRck(N) (4)

Figure 3: Equations for the QN model of Fig. 1.

Finally, during theExecutestep, the new configura-
tion is applied to the system: WS instances are cre-
ated or destroyed as needed by leveraging the IaaS
Cloud. Unlike other reactive systems,SAVER can
plan complex reconfigurations, involving multiple ad-
ditions/removals of resources, in a single step.

4.1 Monitoring System Parameters

The QN model is used to estimate the execution time
of workflow types for different system configurations.
To analyze the QN it is necessary to know two param-
eters: (i) the current arrival rate of typec workflows,
λc, and (ii ) the mean service demandDck(M) of type
c workflows on an instance of WSk, for the current
configurationM .

The parameters above can be computed by moni-
toring the system over a time interval of suitable du-
ration T. The arrival ratesλc can be estimated by
counting the numberAc or arrivals of typec work-
flows which are submitted over the observation pe-
riod; thenλc can be defined asλc = Ac/T.

Measuring the service demandsDck(M) is more
difficult because they must not include the time spent
by a request waiting to start service. If the WSs
do not provide detailed timing information (e.g., via
their execution logs), it is possible to estimateDck(M)
from the measured residence timeRck(M) and uti-
lization Uk(M). We use the equations shown in Fig-
ure 3, which hold for the open multiclass QN model
in Fig. 1. These equations describe known properties
of open QN models (see (Lazowska et al., 1984) for
details).

The residence time is the total time spent by a type
cworkflow with one instance of WSk, including wait-
ing time and service time. The workflow engine can

measureRck(M) as the time elapsed from the instant
a typec workflow sends a request to one of theNk
instances of WSk, to the time the request is com-
pleted. The utilizationUk(M) of an instance of WS
k can be obtained by the Cloud service dashboard (or
measured on the computing nodes themselves). Us-
ing (3) the service demands can be expressed as

Dck(M) = Rck(M)(1−Uk(M)) (5)

Let M be the current system configuration; let us
assume that, under configurationM , the observed ar-
rival rates areλ = (λ1, . . . ,λC) and service demands
areDck(M). Then, for an arbitrary configurationN,
we can combine Equations (3) and (4) to get:

Rc(N) =
K

∑
k=1

Nk
Dck(N)

1−Uk(N)
(6)

The currenttotal classc service demand on all
instances of WSk is MkDck(M), hence we can ex-
press service demands and utilizations of individual
instances for an arbitrary configurationN as:

Dck(N) =
Mk

Nk
Dck(M) (7)

Uk(N) =
Mk

Nk
Uk(M) (8)

Thus, we can rewrite (6) as

Rc(N) =
K

∑
k=1

Dck(M)MkNk

Nk−Uk(M)Mk
(9)

which allows us to estimate the response timeRc(N)
of classc workflows for any configurationN, given
information collected by the monitor for the current
configurationM .

4.2 Finding a New Configuration

In order to find an approximate solution to the opti-
mization problem (1),SAVER starts from the current
configurationM , which may violate some response
time constraints, and executes Algorithm 1. After col-
lecting device utilizations, response times and arrival
rates,SAVER estimates the service demandsDck us-
ing Eq. (5).

Then,SAVER identifies a new configurationN ≻
M1 by calling the function ACQUIRE() (Algorithm 2).
The new configurationN is computed by greedily
adding new instances to bottleneck WSs. The QN
model is used to estimate response times as instances
are added: no actual resources are instantiated from

1N ≻ M iff Nk ≥ Mk for all k = 1, . . . ,K, the inequality
being strict for at least one value ofk
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Algorithm 1 : TheSAVER Algorithm.

Require: R+
c : Maximum response time of typec work-

flows
1: LetM be the initial configuration
2: loop
3: Monitor Rck(M ), Uk(M ), λc
4: for all c := 1, . . . ,C; k := 1, . . . ,K do
5: ComputeDck(M ) using Eq. (5)
6: N := Acquire(M ,λ,D(M ),U(M ))
7: for all c := 1, . . . ,C; k := 1, . . . ,K do
8: ComputeDck(N) andUk(N) using Eq. (7) and (8)
9: N′ := Release(N,λ,D(N),U(N))

10: Apply the new configurationN′ to the system
11: M := N′ {SetN′ as the current configurationM}

Algorithm 2 : Acquire(N,λ,D(N),U(N))→ N′.

Require: N System configuration
Require: λ Current arrival rates of workflows
Require: D(N) Service demands at configurationN
Require: U(N) Utilizations at configurationN
Ensure: N New system configuration
1: while

(

Rc(N)> R+
c for anyc

)

do

2: b := argmax
c

{

Rc(N)−R+
c

R+
c

∣

∣

∣

∣

c= 1, . . . ,C

}

3: j := argmax
k

{Rb(N)−Rb(N+1k) | k= 1, . . . ,K}

4: N := N+1 j

5: Return N

the Cloud service at this time.
The configurationN returned by the function AC-

QUIRE() does not violate any constraint, but might
contain too many WS instances. Thus,SAVER in-
vokes the function RELEASE() (Algorithm 3) which
computes another configurationN′ ≺ N by remov-
ing redundant instances, ensuring that no constraint
is violated. To call procedure RELEASE() we need
to estimate the service demandsDck(N) and utiliza-
tionsUk(N) with configurationN. These can be eas-
ily computed from the measured values for the current
configurationM .

After both steps above,N′ becomes the new cur-
rent configuration: WS instances are created or termi-
nated where necessary by acquiring or releasing hosts
from the Cloud infrastructure. See (Marzolla and Mi-
randola, 2011) for further details.

5 NUMERICAL RESULTS

We performed a set of numerical simulation experi-
ments to assess the effectiveness ofSAVER. We con-
sider all combinations ofC ∈ {10,15,20} workflow
types andK ∈ {20,40,60} Web Services. Service de-
mandsDck have been randomly generated, in such a

Algorithm 3 : Release(N,λ,D(N),U(N))→ N′.

Require: N System configuration
Require: λ Current arrival rates of workflows
Require: D(N) Service demands at configurationN
Require: U(N) Utilizations at configurationN
Ensure: N′ New system configuration
1: for all k := 1, . . . ,K do
2: Nmink := Nk ∑C

c=1 λcDck(N)

3: S:= {k | Nk > Nmink}
4: while (S 6= /0) do

5: d := argmin
c

{

R+
c −Rc(N)

R+
c

∣

∣

∣

∣

c= 1, . . . ,C

}

6: j := argmin
k

{

Rc(N−1k)−R+
c

∣

∣ k∈ S
}

7: if
(

Rc(N−1 j )> R+
c for anyc

)

then
8: S:= S\{ j} {No instance of WSj can be

removed}
9: else

10: N := N−1 j

11: if
(

Nj = Nminj
)

then
12: S:= S\{ j}
13: Return N

way that classc workflows have service demands
which are uniformly distributed in[0,c/C]. Thus,
class 1 workflows have lowest average service de-
mands, while typeC workflows have highest de-
mands. The system has been simulated forT = 200
discrete stepst = 1, . . . ,T. Arrival ratesλ(t) at step
t have been generated according to a fractal model,
starting from a randomly perturbed sinusoidal pattern
to mimic periodic fluctuations; each workflow type
has a different period.

The minimum and the maximum number of re-
sources allocated bySAVER during the simulation run
are illustrated in Figure 4. Figure 5 shows the to-
tal number of WS instances allocated over the whole
simulation run bySAVER (labeledDynamic) with the
number of instances statically allocated by overpro-
visioning for the worst-case scenario (labeledStatic).
The results show thatSAVER allocates between 64%–
72% of the instances required by the worst-case sce-
nario. As previously observed, if the IaaS provider
charges a fixed price for each instance allocated at
each simulation step, thenSAVER allows a consistent
reduction of the total cost, while still maintaining the
negotiated SLA.

6 RELATED WORKS

Several research contributions have previously ad-
dressed the issue of optimizing the resource alloca-
tion in cluster-based service centers; some of them
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Figure 4: Minimum and maximum number of WS instances allocated during the simulation runs.
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Figure 5: Total number of WS instances allocated during the whole simulation runs (lower is better).

use control theory-based feedback loops (Litoiu et al.,
2010; Kalyvianaki et al., 2009), machine learning
techniques (Kephart et al., 2007; Calinescu, 2009),
or utility-based optimization techniques (Urgaonkar
et al., 2007; Zhu et al., 2009). When moving to virtu-
alized environments the resource allocation problem
becomes more complex because of the introduction
of virtual resources (Zhu et al., 2009). Several ap-
proaches have been proposed for QoS and resource
management at run-time (Li et al., 2009; Litoiu et al.,
2010; Ferretti et al., 2010; Jung et al., 2010; Huber
et al., 2011; Yazir et al., 2010).

(Li et al., 2009) describes a method for achieving
optimization in Clouds by using performance models
all along the development and operation of the appli-
cations running in the Cloud. The proposed optimiza-
tion aims at maximizing profits by guaranteeing the
QoS agreed in the SLAs taking into account a large
variety of workloads. A layered Cloud architecture
taking into account different stakeholders is presented
in (Litoiu et al., 2010). The architecture supports
self-management based on adaptive feedback control
loops, present at each layer, and on a coordination ac-
tivity between the different loops. Mistral (Jung et al.,
2010) is a resource managing framework with a multi-
level resource allocation algorithm considering real-
location actions based mainly on adding, removing
and/or migrating virtual machines, and shutdown or
restart of hosts. This approach is based on the usage

of Layered Queuing Network (LQN) performance
model. It tries to maximize the overall utility taking
into account several aspects like power consumption,
performance and transient costs in its reconfiguration
process. In (Huber et al., 2011) the authors present an
approach to self-adaptive resource allocation in vir-
tualized environments based on online architecture-
level performance models. The online performance
prediction allow estimation of the effects of changes
in user workloads and of possible reconfiguration ac-
tions. Yazir et al. (Yazir et al., 2010) introduces
a distributed approach for dynamic autonomous re-
source management in computing Clouds, performing
resource configuration using through Multiple Crite-
ria Decision Analysis.

With respect to these works,SAVER lies in the re-
search line fostering the usage of models at runtime to
drive the QoS-based system adaptation.SAVER uses
an efficient modeling technique that can then be used
at runtime without undermining the system behavior
and its overall performance.

Ferretti et al. (Ferretti et al., 2010) describe a
middleware architecture enabling a SLA-driven dy-
namic configuration, management and optimization
of Cloud resources and services. The approach is
purely reactive and considers a single-tier application,
while SAVER works for an arbitrary number of WSs
and uses a performance model to plan complex recon-
figurations in a single step.
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Finally, Canforaet al. (Canfora et al., 2005)
describe a QoS-aware service discovery and late-
binding mechanism which is able to automatically
adapt to changes of QoS attributes in order to meet
the SLA. The binding is done at run-time, and de-
pends on the values of QoS attributes which are mon-
itored by the system. It should be observed that in
SAVER we consider a different scenario, in which
each WS has just one implementation which how-
ever can be instantiated multiple times. The goal of
SAVER is to satisfy a specific QoS requirement (mean
execution time of workflows below a given threshold)
with the minimum number of instances.

7 CONCLUSIONS

In this paper we presentedSAVER, a QoS-aware al-
gorithm for executing workflows involving Web Ser-
vices hosted in a Cloud environment.SAVER se-
lectively allocates and deallocates Cloud resources
to guarantee that the response time of each class of
workflows is kept below a negotiated threshold. This
is achieved though the use of a QN performance
model which drives a greedy optimization strategy.
Simulation experiments show thatSAVER can ef-
fectively react to workload fluctuations by acquir-
ing/releasing resources as needed.

Currently, we are working on the extension of
SAVER, exploring the use of forecasting techniques
as a mean to trigger resource allocation and deallo-
cation proactively. More work is also being carried
out to assess theSAVER effectiveness through a more
comprehensive set of real experiments.
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