
TVT: A SOFTWARE VERIFICATION PACKAGE FOR THE
INTERACTIVE LEARNING OF FORMAL PROGRAMMING

TECHNIQUES
An Educational Experience

Rafael del Vado Vı́rseda, Fernando Pérez Morente and Eduardo Berbis González
Departamento de Sistemas Informáticos y Programación, Universidad Complutense de Madrid, Madrid, Spain

Keywords: Software Tools, Semantic Tableaux, Verification, Debugging, Invariants.

Abstract: While Computational Logic plays an important role in several areas of Computer Science (CS), most edu-
cational software developed for teaching logic is not suitable to be used directly in other portions of the CS
education domain where the application of logical notions is usually required. In this paper we describe the
logic teaching tool TVT based on semantic tableaux that has been developed to help the students to use logic as
a formal proof technique in other advanced topics of CS, such as the verification of algorithms, the algorithmic
debugging of imperative programs, the formal design of invariants, and the design and derivation of algorithms
from logical specifications, which are at the basis of the formal learning of programming techniques and good
development of software. We present the design, implementation, and results of the evaluation of this tool by
means of several educational experiences during the academic courses 2009/2010 and 2010/2011. From the
results of these experiences we conclude that the use of the TVT tool in the current CS teaching can help our
students to understand more advanced CS concepts and to clarify the formal process involved in the design
and analysis of correct and efficient imperative programs.

1 INTRODUCTION

Computational Logic is a subject that is taught in
the first courses of almost all the Computer Scien-
ce (CS) universities around the world. The syllabus
of the course usually includes the syntax and seman-
tics of propositional and first-order logic, as well as
some formal proof techniques such as natural deduc-
tion, resolution, or semantic tableaux (Fitting, 1990).
In some cases, there are some lectures devoted to
explain basic concepts on logic programming and
practical work using a Prolog interpreter. However,
while Computational Logic plays an important role
in several areas of CS, most of the educational soft-
ware developed for teaching logic ignores their pos-
sible application in a larger number of subjects of
the CS education domain. Many educational tools
in this area (e.g., logic inference assistants and proof
visualizers) have been developed with different de-
grees of success, and its utility has been proved by
means of several educational experiments and publi-
cations. An actual and extensive collection of them
can be found at http://www.ucalgary.ca/aslcle/logic-
courseware and (Huertas, 2011). Unfortunately, al-

though advanced logical notions are applied in su-
perior courses, this educational logic software is not
suitable for being used in these subjects.

The aim of this work is to describe an innovative
methodology based on the logic teaching tool TVT
that uses semantic tableaux to visualize formal proofs
on advanced topics in CS, such as the design of cor-
rect and efficient algorithms from logical specifica-
tions. A semantic tableau (Fitting, 1990) is a seman-
tic but systematic method of finding a model for a
given set of formulas G, usually classified as a refuta-
tion system because a theorem j is proved from G by
getting its negation G 
:j. Our major contribution is
the implementation of new tableau methods that pro-
vide semantically reach feedback to the students in or-
der to help them to understand the formal reasonings
performed in the process of verifying the correctness
of algorithms. Moreover, it allows to perform an algo-
rithmic debugging of programs following a classical
idea from Shapiro (Shapiro, 1983), that proposes to
replace computation traces by computation trees with
program fragments attached to their nodes in the de-
bugging process. As novelty in this work, we pro-
pose to use semantic tableaux as computation trees to

77
del Vado Vírseda R., Pérez Morente F. and Berbis González E..
TVT: A SOFTWARE VERIFICATION PACKAGE FOR THE INTERACTIVE LEARNING OF FORMAL PROGRAMMING TECHNIQUES - An Educational
Experience.
DOI: 10.5220/0003894400770082
In Proceedings of the 4th International Conference on Computer Supported Education (CSEDU-2012), pages 77-82
ISBN: 978-989-8565-07-5
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



show the students that they can reason on the results
of the execution of a program only considering the
meaning of the program itself and ignoring complex
operational details.

We have tested the TVT tool through the academic
courses 2009/ 2010 and 2010/2011, performing some
educational experiments to estimate the benefits for
our students of using the tool as a complement to
scheduled regular classes. This evaluation has been
carried out by means of several tests, some of them
managed in an online platform with open access to
the students, and the other ones in a CS laboratory
with a controlled group. We show the results of these
educational experiments and the benefits of using the
TVT tool in the teaching of advanced CS concepts
involving the formal verification and the algorithmic
debugging of imperative programs. We believe that
these educational experiences prove that our imple-
mentation based on tableaux provides an excellent
training to the students in the practical application
of advanced logic concepts to perform different CS
tasks.

2 THE TVT TOOL

Solving logical exercises is usually done with pen
and paper, but educational tools can offer more use-
ful pedagogical possibilities. The role of this edu-
cational software is to facilitate the student’s grasp
of the target procedures of education, and to provide
teamwork and communication between teachers and
students (van ditmarsch, 2005).

Our Tableaux Verification Tool,
named TVT (see the current version at
gpd.sip.ucm.es/CSEDU2012/TVT.zip), is an edu-
cational application based on first-order semantic
tableaux with equality and unification (Fitting, 1990)
used as a support for the teaching of deductive rea-
soning at an elementary university level for Computer
Science students. The tool helps our students to learn
how to build semantic tableaux, and to understand
the philosophy of this proof device using it not only
to establish consistency/inconsistency or to draw
conclusions from a given set of premises, but also for
verification and debugging purposes as we propose
in this paper. Our first year students have learnt
tableau calculus in the classroom and this software
has helped them to understand advanced CS concepts
visualizing and producing their own proof trees.

The tool consists of two main parts: one that pro-
duces first-order tableaux, and another one based on
this tableaux methodology for verification and debug-
ging of algorithms. In both cases, the application pos-

sesses a drawing window where trees will be graphi-
cally displayed. The major functional interface of the
TVT tool is shown in Figure 1. The user interacts with
the prover through this graphical interface. In the fol-
lowing sections we describe the use of the tool and
their main features by means of a running example.

3 FORMAL VERIFICATION

The main novelty of the TVT tool is to train our stu-
dents in the art and science of specifying correctness
properties of algorithms and proving them correct.
For this purpose, we use the classical approach de-
veloped by Edsger W. Dijkstra and others during the
1970s (Dijkstra, 1976). We use a guarded command
language to denote our algorithms A, represented by
functions fun A ffun that may contain variables (x, y,
z, etc.), value expressions (e) and boolean expressions
(B). The code of an algorithm is built out of the skip
(skip) and assignment statements (x := e) using se-
quential composition (S1;S2), conditional branching
(if B then S1 else S2 fif), and while-loops (while
B do S fwhile). This language is quite modest but
rich enough to represent sequential algorithms in a
succinct and elegant way. As an illustrative example,
we consider a simple algorithm divide to compute the
positive integer (int) division between a and b with
quotient c and remainder r (represented in TVT on
the left and bottom of Figure 1):

fun divide (a; b : int ) dev < c; r : int >
c := 0; r := a ;
while r � b do

c := c+1; r := r�b
fwhile

ffun

It becomes obvious that neither tracing nor testing
can guarantee the absence of errors in algorithms.
To be sure of the correctness of an algorithm one
has to prove that it meets its specification (Dijkstra,
1976). A specification of an algorithm A consists
of the definition of a state space (a set of program
variables), a precondition P and a postcondition Q
(both predicates expressing properties of the values
of variables), denoted as fPg A fQg. Such a triple
means that Q holds in any state reached by executing
A from an initial state in which P holds. For exam-
ple, a formal specification for the divide function
(represented in TVT on the left and top of Figure 1) is:

fP : a� 0 ^ b > 0g
fun divide (a; b : int ) dev < c; r : int >
fQ : a = b� c+ r ^ r � 0 ^ r < bg

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

78



Figure 1: The TVT tool for the formal learning of programmming techniques.

An algorithm together with its specification is viewed
as a theorem. The theorem expresses that the program
satisfies the specification. Hence, all algorithms re-
quire proofs (as theorems do). Following (Kaldewaij,
1990), the verification is based on a loop invariant I
supplied by the designer or by some invariant-finding
tool (in our example a = b� c+ r ^ r � 0 ^ b > 0), a
bound function C for termination (in our example r),
and the following five proofs (see again Figure 1):

� fPg c := 0; r := a fIg.
� fI ^ r � bg c := c+1; r := r�b fIg.
� I ^ r < b) Q.

� I ^ r � b)C � 0.

� fI ^ r � b ^C = Tg c := c+1; r := r�b fC < Tg.

The TVT tool verifies algorithms A according to
their specification fPg A fQg in a constructive way
based on semantic tableaux P 
 :wp(A;Q), where
:wp(A;Q) is the negation of the weakest precondi-
tion of A with respect to Q, which is the ‘weakest’
predicate that ensures that if a state satisfies it then
after executing A the predicate Q holds (see (Kalde-
waij, 1990) for more details). For example, we have
the following tableau proof (graphically displayed by
the TVT tool in the right side of Figure 1) to veri-
fy the proof corresponding to the preservation of the
invariant I in the body of the loop: fI ^ r � bg
c := c + 1; r := r� b fIg, I ^ r � b 
:wp(c :=
c+1; r := r�b; I), I ^ r� b 
 :(I c+1;r�b

c;r ), where
I c+1;r�b

c;r represents the predicate I in which c and r
are replaced by c+ 1 and r� b, respectively (see the
root of the tree in Fig. 1).

To verify and check that this tableau is closed, the
student must press the “Debug” button. The tool then

begins to traverse the tree and tries to locate, for each
of its three branches, a pair of atomic predicates that
are contradictory with the interactive help of the stu-
dent. Beginning with the first branch, the student finds
that b > 0 and b � 0 are contradictory and marks the
branch as “Close”:

Figure 2.

After pressing the button “Next”, the tool finds in
the second branch two possible atomic predicates that
are contradictory: a = b � c+ r and a 6= b � (c+ 1)+
(r�b). The student marks the option “Close”:

TVT:�A�SOFTWARE�VERIFICATION�PACKAGE�FOR�THE�INTERACTIVE�LEARNING�OF�FORMAL
PROGRAMMING�TECHNIQUES�-�An�Educational�Experience

79



Figure 3.

The tool analyzes the third branch and finds two
atomic predicates that are contradictory: r � b and
(r� b) < 0. So, the student marks again the option
“Close”:

Figure 4.

Finally, after pressing the button “Results”, the
tool summarizes the conflicting atomic predicates that
have found for each of the tableau’s branches. The
formal verification session has finished.

4 ALGORITHMIC DEBUGGING

Debugging is one of the essentials phases of the soft-

ware development cycle and a practical need for help-
ing our students to understand why their programs do
not work as intended. In this section we apply the
ideas of algorithmic debugging (Naish, 1997) as an al-
ternative to conventional approaches to debugging for
imperative programs. The major advantage of algo-
rithmic debugging compared to conventional debug-
ging is that allows our students to work on a higher
level of abstraction. In particular, we have success-
fully applied our TVT tool based on semantic tableaux
for the algorithmic debugging of simple programs to
show how one can reason about such programs with-
out operational arguments. Following a seminal idea
from Shapiro (Shapiro, 1983), algorithmic debugging
proposes to replace computation traces by compu-
tation trees with program fragments attached to the
nodes. As novelty, in this work we propose to use
semantic tableaux as computation trees.

As an example, we alter the code of the previous
algorithm with a simple mistake: we omit the instruc-
tion r := r�b. If we try to verify this erroneous algo-
rithm, we can execute again the TVT tool. If the stu-
dent presses the “Debug” button to start a debugging
session on the proof tree of Figure 1, the TVT tool
tries to close automatically all the possible branches
from the stored information entered in the previous
session. However, since it is not possible to close
the second branch, the tool shows to the student the
predicates a = b�c+ r and a 6= b� (c+1)+ r as pos-
sible opposite atoms that should be closed to close
the branch and the proof tree (see the left side of
Figure 5). The user checks that a = b � c + r and
a 6= b � c+ (r + b) are not necessarily contradictory
for any value of the divisor b. Therefore, the student
marks the option “Not sure”, and the tool confirms
that this branch cannot be finally closed and the proof
tree remains open (see the right side of Figure 5).

What failed to close this branch and how it could
be solved? If the student compares again the atomic
predicates previously showed by the tool, a = b� c+
r and a 6= b � c + (r + b), easily concludes that the
expression r + b should be r for every b. But, how
can this be done? Only if the code of the algorithm
executes the instruction r := r�b. By examining the
code, the student discovers that this assignment has
been omitted, and introduces this piece of code into
the body of the loop, because the tool is actually exa-
mining the proof tree fI^Bg A fIg corresponding to
this part of the code. After running again the TVT
tool, the student sees that all the proof trees remain
closed. Then, the algorithmic debugging session fi-
nishes.

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

80



Figure 5: Algorithmic debugging with the TVT tool.

5 EXPERIENCES AND RESULTS

The educational tool TVT is available for the students
of the topics Computational Logic and Design of Al-
gorithms in the Computer Science Faculty of our Uni-
versity through an online educational platform called
Virtual Campus. The following results are based
on the statistics from the 186 students who took the
course in 2009/2010 and 2010/2011.

5.1 Design of the Experiences

We have carried out two educational experiences:

� One non-controlled experience: All the students
may access the Virtual Campus and participate
freely in the experience: download and use the
TVT tool, and answer different tests.

� One controlled experience: Two groups of stu-
dents must answer a test limited in time and ac-
cess to material.

With respect to the non-controlled experience, the
students may freely access the Virtual Campus with-
out any restriction of time or material (slides, bi-
bliography, and the tool) and answer the questions
of several tests. For each of the explained topics in
Computer Science we have provided a test that eva-
luates the knowledge of our students applying diffe-
rent kinds of semantic tableaux. The students may use

these tests to verify their understanding of the diffe-
rent concepts. The questions are structured in three
blocks: propositional and predicate logic, specifica-
tion and verification of algorithms, and debugging
and derivation of imperative programs. The resolu-
tion of the tests by the students is controlled by the
Virtual Campus with the help of an interactive tuto-
ring system. In the controlled experience we try to
evaluate more objectively the usefulness of the tool.
In particular we have chosen the application of TVT
for the verification and debugging of simple searching
and sorting algorithms (Kaldewaij, 1990). We have
chosen two groups of students answering the same
questions: approximately half of the students works
only with the slides of the course and the books at
class; and the other half works only with the tool at a
Computer Laboratory.

5.2 Results

5.2.1 Non-controlled Experience

We outline here the main conclusions from the re-
sults of the non-controlled experience. With respect
to the material the students used to study, as long as
the exercises were more complicated the use of the
tool (simulations, cases execution, and tool help) in-
creased considerably. Better results were obtained in
the verification and debugging of searching and sort-
ing problems (linear and binary search, insertion and

TVT:�A�SOFTWARE�VERIFICATION�PACKAGE�FOR�THE�INTERACTIVE�LEARNING�OF�FORMAL
PROGRAMMING�TECHNIQUES�-�An�Educational�Experience

81



correct errors don’t knows
mean s mean s mean s

slides/books 9.36 2.35 6.23 2.37 3.21 2.82
TVT tool 12.77 3.71 4.81 2.10 1.22 1.73

Figure 6: Means and standard deviations (s).

selection sort). The tool helped our students to vi-
sualize array manipulations in array assignments. In
the rest of the algorithms (slope search and advanced
sorting algorithms) they used only the class material
or bibliography. When answering the tests questions,
the students were also asked whether they needed ad-
ditional help to answer them. In the case of linear
and binary search they used the tool as much as the
class material, which means that visualization of their
own proof tableaux were a useful educational com-
plement. We can conclude that our students consider
the tool as an interesting resource and have used it to
complement the rest of the available material.

5.2.2 Controlled Experience

The controlled experience was carried out with 59
students. We gave 32 of them only the slides of the
course and the books of the bibliography (Fitting,
1990; Kaldewaij, 1990). The rest were taken to a
Computer Laboratory, where they could execute the
TVT tool. We gave the same test to both groups, con-
sisting of 18 questions, 12 of them on specification
aspects of the algorithms (inference of invariants and
bound functions), and the rest on their verification and
debugging from the code. In Figure 6 we provide the
means and the standard deviations of correct, errors,
and don’t knows answers. First, we observe that stu-
dents using TVT answer more questions than the other
ones. In addition, they make less errors than the o-
thers. This is due to the fact that most of the students
of the TVT tool group performs the analysis of the
algorithms directly from the corresponding semantic
tableau displayed by the tool, while the slides/book
group has to hardly deduce it directly from the code.
All the students who used TVT indicated the bene-
fits of using tableaux to understand the code of the
algorithms from their specifications. Therefore, we
can conclude that the methodology proposed in this
work constitutes a good complement to facilitate the
comprehension of the design and analysis of impe-
rative programs. In addition, the methodology based
on tableaux has helped us to detect in the students dif-
ficulties applying the formal techniques to derive cor-
rect and efficient imperative programs from specifica-
tions.

6 CONCLUSIONS

We have presented the educational and interactive tool
TVT based on semantic tableaux for a specification
language on predicate logic to perform verification
and debugging of algorithms. This is a first step to-
wards the development of a practical teaching tech-
nology for the formal learning of programming tech-
niques.

We have systematically evaluated the proposed
methodology to confirm that TVT is a good comple-
ment to both the class explanations and material, ma-
king easier the visualization of proofs in the reason-
ing needed for the design of correct and efficient pro-
grams. We look forward to making good use of what
we have learned from this evaluation to improve tool’s
usefulness in Computer Science Education.

REFERENCES

Dijkstra, E. (1976). A Discipline of Programming. Prentice
Hall.

Fitting, M. (1990). First-Order Logic and Automated The-
orem Proving. Springer, Graduate Texts in Computer
Science.

Huertas, A. (2011). Ten years of computer-based tutors
for teaching logic 2000-2010: Lessons learned. In
TICTTL.

Kaldewaij, A. (1990). Programming: The Derivation of Al-
gorithms. Prentice-Hall International Series in Com-
puter Science.

Naish, L. (1997). A declarative debugging scheme. Journal
of Functional and Logic Programming, vol. 3.

Shapiro, E. (1983). Algorithmic Program Debugging. MIT.
van ditmarsch, H. (2005). Logic software and logic educa-

tion.

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

82


