
PROTECTING PRIVATE DATA IN THE CLOUD

Lars Rasmusson and Mudassar Aslam
Swedish Institute of Computer Science, Kista, Sweden

Keywords: Cloud Computing, Virtualization, Trusted Computing, Binary Translation.

Abstract: Companies that process business critical and secret data are reluctant to use utility and cloud computing for the
risk that their data gets stolen by rogue system administrators at the hosting company. We describe a system
organization that prevents host administrators from directly accessing or installing eaves-dropping software
on the machine that holds the client’s valuable data. Clients are monitored via machine code probes that are
inlined into the clients’ programs at runtime. The system enables the cloud provider to install and remove
software probes into the machine code without stopping the client’s program, and it prevents the provider
from installing probes not granted by the client.

1 INTRODUCTION

In cloud computing, computing resources are pro-
vided by one or more organizations, and are used by
other organizations. This is usually the only shared
interest between the providers and the clients, and
that distinguishes cloud computing from regular dis-
tributed computing within a company. The limited
shared interest in cloud computing is the fundamental
reason for the client to distrust the cloud provider, as
well as for the provider to distrust the client.

However, cloud computing’s large potential for
more efficient computing, in both technical and eco-
nomical sense, is a strong reason to try to overcome
this mutual distrust.

Research in security for cloud computing has fo-
cused on isolation of the clients’ computation in-
side virtual machines (VM) on various levels to
protect the cloud infrastructure from attacks by
clients, and to protect clients from attacks from each
other (Christodorescu et al., 2009). This problem is
now routinely solved with virtualization.

Current solutions have not done enough to ad-
dress the issue of how to protect the client from the
provider. The lack of protection against the provider
has prevented the adoption of cloud computing for
clients that have private, business critical or confiden-
tial data or algorithms i.e. the financial, government,
health, pharma, and movie sectors. The risk clients
face of having their data or programs leaked or stolen
by the provider, either deliberately, by mistake, or by
a disgruntled or black-mailed employee, has so far be-

en considered too large. In (Kuttikrishnan, 2011) sev-
eral studies of cloud adoption are summaprized and
reporting as one obstacle that cloud adoption ”in-
volves developing trust and overcoming the fear of
change and loss of control over data and processes.”

While the risk from attacks by the provider are not
unique to the cloud (they are already present in hosted
environments), they are increased by the more short-
lived and anonymous relationships between the par-
ties in clouds with multiple providers and automatic
migration of data and computation.

We propose a novel solution to the problem of mu-
tual distrust. It is based on using trusted computing
to prevent the cloud provider from installing eaves-
dropping software on the platform, on using a binary
translation framework to let the provider install soft-
ware probes into the clients software, and on an initial
negotiation phase to determines which probes may
actually be installed on the platform to satisfy both
provider and client. So, while the provider is locked
out from the client’s VM she is provided with an-
other tool that enables her monitor the client’s VM for
malicious behavior without compromising the client’s
need for data protection.

The next section describes the system architec-
ture. Section 3 explains the current implementation.
It is followed by an analysis of the security of the sys-
tem in section 4. The paper is concluded in section 5
with related work and the contributions made in this
system.

5Rasmusson L. and Aslam M..
PROTECTING PRIVATE DATA IN THE CLOUD.
DOI: 10.5220/0003895800050012
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 5-12
ISBN: 978-989-8565-05-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Provider

Customer
TPM HW

Xen VMM
Boot loader

Control VM Customer VM

Linux

Authentication
& mgmt SW

Binary Code
Inliner

Customer SW

Lif
e

cy
cle

 cm
ds

Supervision cmds

Policy
Allowed

commands
and SW

Signed by
Provider

Figure 1: Computer resource.

2 ARCHITECTURE

Our goal is to have a runtime system for clouds where
the provider can check for e.g. viruses/botnets, un-
licenced software, etc., while at the same time veri-
fiably show to a remote client that the provider has
no posibility to extract undue information from the
client’s virtual machine.

2.1 Resources

The cloud infrastructure is composed of computa-
tional resources, a resource management system, and
a PKI with certifying authorities. The computational
resources are the computers, networks and storage
that the provider is offering to clients.

Figure 1 shows a computer in the cloud that is run-
ning a virtualization layer, management software, a
machine code inliner and the client’s software.

The provider configures the computers by setting
them up for trusted boot, installs the necessary soft-
ware on them (the “trusted software stack”), and reg-
isters their availability to the resource management
system. See step 1 and 2 in figure 2. The software that
is installed on the computers is responsible for only
permitting authorized commands to be executed. In
particular, it must prevent the provider from gaining
root access or full control over the machine. Trusted
third parties may be required to audit the trusted soft-
ware for bugs and to make sure that the machines are
guarded against physically attacks or modifications.

2.2 Software Probes

Instead of root access or physical access, the cloud ad-
ministrators are provided with a software tool that en-
ables them to install software probes into the client’s

running program. The probes may check for network
attacks made by the client, for undue hardware access,
or perform software license enforcement by detecting
execution of licensed code. Since they are in soft-
ware, probes can be arbitrarily complex, but to pre-
vent probes from leaking information to the provider,
only safe probes authorized by the client must be in-
stalled. This is assured by the trusted management
software.

A probe is monitoring the CPU state and one or
several memory cells or data structures inside the
client’s VM, in the kernel or in the application pro-
grams. (Constructing probes that look into applica-
tion data structures will require access to symbol ta-
bles or debug information.) When the probe detects
an action, it can update counters or other data struc-
tures in a protected memory area which is not adress-
able by the client software. An appropriate probe may
thus detect execution patterns that the provider has re-
quested to scan for. How the provider gets the infor-
mation from the probe is described in section 2.4.

Probes are built into the code at the time that it
is Jut-In-Time (JIT, immediately before execution)
translated from its original form to the code to be ac-
tually executed. For each machine instruction in the
original code a corresponding function that emulates
the instruction on a virtual CPU exists. To create new
machine code for a sequence of instructions in the
original program, a sequence of function calls are cre-
ated in the LLVM (Lattner and Adve, 2004) interme-
date representation (IR). These calls are then linked
(at run time) with in-memory IR code for the func-
tions, inlined, constant folded, and optimized, before
new machine code is emitted. A cache can be used to
avoid redoing this for loops.

Concretely, probes are implemented as modifi-
cations/extensions to the functions that emulate ma-
chine instructions. For instance, they may count the
number of times a certain memory address is accessed
by the ADD instruction. While this check at first will
appear at ever place the ADD instruction occurs, the
optimization step will in many cases be able to re-
move this check based on constant information known
at run-time.

2.3 Procurement

A client wishing to run a private computation on
a cloud resource contacts the resource management
system to get access to a free resource. See steps
3 and 4 in figure 2. In the negotiation with the re-
source management system the client can negotiate
an acceptable set of probes that may be installed on
the machine, but if no agreement can be made, no re-

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

6

Client
console

Provider
consoleCloud Infrastructure

Procure-
ment
server Resources

GW
Cloud

Computer
Cloud

Computer
Cloud

Computer
Cloud

Computer
Cloud

Computer

1. Setup HW
 with TPM
2. Install certi-
 fied SW

3. Announce resources

5. Integrity verification

6. VM Launch

7. Install probes

4. Discover and
 negotiate for resource

Trusted
CA

Figure 2: Startup, procurement and launch.

source can be allocated. Once details about payment
have been cleared, the resource management system
issues a resource definition file containing a policy de-
scription.

2.4 Resource and Policy Description
File

The resource description contains a policy (see fig-
ure 1) consists of a list of commands that may be
executed, and the identity of the one who may trig-
ger them. For instance the client “C1” may execute
the commands “run” and “destroy” to start and re-
move his virtual machine. The provider “cloudP”
may execute the command “installVirusProbe”, “re-
moveVirusProbe”, and “getVirusProbeReading”. The
meaning of these commands are also defined by the
policy file, as the commands are defined in program
files whose checksums are stored in the policy file.

The resource description file also contains the
checksums that the trusted software stack will gener-
ate in the Trusted Platform Module (TPM), the public
key of the TPM on the physical computer, and the net-
work address of the resource’s Launch Manager.

The file is signed by the provider, and the signa-
ture is verified by the resource computer during the
VM Launch step.

2.5 VM Launch

To start using the resource, the client contacts the
Launch Manager and asks via a challenge response
protocol for proof that the machine has a genuine
TPM on a certified platform. (See step 5 in figure 2.)
The Launch Manager asks the TPM chip to provide
the necessary signed certificates and forwards them
to the client who verifies them. (Essentially, a TPM
chip contains a protected private key that the software
cannot access. The chip maker has supplied a certifi-
cate stating that a chip with the associated public key

was made in their factory. The client asks (via the
Launch Manager) the TPM to sign a partly random
string. The response is checked to see that signatures
and certificates match.)

Once satisfied that the platform is genuine, the
next step for the client is to verify that the correct
trusted software stack is installed. For that, the client
requests a signed dump of the checksum registers in
the TPM. The TPM checksum registers are updated
during system startup, from BIOS (on machine initial-
ization code) start and on, and can only be physically
reset by rebooting the machine. Since all the trusted
software checksums all trusted software it loads in,
the checksum registers will be in a specific state, de-
pending on which software that has been loaded.

Once the client has verified that the checksum reg-
isters are in the state described in the resource file (and
potentially checked with a third party that this soft-
ware stack is indeed to be trusted), it can upload the
private data and code to the cloud, knowing that con-
trol of the machine can only be done via the narrow
command interface defined in the policy description.
(See step 6 in figure 2.)

2.6 Probe Inlining

The software probes are inlined into the client’s ma-
chine code with a Binary Code Inliner that runs under-
neath the client’s program, essentially as a JIT com-
piling machine emulator. (See step 7 in figure 2.)

The main reason why the probes are JITed in
rather than inserted as jumps is to enable complex
probes to be mixed into the code everywhere with-
out causing excessive branching, since that is ex-
pensive on modern architectures with deep pipelines,
prefetching, and branch prediction. Another reason is
that the JITed probes can be reduced in size by JIT
optimization using local knowledge of the machine
code.

The Inliner disassembles machine instructions up
until a branch and generates new code that emulates
the instructions in another area of the memory. The
emulation code may be extended with probe code to
do more things than the normal code, such as maintain
counters, track state changes or information flows in
the program, detect the occurrence of certain data in
the memory, etc.

The Inliner optimizes the code to remove constant
checks, inline function calls, reuse partial computa-
tion values, and merge multiple updates to the same
memory location into one. Thus, JITed monitoring
code that does a lot of the same checks all the time
can be greatly reduced in size compared to running
the full monitoring code each time.

PROTECTING�PRIVATE�DATA�IN�THE�CLOUD

7

The JITed code is stored into a code cache, and
once an already JITed entry point is called again, the
cached code is used. Since loopy code will achieve
high cache hit rate, the expensive JIT step will be
amortized. The additional cost of probe processing
cannot be amortized since it is new functionality that
is added to the system. The probing cost should thus
be considered as a cost for protection against a om-
nipotent but rogue system administrator.

Turning probes on and off amounts to using dif-
ferent sets of emulation code and using separate code
caches or clearing the code cache when probes are
toggled.

3 IMPLEMENTATION

3.1 Base System

Our current implementation is running on a dual hex-
core Intel Xeon based Ericsson GEP3 board. The
GEP3 has a TPM soldered onto the board (and not
replaceable TPM module). It has a special BIOS that
checksums the BIOS, firmware and boot loader be-
fore it passes control to the boot loader.

The boot loader is a version of Trusted
Grub (Trusted Grub, 2012) which is configured to
checksum and load a Xen VMM (Virtual Machine
Monitor, a software layer that provides virtualiza-
tion functionality and isolation), a Linux kernel and
a ramdisk, before it launches Xen. Xen then launches
the Linux kernel in a virtual domain, the Control VM.

The Linux kernel creates checksums of all the bi-
naries and config files that are loaded into the sys-
tem and keeps the checksums in a loaded files list
that can later be checked by a client. Since varying
load order would change and aggregated checksum,
the checksums are not stored in the TPM checksum
registers. Instead, the client has to check the kernel’s
list to make sure that no unauthorized program has
been launched before.

3.2 Launch Manager

After the boot process has finished, the Launch Man-
ager is started. It is written in Java and uses the IAIK
java Trusted Software Stack (IAIK java Trusted Soft-
ware Stack, 2012) to communicate with the TPM chip
on the board. The Launch Manager is run as a user
level process and has no system level access. Access
to the TPM device and Xen commands are provided
via group permissions and setuid:ed scripts that dou-
ble check the parameters and access rights before ex-
ecution.

Binary code inliner

Libraries (LLVM, Xenlib, ...)

VM Image code ("kernel") - RO

Newly generated machine code

RAM to Client VM

Probe state variables

LLVM reads code
and writes new code

Client code
access

Probe code
access

Inliner may report
probe variables

to dom0

Figure 3: Memory regions inside the client’s Xen domain.

All communication with the Launch Manager is
made over TLS (Transport Layer Security commu-
nication protocol) and uses certificates to establish
identities of all parties. The launch manager receives
the resource description file from the client and starts
to accept and execute the commands that are listed
in the resource definition file, provided that all file
checksums are correct. The commands to manip-
ulate the virtual machines are executed with Java’s
Runtime.exec(cmd).

During the launch phase, the Launch Manager
sends back a bind key to the client, which is a pub-
lic key inseparably tied (or bound) to the machine’s
TPM, which the client uses to encrypt its secret data.
The encrypted data can then only be decrypted by the
very TPM on which the bind key was created.

The Launch Manager receives an encrypted tar file
containing the VM image and other necessary files
from the client which it decrypts, unpacks and uses
to create the virtual machine. The client’s code is not
set to run directly into another Xen domain. Instead
the Launch manager creates a Customer VM domain
with a Binary Code Inliner kernel, and then sends over
the client’s code and data to the Inliner to execute,
together with the software probe files to be installed.

3.3 Binary Code Inliner

The Binary Code Inliner is based on the Mini-OS
Xen software. It is a miniature kernel that can be
used for driver domains. The Binary Code Inliner
contains the LLVM libraries necessary for disassem-
bling, building, optimizing and JIT compiling native
machine code.

The Inliner communicates with the Launch Man-
ager over the Xenbus message passing interface, and
via a shared memory page for fast transfer of files be-
tween the domains.

The Inliner uses different memory regions for the
client’s VM’s RAM and the memory in which the
probes store their state information. (See figure 3.)

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

8

Since the pure emulation code never will access the
probes memory area, there is no machine instruction
the client can use to access the probe memory. But
probe code that is mixed in with the emulation code
can access the probe memory as normal memory,
without needing changing the memory context or us-
ing traps. Therefore the JIT compilation can produce
very lightweight and ubiquitous software probes.

The Inliner is written in C++ and C to interface
with LLVM and Mini-OS and is about 2MB in size,
mostly due to the large libraries that it includes. It cur-
rently only supports a subset of the full X86 instruc-
tion set, and more sophisticated optimization such as
optimization across multiple code blocks is not yet
implemented.

4 SECURITY ANALYSIS

4.1 Locking Out the Provider with TC

A rogue system admin may try to eaves-drop and
dump data in the clients’ virtual machines to sell,
use, or to keep “for a rainy day”. Trusted Computing
(TC) with hardware chip (TPM) is used to convince
the client that no eaves-dropping software is installed.
Trusted boot lets the client verify that the system was
started up in a known state, but it is the loaded trusted
software that correctly must prevent remote login and
other undue access, as Trusted Computing (TC) can-
not protect against software bugs in that software.

Some attacks can be detected by TC, i.e. if an in-
trusion has triggered loading of an unexpected binary
it will be listed in the kernel’s loaded files list, but in
general TPM really relies on having a locked down
trusted software stack. In the described system the
trusted software stack consists of the BIOS, firmware,
boot loader, Xen, the Linux kernel, the OS configura-
tion files, and the Launch Manager and its runtime
system (Java). The need for trust is reduced by layer-
ing. The trust in the Launch Manager does not have
to be complete, as it is partly isolated with OS tech-
niques. The Launch Manager runs as a low privileged
user process that is not allowed to arbitrarily access
VM memory or other xm or xenstore commands. In
the current implementation the Launch Manager is re-
sponsible for decrypting the client’s VM image. This
task should be moved into the kernel, to remove the
ability for a subverted Launch Manager or other pro-
cess in the Control VM to leak decrypted uploaded
client data.

The Launch Manager is written in Java, but may
also execute commands with Runtime.exec(cmd).
The commands that it executes are taken from a policy

file that was signed by the provider, but the client has
full access to what the commands do and their binary
code. Because their checksums are also in the pol-
icy file the management commands cannot be modi-
fied neither by the client nor by the provider. To pre-
vent the provider from putting malicious commands
into the policy file, the client needs an external audi-
tor to vet the code. The cost of the vetting will spur
the adoption of commonly used and well understood
software and policies, or increase demand for formal
computer-checked security proofs.

TC does not guard against physical attacks except
through obscurity and complexity, and in theory TC
can be circumvented by tricking the TPM to be re-
set by physically manipulating its input pins. After a
reset, arbitrary values can be loaded into the check-
sum registers, hiding the presence of malicious soft-
ware. The data in RAM capsules and hard disk is
not encrypted by the TPM. To prevent the hardware
from being physically extracted from the machine the
machines must be guarded, and policies must be en-
forced to for instance never let a single unmonitored
system admin manipulate the machines. Since the
TPM does not encrypt the data in memory or the com-
putation, it does not protect against forced access to
the hardware (e.g. due to a warrant).

TC is vulnerable to TPM chipmakers that issue
false TPM certificates or put in backdoors in the chip
to extract the private keys, as it enables man-in-the-
middle attacks on the supposedly authenticated com-
munication between the client and the TPM.

4.2 Locking Out the Client

The system relies on standard techniques for locking
out the client from attack on infrastructure and other
clients: the clients’ software is executed in low privi-
leged virtual machines whose access to hardware goes
via a virtual device layer that enforces limits on net-
work access, I/O and memory capacity consumption.
The standard techniques are not sufficient for detect-
ing and blocking botnets and other malicious software
that may thrive in the cloud. A cloud client who is
hacked may be made to run software that causes great
damage on others. To detect such activity, providers
usually have the ability to look deep into their clients’
processes and VMs. Unfortunately, the same abil-
ity also opens up to data-stealing by rogue system
admins. Instead of giving direct and full access to
the admins, the cloud architecture provides a means
for them to inject pre-defined software probes that
probe for characteristic patterns or activities of bot-
nets, viruses, etc., and act or alert only when some-
thing is detected.

PROTECTING�PRIVATE�DATA�IN�THE�CLOUD

9

Malicious software in the client may try to cir-
cumvent the probes by overwriting the memory area
where they store state information. They are unable to
do so because each instruction in converted into new
code that cannot explicitly address the probes’ private
memory area.

An attacker may try to disassemble the code to de-
tect the probes, but the machine instructions that the
client will see are read from a different part of the
memory than the actual machine code, because the
memory is virtualized. A client disassembling the in-
struction at its PC register will disassemble its virtual
memory, because the PC (and the other registers) is
virtualized and points into the original code, not the
newly generated code with probes.

The layered design is helpful if there are bugs in
the Binary Code Inliner and LLVM. In the worst case,
an attacker may construct an instruction sequence that
tricks LLVM’s JIT compiler to produce JITed code
that breaks out of the Inliner. The risk is minimal, but
if that happens, the program is still isolated in the Cus-
tomer VM, which is an unprivileged Xen domain, and
it is therefore prevented from attacking the Launch
Manager in the Control VM.

5 RELATED WORK AND
CONTRIBUTIONS

5.1 Related Work

Terra (Garfinkel et al., 2003) describes a trusted
virtual machine monitor that uses Trusted Comput-
ing (Trusted Computing Group, 2012) to prevent the
machine owner (provider in our terminology) from
accessing the contents of a virtual machine to pro-
tect its confidentiality. Trusted Computing for cloud
computing is first suggested as a possible solution
by (Santos et al., 2009), which so far only contains
early work on protocols for launching and migrat-
ing virtual machines protected by Trusted Comput-
ing. TVDc (Berger et al., 2008) let the client check
the integrity of a Xen dom0 and the user domains via
virtual TPMs, but the TVDc provider is neither locked
out nor given an alternative means for controlling the
client.

Machine code to machine code JIT translation
has been used to speed up execution in the Dynamo
system (Bala et al., 2000). It is not used to insert
additional monitoring code into the generated code.
PIN (Reddi et al., 2004) and DynamoRIO (Bruen-
ing, 2004) are tools that let a user write probes that
are dynamically injected into an application level pro-

gram, not a full OS. The probes are compiled before
injection, and no further optimization is done at run-
time. Their APIs operate on instruction level and ba-
sic block level.

LLVM (Lattner and Adve, 2004) is a compiler
framework that has an intermediate code representa-
tion that enables programmatical modification, opti-
mization and JIT compilation at runtime. It is used
in the Binary Code Inliner to produce optimized code
for each translated basic block on the fly.

Xen (Barham et al., 2003) uses hardware based
protection to isolate virtual machines and separate
memory areas. Xen can only monitor a few things,
such as what goes in and out via the virtual devices,
memory and CPU utilization rate.

PINOS (Bungale and Luk, 2007) instruments full
OS by running PIN inside a Xen VM. Its uses the
same low-level API as PIN. XenAccess (Payne et al.,
2007) is a tool that permits looking/sampling into the
memory of a running virtual machine by following
entries and pointers in the symbol tables and data
structures in the VMs memory. It does not enforce
limits, and it does not monitor memory or registers
continuously, but only when an external monitoring
program is explicitly started from outside of the VM.

Van Dijk, et al. (Van Dijk and Juels, 2010) ar-
gue that software alone, such as fully homomorphic
encryption or secure multiparty computation is not
enough to provide privacy-preserving cloud comput-
ing. They point out Trusted Computing’s weakness
with respect to hardware attacks. Parno points out the
problem of getting the TPM key to the client (Parno,
2008). We argue that hardware attacks may be coun-
tered with (human) guards, and that a public key in-
frastructure can prove to a user that the keys are gen-
uine.

While our system uses policies to inline special-
ized machine code into the client’s binary, it has still
been compared to iRODS (Wan et al., 2009), a policy
based system for controling cloud clients’ access to
data. While iRODS enforces policies at specific en-
forement points, our system may insert control poli-
cies anywhere into the client’s binary. It may also ex-
cercise control over the execution, not just over access
to data. While the iRODS system is more mature,
our system is yet but a (versatile) tool for implement-
ing and executing fine grained policies. Which those
policies will be, what they will measure and how to
implement them concretely still remains to be found
out.

While some recent surveys of multi-tenant clouds
(Rodero-Merino et al., 2012) still ignore the risk of a
rogue provider, Vaquero et. al. (Vaquero et al., 2011)
list what they consider the main threats to IaaS clouds,

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

10

including malicious insiders, the risk for data loss and
leakage, and account or service hijacking. They sur-
vey current work addressing these threats, i.e. (Con-
standache et al., 2008; Descher et al., 2009; Baldwin
et al., 2009). With respect to the threat of insiders, the
listed solutions only address the task of locking out
the provider. The main purpose of our solution is to
provide an environment that restores some power to
the provider by offering her a versatile tool to, in a
controlled way, inspect the client at run time.

5.2 Contribution

Our contribution is to develop a cloud architec-
ture and proof-of-concept prototype implementation
that (under the Trusted Computing assumptions) can
prove to the client that no eaves-dropping software is
or can be installed on the resource computer.

The cloud administrators’ lost supervisory powers
are partially compensated with a generic tool (probe
inlining) in which invasive checks and enforcement of
the client’s VM for detection and thwarting of dan-
gerous activities can be implemented. The plan is
that probes for botnets, viruses, and cloud infrastruc-
ture attacks will be implemented in this framework,
but specific probes have not been the focus of our
current work. Probes are installed on a fine-grained
per-instruction level meaning they are always on, and
the probes cannot be accessed or circumvented in any
way by the client’s software.

The idea to only let cloud system admins install
software probes into the clients’ VMs instead of hav-
ing full access to a machine is new. Our approach for
doing that, JIT machine code translation is not new,
but our approach of translating it into an intermediary
compilation format that enables mixing in high level
probing functions, and to optimize entire basic blocks
rather than individual instructions, is to our knowl-
edge not found elsewhere.

We also have contributed a TPM based archi-
tecture in which policies that determine the extent
of probing first are negotiated between provider and
client, and later provably enforced by the cloud soft-
ware.

We have presented a security analysis to highlight
the strengths and limitations of the security provided
by this cloud architecture.

The current work consists of the architecture for
the runtime system for the probes, and does not
yet provide any specific language for declaratively
defining probes. Defining concrete probes for actual
threats remains an issue for future work.

ACKNOWLEDGEMENTS

We wish to thank Christian Gehrmann at SICS and
Andrs Mhes and Rolf Blom at Ericsson for thoughtful
comments and critique. Special thanks to Andrs for
providing, configuring and thoroughly locking down
the GEP3 board and Xen. We also wish to thank the
anonymous reviewers for their helpful comments.

REFERENCES

Bala, V., Duesterwald, E., and Banerjia, S. (2000). Dy-
namo: a transparent dynamic optimization system. In
Proceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and Implementa-
tion, PLDI ’00, pages 1–12, New York, NY, USA.
ACM. http://doi.acm.org/10.1145/349299.349303.

Baldwin, A., Dalton, C., Shiu, S., Kostienko, K., and Ra-
jpoot, Q. (2009). Providing secure services for a vir-
tual infrastructure. SIGOPS Oper. Syst. Rev., 43:44–
51. http://doi.acm.org/10.1145/1496909.1496919.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Har-
ris, T., Ho, A., Neugebauer, R., Pratt, I., and
Warfield, A. (2003). Xen and the art of virtu-
alization. SIGOPS Oper. Syst. Rev., 37:164–177.
http://doi.acm.org/10.1145/1165389.945462.

Berger, S., Cáceres, R., Pendarakis, D., Sailer, R., Valdez,
E., Perez, R., Schildhauer, W., and Srinivasan, D.
(2008). TVDc: managing security in the trusted vir-
tual datacenter. SIGOPS Oper. Syst. Rev., 42:40–47.
http://dx.doi.org/10.1145/1341312.1341321.

Bruening, D. L. (2004). Efficient, transparent,
and comprehensive runtime code manipu-
lation. PhD thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10
.1.1.68.7639.

Bungale, P. P. and Luk, C.-K. (2007). PinOS: A pro-
grammable framework for whole-system dynamic in-
strumentation. In Proceedings of the 3rd interna-
tional conference on Virtual execution environments,
VEE ’07, pages 137–147, New York, NY, USA. ACM.
http://doi.acm.org/10.1145/1254810.1254830.

Christodorescu, M., Sailer, R., Schales, D. L., Sgan-
durra, D., and Zamboni, D. (2009). Cloud
security is not (just) virtualization security: a
short paper. In Proceedings of the 2009 ACM
Workshop on Cloud Computing Security, CCSW
’09, pages 97–102, New York, NY, USA. ACM.
http://doi.acm.org/10.1145/1655008.1655022.

Constandache, I., Yumerefendi, A., and Chase, J. (2008).
Secure control of portable images in a virtual
computing utility. In Proceedings of the 1st
ACM workshop on Virtual machine security, VM-
Sec ’08, pages 1–8, New York, NY, USA. ACM.
http://doi.acm.org/10.1145/1456482.1456484.

Descher, M., Masser, P., Feilhauer, T., Tjoa, A. M., and
Huemer, D. (2009). Retaining data control to the

PROTECTING�PRIVATE�DATA�IN�THE�CLOUD

11

client in infrastructure clouds. Availability, Reliabil-
ity and Security, International Conference on, 0:9–16.
http://doi.ieeecomputersociety.org/10.1109/ARES.20
09.78.

Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and
Boneh, D. (2003). Terra: a virtual machine-
based platform for trusted computing. In Pro-
ceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, SOSP ’03,
pages 193–206, New York, NY, USA. ACM.
http://doi.acm.org/10.1145/945445.945464.

IAIK java Trusted Software Stack (2012).
http://trustedjava.sourceforge.net.

Kuttikrishnan, D. (2011). Cloud Comput-
ing: Slow Adoption Rates, Current Ob-
stacles. http://www.datamation.com/cloud-
computing/cloud-computing-slow-adoption-rates-
current-obstacles.html.

Lattner, C. and Adve, V. (2004). LLVM: A Com-
pilation Framework for Lifelong Program Analysis
& Transformation. In Proceedings of the Interna-
tional Symposium on Code Generation and Optimiza-
tion: Feedback-directed and Runtime Optimization,
CGO ’04, pages 75–, Washington, DC, USA. IEEE
Computer Society. http://llvm.org/pubs/2003-09-30-
LifelongOptimizationTR.pdf.

Parno, B. (2008). Bootstrapping trust in a ”trusted”
platform. In Proceedings of the 3rd Con-
ference on Hot Topics in Security, pages 9:1–
9:6, Berkeley, CA, USA. USENIX Association.
http://www.usenix.org/event/hotsec08/tech/full paper
s/parno/parno.pdf.

Payne, B. D., Carbone, M., and Lee, W. (2007).
Secure and Flexible Monitoring of Vir-
tual Machines. Computer Security Ap-
plications Conference, Annual, 0:385–397.
http://doi.ieeecomputersociety.org/10.1109/ACSAC.2
007.10.

Reddi, V. J., Settle, A., Connors, D. A., and Cohn, R. S.
(2004). PIN: A Binary Instrumentation Tool for
Computer Architecture Research and Education. In
Proceedings of the 2004 workshop on Computer Ar-
chitecture Education: held in conjunction with the
31st International Symposium on Computer Archi-
tecture, WCAE ’04, New York, NY, USA. ACM.
http://doi.acm.org/10.1145/1275571.1275600.

Rodero-Merino, L., Vaquero, L. M., Caron, E., Mure-
san, A., and Desprez, F. (2012). Building safe paas
clouds: A survey on security in multitenant software
platforms. Computers & Security, 31(1):96 – 108.
http://dx.doi.org/10.1016/j.cose.2011.10.006.

Santos, N., Gummadi, K. P., and Rodrigues, R.
(2009). Towards Trusted Cloud Computing.
In Proceedings of the 2009 Conference on
Hot Topics in Cloud Computing, HotCloud’09,
Berkeley, CA, USA. USENIX Association.
http://portal.acm.org/citation.cfm?id=1855533.18555
36.

Trusted Computing Group (2012).
http://www.trustedcomputinggroup.org.

Trusted Grub (2012). http://projects.sirrix.com/trac/trustedg
rub.

Van Dijk, M. and Juels, A. (2010). On the impossi-
bility of cryptography alone for privacy-preserving
cloud computing. In Proceedings of the 5th USENIX
conference on Hot topics in security, HotSec’10,
pages 1–8, Berkeley, CA, USA. USENIX Association.
http://www.usenix.org/events/hotsec10/tech/full pape
rs/vanDijk.pdf.

Vaquero, L. M., Rodero-Merino, L., and Morn,
D. (2011). Locking the sky: a survey on
IaaS cloud security. Computing, 91:93–118.
http://dx.doi.org/10.1007/s00607-010-0140-x.

Wan, M., Moore, R., and Rajasekar, A. (2009). Integra-
tion of cloud storage with data grids. Computing.
https://www.irods.org/pubs/DICE icvci3 mainpaper
pub-0910.pdf.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

12

