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Abstract: Previous studies carried out by our group have demonstrated that 3D fractal dimension algorithms detect 
changes in apparently normal magnetic resonance (MR) images of the brain in patients suffering early 
stages of Multiple Sclerosis. In addition, 3D fractal dimension has also been demonstrated to be useful for 
detecting brain abnormalities in other cerebral diseases, as in Alzheimer’s disease and in children born after 
intrauterine growth restriction. Thus, 3D fractal dimension detection has been proposed as a valuable and 
powerful diagnostic tool. To our knowledge, no user-friendly software is available to obtain the 3D fractal 
dimension of volumetric MR images. In this paper, we present an optimized Web platform that allows 
computing the 3D fractal dimension value for uploaded MR images in an interactive user-friendly way. 
Moreover, and because the computational cost of the involved algorithms is very high for interactive use, 
we have focused our efforts on the optimization of the appropriate algorithms using the parallel computing 
power of current GPUs and multi-core CPUs. 

1 FRACTAL DIMENSION 

A geometry object self-similar at different scales is a 
fractal. Fractals are described by fractal geometry, 
which was first proposed by Benoit Mandelbrot 
(Mandelbrot, 1983). In contrast to Euclidean 
geometry, where the dimension value is 1 for a line, 
2 for a plane and 3 for a volume, fractal dimension 
(FD) is a non-integer number that characterizes an 
irregular shape. Thus, FD is 1 for a straight line, but 
it has a value between 1 and 2 for an irregular line; 
however, the Euclidean dimension is 1 for both a 
straight line and an irregular one. With this simple 
example, we may figure out how the FD describes a 
natural object in a better way than Euclidean 
dimension does. Fractal theory has also been 
proposed as an unifying theory for different results 
in biomedical research that previously were 
apparently not related among them (West et al., 
1987). 

One accepted procedure to obtain the FD of an 
object, in a metric space, is the box-counting 

method. It is based on cover the object with grids of 
boxes with different sizes, and, for each size, to 
estimate how many boxes are filled by the object. 
(Hou et al., 1990). 

2 FRACTAL DIMENSION IN 
NEUROLOGICAL DISEASES 

The characterization and quantification of the brain 
morphology using FD analyses, in health and 
disease, is getting increased attention and interest 
from the biomedical community. Most recent studies 
focus on 2D analyses from individual MR or SPECT 
images (Zhang et al., 2008), where the two-
dimensional FD (2DFD) no longer fulfils the 
complexity of the structure. To obtain the 2DFD, 
general and wide-use image analysis programs are 
available, such as ImageJ (http://rsb.info.nih.gov/ij/), 
and even others more specific for FD calculation 
such as HarFA – Harmonic and Fractal Image 
Analysis (http://www.fch.vutbr.cz/lectures/imagesci/). 
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The cortex of the human brain is highly 
convoluted, and structural changes in this complex 
region has been related to developmental disorders 
(for example, epilepsy or cerebral palsy), and also 
associated with neurodegenerative diseases such as 
Multiple Sclerosis or Alzheimer’s disease. Even 
thought some of these alterations are easily detected 
in MR and computerized tomography (CT) images, 
many of them consists of subtle structural changes 
difficult to detect and quantify. As previously 
suggested (Fernández and Jelinek, 2001), FD is a 
good quantitative descriptor of not only the 
convolutions of the cerebral cortex but also the 
white matter. Thus, the structural brain 
abnormalities taking place in several diseases can be 
revealed by changes in its FD (Thompson et al., 
1996; Kiselev et al., 2003; Liu et al., 2003). 
Moreover, and as stated before, FD approaches are 
particularly useful to detect those subtle changes that 
cannot be conventionally identified in MR images 
(Free et al., 1996), and to characterize disorders 
without an apparent structural abnormality of the 
brain matter, such as schizophrenia and obsessive-
compulsive disorders (Ha et al., 2005). Until now, 
most studies has been focused to obtain the 2DFD of 
MR images of specific coronal sections, and some 
authors even did a step ahead developing pseudo-3D 
extrapolations. Thus, no so much efforts have been 
made in the three-dimensional FD (3DFD) structural 
characterization, an approach that may include 
relevant information otherwise lost in the study. In 
this sense, FD changes of the aged white matter have 
been detected both in MR images both at the 
pseudo-3D level and in 3D (Zhang et al., 2006; 
2007). 

Multiple Sclerosis is a neurodegenerative disease 
mainly characterized by the appearance of white 
matter lesions. The different manifestations of the 
disease can be associated with its progression and, 
because the onset of symptoms and the development 
of visible damages in the MR images are related, an 
early detection of the structural alterations of the 
brain are crucial for clinical making decision 
including an appropriate treatment. The most critical 
to detect are the early stages of Multiple Sclerosis, in 
which the white matter appears as apparently normal 
in the MR images, even thought some of the 
underlying cellular and molecular processes are 
taking place (inflammatory cellular infiltration, 
axonal degeneration and even gliosis). 
Magnetization transfer imaging has been proposed 
as a promising method for detecting changes in 
apparently normal white matter in Multiple 
Sclerosis. However, this method not only shows 

some contradictory results in terms of their 
sensitivity, but it is also expensive and difficult to be 
included in the daily clinical diagnostic procedures 
in most hospitals (Filippi et al., 1999). Our research 
group has recently demonstrated that changes in 
both the white matter (Esteban et al., 2007) and grey 
matter (Esteban et al., 2009) are well-characterized 
by the FD (2D and 3D respectively) using MR 
images which are apparently normal in early stages 
of Multiple Sclerosis. This approach has been 
proposed as an useful tool for an early diagnostic of 
the disease and, therefore, clinical decision making. 
In addition, we have also detected changes in the 
3DFD of the brain in one year-old children who had 
intrauterine growth restriction (IUGR), when 
compared with premature infants without IUGR and 
full-term controls (Esteban et al., 2010). 

3 COMPUTER GRAPHICS, 
VOLUME MODELLING AND 
ALGORITHM OPTIMIZATION 
WITH GPU 

Volume modelling is an important area of Computer 
Graphics. Volume modelling gives solutions based 
on the description of the volume occupied by the 
represented objects, instead of the traditional 
representation based on the surface. An important 
effort to provide biomedical applications is being 
developed in this area, mainly in 3D modelling and 
visualization of scientific data obtained from 
techniques such as CT, MR imaging or microscopy 
(Muraki and Kita, 2006).  

Just as the pixel is the basic element in a 2D 
image, the voxel is the basic unit for representing 3D 
volumes. Thus, volume modelling focuses on 
providing techniques related to the construction, 
processing and display of real structures by using 
voxels. As commented above, the most generally 
accepted approach for calculating the 2DFD is the 
so-called box-counting method. Following the same 
principles, calculating the 3DFD implies the 
construction of the volumetric representation (using 
voxels) of the objects that are being studied. 

The typical way to obtain volumetric 
representations from a set of medical MR or CT 
images is to construct a 3D matrix by stacking Z 
images of X x Y pixels each. From this 3D matrix, 
there are a wide variety of algorithms to display, 
processing or reconstruction of the region of interest 
in each case study (Muraki and Kita, 2006; Lorensen 
and Cline, 1987). 
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Figure 1: 3DFD web application. Brain data uploaded to the server. 

There are alternative representations for a 3D 
volume that maintain their topologic essence and are 
more compact, such as the so-called skeletons. This 
representation may allows an accurate classification 
of the represented volume (Cornea et al., 2007). 

The computational cost of the algorithms that 
process 3D volumes is usually very high, especially 
when acceptable levels of precision are required. 
Thus, the searching for efficient solutions is crucial 
to provide interactivity to user-friendly applications. 
The ability to program the Graphics Processing 
Units (GPUs) of any current mid-range PC has 
revolutionized many fields where high 
computational cost algorithms are required (Owens 
et al., 2007). The evolution of these GPUs and their 
low cost, especially compared with traditional 
parallel computers, place them as one of the most 
interesting solutions when the programmer wants to 
optimize data-parallel algorithms. 

Many volume modelling algorithms are based on 
performing independent operations on each voxel. 
For these cases, applying GPU-based optimizations 
is very suitable. Iso-surface extraction algorithms, 
segmentation of medical images, or interactive 
visualization    of   volumes   are  examples  of   such 

algorithms (Stone et al., 2008; Fan et al., 2008). 
GPU programming is based on the classic 

graphic display pipeline. However, using the GPU to 
code algorithms that are not related with graphics 
may be quite complicated, since it requires 
knowledge of the architecture and the operation of 
the graphic processor. For this reason, several GPU 
programming paradigms, that do not require any 
knowledge of graphics, have recently emerged. 
NVIDIA CUDA (Luebke, 2008) and OpenCL 
(Khronos group, 2010) stand out among these new 
paradigms. These programming models exploit the 
inherent GPU parallelism by writing simple 
programs (threads) running into hundreds of 
thousands of parallel invocations on the GPU.  There 
are many examples of successful use of GPU 
optimization in the biomedical area (with 
improvements in time between x10 and x100), such 
as CT reconstruction or interactive MR imaging 
visualization (Xu and Mueller, 2007; Zhao et al., 
2009). 
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Figure 2: 3DFD web application. Box-counting and 3DFD calculation. 

4 A SOFTWARE PLATFORM TO 
CALCULATE THE 3DFD OF 
MR IMAGES  

A general software to compute the 3DFD of MR 
images has been developed by our research group in 
previous studies, which has become a very useful 
and high social-interest tool (Ruiz de Miras et al., 
2011). The different exiting hardware and software 
platforms to obtain the MR images, the wide profile 
of potential users of the software, and the need for 
constant maintaining and updating in this kind of 
programs, imply that the software has to be made 
available to the scientific community in the most 
flexible and user-friendly way. Thus, we have 
decided to integrate our software into a Web 
platform, a project with the aim of providing a 
universal access through a simple Web browser. A 
Web platform instantly gives the user the latest 

version of the software and, when correctly related 
to a database, a large number of medical images, 
uploaded by different users, can be collected, 
classified and analyzed, which otherwise cannot be 
accessed to and managed.  

Figure 1 and Figure 2 shows sample snapshots of 
our developed web platform. In the first one, the 
main data of an uploaded 3D image, including the 
set of slices, is showed. The interactive computation 
of the 3DFD for the uploaded 3D image is showed 
in Figure 2. The obtained results are represented in 
the scattered graphic for slope analysis, allowing us 
to discard the initial and final points out of linearity. 
The final value of 3DFD is the slope of the resulting 
regression line, which can be directly stored by 
pushing the "Save Results" button. The value of the 
box-counting and image segmentation input 
parameters (maximum voxel size and threshold, 
respectively) can also be tuned, thus obtaining 
different 3DFD values which can also be also stored 
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in the database. 
The computational cost of the different 

algorithms needed to calculate the 3DFD is very 
high, which is a handicap  when interactivity and  
fast feedback to the user are essential, as in data 
analysis Web platforms. The algorithms required in 
the engine are those related to volume visualization, 
box-counting calculation for different voxel 
resolutions and the computation of the curve-
skeleton of the represented 3D image. Because all 
these algorithms can be reduced to individual 
operations on each voxel of the volume, and taking 
into account that these operations can be run in 
parallel using the recent hardware and software 
platforms based on GPU programming, we have 
adapted and improved them to be run on these 
massively parallel platforms. Thus, the degree of 
interactivity needed to integrate the 3DFD 
calculation, in a really useful and user friendly Web 
platform, has been achieved. 

The most time-consuming algorithm is the 
curve-skeleton calculation; in our case we selected 
and implemented the thinning approach as the most 
appropriate (Palágyi and Kuba, 1999). A 3D curve-
skeleton is a very compact representation of a three 
dimensional object, and its 3DFD provides very 
good and reliable results.  

 
Figure 3: Curve-skeleton generation time and speedup for 
executions over 512 x 512 x 512 voxelized models. GPU 
executions on the NVIDIA GTX 580. CPU execution on 
Intel i7-920, an eight-threaded CPU. 

A standard calculation of a 3D skeleton takes 
around 8 minutes to be obtained, which is a very 
time-consuming process. After the 3D thinning 
algorithm multi-threaded implementation, for GPU 
and multi-core CPUs, we obtained a substantial 
execution-time improvement, when compared to the 
traditional mono-threaded version. We used two 
parallel programming models: CUDA and OpenCL. 
Figure 3 shows the running time of each parallel 
version, where the speedup achievement using  the 

optimized parallel algorithms for the GPU is showed 
to be improved 97,9x against the CPU single-
process version, and more than 19x over the CPU 
multithreaded version, being this  two interesting 
results. 

 
Figure 4: Box-Counting optimization. C-CPU algorithm 
(mono-threaded) vs. CUDA-GPU algorithm (multi-
threaded). Execution time and speedup. 

We have also designed and implemented a 
parallel optimized version of the box-counting 
algorithm. This algorithm run faster in CPU than the 
curve-skeleton calculation, taking just a few 
seconds, which may be considered a good execution 
time. However, the execution time may be tediously 
longer when performing the box-counting 
calculation on a set of n case studies. In addition, the 
segmentation threshold (which is an input parameter, 
as seen in Figure 2) may need to be tuned and, thus, 
several runs have to be executed using different m 
threshold values. Thus, the execution time has to be 
multiplied by n and m in the simplest case. Figure 4 
shows the CUDA implementation runtime of the 
box-counting algorithm. The obtained results 
detected an average 27-fold improvement for the 
best case, thus decreasing the execution time from 
around 28 seconds to only one second when using 
the highest model of resolution (512 x 512 x 512 
pixels).  

5 CONCLUSIONS 

We have developed effective and efficient 
algorithms to obtain the FD from 3D images, 
obtaining a complete brain characterization. These 
algorithms have been drastically optimized and 
implemented in a user-friendly Web platform that 
currently is in the last stage of testing by our 
research group and selected medical staff. This 
advanced platform will be available soon to the 
scientific community and we hope it may be a useful 
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tool for early diagnosis of several neurodegenerative 
diseases. 
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