
DESCRIPTION PLAUSIBLE LOGIC PROGRAMS FOR STREAM
REASONING

Ioan Alfred Letia and Adrian Groza
Department of Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Keywords: Stream reasoning, Description logic, Plausible logic, Lazy evaluation, Sensors.

Abstract: Stream reasoning is defined as real time logical reasoning on large, noisy, heterogeneous data streams, aiming
to support the decision process of large numbers of concurrent querying agents. In this research we exploit
nonmonotonic rule-based systems for handling inconsistent or incomplete information and also ontologies to
deal with heterogeneity. Data is aggregated from distributed streams in real time and plausible rules fire when
new data is available. This study also investigates the advantages of lazy evaluation on data streams.

1 INTRODUCTION

Sensor networks are estimated to drive the formation
of a new Web, by 2015 (Le-Phuoc et al., 2010). The
value of the Sensor Web is related to the capacity to
aggregate, analyse and interpret this new source of
knowledge. Currently, there is a lack of systems de-
signed to manage rapidly changing information at the
semantic level (Valle et al., 2009). The solution given
by data-stream management systems (DSMS) is lim-
ited mainly by the incapacity to perform complex rea-
soning tasks.

Stream reasoning is defined as real time logi-
cal reasoning on huge, possible infinite, noisy data
streams, aiming to support the decision process of
large numbers of concurrent querying agents. In or-
der to handle blocking operators on infinite streams
(like min, mean, average, sort), the reasoning process
is restricted to a certain window of concern within
the stream, whilst the previous information is dis-
charged (Barbieri et al., 2010). This strategy is ap-
plicable only for applications where recent data have
higher relevance (e.g. average water debit in the last
10 minutes). In some reasoning tasks, tuples need to
be joined arbitrarily far apart from different streams.
Stream Reasoning adopts the continuous processing
model, where reasoning goals are continuously eval-
uated against a dynamic knowledge base. This leads
to the concept of transient queries, opposite to the per-
sistent queries in a database. Typical applications of
stream reasoning are: traffic monitoring, urban com-
puting, patient monitoring, weather monitoring from
satellite data, monitoring financial transactions (Valle

et al., 2009) or stock market. Real time events anal-
ysis is conducted in domains like seismic incidents,
flu outbreaks, or tsunami alert based on a wide range
of sensor networks starting from the RFID technol-
ogy to the Twitter dataflow (Savage, 2011). Decisions
should be taken based on plausible events. Waiting to
have complete confirmation of an event might be to
risky action.

Streams of sensor data are often characterised by
heterogeneity, noise and contradictory data. In this
research we exploit nonmonotonic rule-based systems
for handling inconsistent or incomplete information
and also ontologies to deal with heterogeneity. Data
is aggregated from distributed streams in real time and
plausible rules fire when new data is available. This
study investigates the advantages of lazy evaluation
on data streams, as well.

2 INTEGRATING PLAUSIBLE
RULES WITH ONTOLOGIES

2.1 Plausible Logic

Plausible logic is an improvement of defeasible
logic (Rock, 2010; Billington and Rock, 2001). A
clause _a1;a2; :::an is the disjunction of positive or
negative atoms ai. If both an atom and its negation ap-
pear, the clause is a tautology. A contingent clause is
a clause which is neither empty nor a tautology (Rock,
2010).

560 Letia I. and Groza A..
DESCRIPTION PLAUSIBLE LOGIC PROGRAMS FOR STREAM REASONING.
DOI: 10.5220/0003887405600566
In Proceedings of the 4th International Conference on Agents and Artificial Intelligence (IWSI-2012), pages 560-566
ISBN: 978-989-8425-95-9
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Definition 1. A plausible description of a situation
is a tuple PD = (Ax;Rp;Rd ;�), where Ax is a set of
contingent clauses, called axioms, characterising the
aspects of the situation that are certain, Rp is a set of
plausible rules, Rd is a set of defeater rules, and � is
a priority relation on Rp[Rd .

A plausible theory is computed from a plausible
description by deriving the set Rs of strict rules from
the definite facts Ax. Thus, a plausible knowledge
base consists of strict rules (!), plausible rules ()),
defeater (warning) rules (+), and a priority relation
on the rules (�). Strict rules are rules in the classical
sense, that is whenever the premises are indisputable,
then so is the conclusion. An atomic fact is repre-
sented by a strict rule with an empty antecedent. The
plausible rule ai) c means that if all the antecedents
ai are proved and all the evidence against the conse-
quent c has been defeated then c can be deduced. The
plausible conclusion c can be defeated by contrary ev-
idence.

The only use of defeaters is to prevent some con-
clusions, as in ”if the buyer is a regular one and he
has a short delay for paying, we might not ask for
penalties”. This rule does not provide sufficient evi-
dence to support a ”non penalty” conclusion, but it is
strong enough to prevent the derivation of the penalty
consequent. The priority relation � allows the repre-
sentation of preferences among non-strict rules.

Decisive plausible logic consists of a plausible
theory and a proof function P(l f ;), which given a
proof algorithm l and a formula f in conjunctive nor-
mal form, returns +1 if l f was proved, �1 if there
is no proof for l f , or 0 when l f is undecidable due
to looping. Plausible Logic has five proof algorithms
fµ;a;p;b;gg, one is monotonic and four are non-
monotonic: µ monotonic, strict, like classical logic;
a= b^p; p plausible, propagating ambiguity; b plau-
sible, blocking ambiguity; and g = p_b.

2.2 Translating from DL to Plausible
Logic Programs

Facing the challenge to reason on huge amount of
noise and heterogeneous data, the OWL fragment cor-
responding to Horn clauses, known as Description
Logic Programs (Grosof et al., 2003), can be a suit-
able choice. This section exploits the work in (Gomez
et al., 2010) in order to translate description logic
based ontologies into plausible logic axioms.

Conjunctions and universal restrictions in the right
hand side of inclusion axioms are converted into rule
heads (Lh classes), whilst conjunction, disjunction
and existential restriction appearing in the left-hand
side are translated into rule bodies (Lb classes). Fig-

T (C v D) = Tb(C;X)! Th(D;X)
T (>v 8P:D) = P(X ;Y)! Th(D;Y)
T (>v 8P�:D) = P(X ;Y)! Th(D;X)
T (a : D) = Th(D;a)
T ((a;b) : P) = P(a;b)
T (Pv Q) = P(X ;Y)! Q(X ;Y)
T (P+ v P) = P(X ;Y)^P(Y;Z)

! P(X ;Z)
where

Th(A;X) = A(X)
Th(CuD;X) = Th(C;X)^Th(D;X)
Th(8R:C) = R(X ;Y)! Th(C;Y)
Tb(A;X) = A(X)
Tb(CuD;X) = Tb(C;X)^Tb(D;X)
Tb(CtD;X) = Tb(C;X)_Tb(D;X)
Th(9R:C) = R(X ;Y)! Tb(C;Y)

Figure 1: Mapping from DL ontologies into strict rules.

ure 1 presents the mapping function T from DL to
strict rules in a plausible knowledge base, where A,
C, and D are concepts such that A;C 2 Lb, D 2 Lh,
A is an atomic concept, X , Y , Z variables, and P, Q
roles.

3 DATA STREAM MANAGEMENT
SYSTEM IN HASKELL

This section details the system architecture, as de-
picted in figure 2. The user is responsible to define
the priorities and the plausible rules in order to han-
dle contradictory data for the problem in hand.

3.1 The Haskell Platform

The advantages which Haskell brings in this land-
scape, lazy evaluation and implicit parallelism, are
significant features when dealing with huge data
streams which are parallel in nature. The parralel
performing of reasoning tasks is of significant impor-
tance in order to provide answers in due time (Valle
et al., 2009). The Haskell’s polymorphism allows to
write generic code to process streams, which is par-
ticularly useful due to the different exploitation of
the same data stream. The absence of side effects,
means that the order of expression evaluation is of no
importance, which is extremely desirable in the con-
text of data streams coming from different sources.
One challenge when answering in real-time to many
continuously queries is query optimisation. Allowing
equational reasoning, can be exploited for automatic
program and query optimisation. A premise specified
as lazy is matched only when its variables are antici-

DESCRIPTION PLAUSIBLE LOGIC PROGRAMS FOR STREAM REASONING

561

Framework
Plausible Theory

Haskell Platform

Streams
Module

.

.
Decisive

Plausible Tool

Mapping
Module

Facts

Strict
Rules

Plausible Rules
and Priorities

Figure 2: System architecture.

pating to participate in the answer to a pending con-
clusion or query.

The continuous semantics of data streams assumes
that: i) streams are volatile - they are consumed on
the fly and not stored forever; and ii) continuous pro-
cessing - queries are registered and produce answers
continuously (Barbieri et al., 2010). In our case, the
rules are triggered continuously in order to produce
streams of consequents. The stateless feature of pure
Haskell facilitates the conceptual model of networks
of stream reasoners as envisaged in (Stuckenschmidt
et al., 2010), where data is processed on the fly, with-
out being stored. The lazy evaluation in Haskell pro-
vides answers perpetually, when the queries are exe-
cuted against infinite streams. One does not have to
specify the timesteps when the query should be exe-
cuted. By default, the tuples are consumed when they
become available, and only in case they contribute to
a query answer.

The computational efficiency is supported by the
fact that a function is not forced to wait for a data
to arrive - the possible computation are executed in-
stead. Moreover one can use the about-to-come data
by borrowing it from the future, as long as no func-
tion tries to change its value. The non strict semantics
of Haskell, allows the functions to not produce errors
in case these errors can be avoided. Consequently,
some noise data can be avoided, without disturbing
the computations.

There is no constraint on the nature of data fed
by a stream. The functions can be applied on RDF
streams as follows: A triple object is created by the
triple function

data Triple = triple !Node !Node !Node
triple :: Subject -¿ Predicate -¿ Object -¿ Triple

Definition 2. An RDF stream is an infinite list of tu-

ples of the form hsub j; pred;ob ji annotated with their
timestamps t.

type RDFStream = [((sub j; pred;ob j);t)]

Example 1. An RDF stream of auction bids states
the bidder agent, its action, and the bid value: [(: a1; :
sell; : 30E);14:32);(: a2; : sell; : 28E);14:34);(: a3; :
buy; : 26E);14:35);(: a1; : sell; : 27E);14:36)]

3.2 Streams Module

Table 1 illustrates the operators provided by Haskell
to manipulate infinite streams. Considering one wants
to add the corresponding values from two financial
data streams s1 and s2, expressed by two different cur-
rencies:

zipWith + s1 (map conversion s2)

where the conversion function is applied on each el-
ement from s2. For computing at each step the sum
of a string of transactional data, the following expres-
sion can be used: scan + 0 [2;4;5;3; :::], providing
as output the infinite stream [0;2;6;11;14; :::].

The aggregation of two streams takes place ac-
cording to an aggregation policy, depending on the
time or the configuration of the new tuples. Here, the
policy is a function provided as input argument for
the high order function zipWith policy stream stream.
Similarly, generating new stream is done based on
a policy. The incoming streams can be dynamically
split into two streams, based on a predicate p.

3.3 The Mapping Module

The ontologies are translated based on the concep-
tual instrumentation introduced in section 2.2. Two
sources of knowledge are exploited to reason on data

ICAART 2012 - International Conference on Agents and Artificial Intelligence

562

Table 1: Stream operators in Haskell (S stands for the Stream datatype).

Type Function Signature
Basic constructor <:> ::a -> S a -> Sa

extract the first element head:: S a -> a
extracts the sequence following the stream’s head tail:: S a -> S a
takes a stream and returns all its finite prefixes inits :: S a -> S ([a])
takes a stream and returns all its suffixes tails :: S a -> S (S a)

Transfor applies a function over all elements map :: (a -> b) -> S a -> S b
mation interleaves 2 streams inter :: Stream a -> Stream a -> S a

yields a stream of successive reduced values scan :: (a -> b -> a) -> a -> S b -> S a
computes the transposition of a stream of streams transp :: S (S a) -> S (S a)

Building repeated applications of a function iterate :: (a -> a) -> a -> S a
streams constant streams repeat :: a -> S a

returns the infinite repetition of a set of values cycle :: [a] -> S a
Extracting takes the first elements take :: Int -¿ S a -> [a]
sublists drops the first elements drop :: Int -> S a -> S a

returns the longest prefix for which the predicate p holds takeWhile :: (a -> Bool) -> S a -> [a]
return the suffix remaining after takeWhile dropWhile :: (a -> Bool) -> S a -> S a
removes elements that do not satisfy p filter :: a -> Bool) -> S a -> S a

Index return the element of the stream at index n !! :: S a -> Int -> a
return the index of the first element equal to the elemIndex :: Eq a => a -> S a -> Int
query element
return the index of the first element satisfying p findIndex :: (a -> Bool) -> S a -> Int

Aggregation return a list of corresponding pairs from 2 streams zip :: S a -> S b -> S (a,b)
combine two streams based on a given function ZipWith :: (a -> b -> c) -> S a -> S b -> S c

Sensor v 8measure:PhysicalQuality
Sensor v 8hasLatency:Time
Sensor v 8hasLocation:Location
Sensor v 8hasFrequency:Frequency
Sensor v 8hasAccuracy:MeasureUnit
WirelessSensor v Sensor
RFIDSensor vWirelessSensor
ActiveRFIDv RFIDSensor

Sensor(X);Measures(X ;Y)! PhysicalQuality(Y)
Sensor(X);HasLatency(X ;Y)! Time(Y)
Sensor(X);HasLocation(X ;Y)! Location(Y)
Sensor(X);HasFrequency(X ;Y)! Frequency(Y)
Sensor(X);HasAccuracy(X ;Y)!MeasureUnit(Y)
WirelessSensor(X)! Sensor(X)
RFIDSensor(X)!WirelessSensor(X)
ActiveRFID(X)!WirelessSensor(X)

Figure 3: Translating the sensor ontology.

collected by the sensors. On the one hand, one
needs detailed information about sensors, measure-
ments domain and units, or accuracy (see figure 3).
On the other hand domain specific axioms are ex-
ploited when reasoning on a specific scenario.

The rapid development of the sensor technology
rises the problem of continuously updating the sen-
sor ontology. The system is able to handle this situa-
tion by treating the ontology as a stream of description
logic axioms. When applying the high order function
map on the transformation function T , each axiom in
description logic is converted to strict rules as soon as
it appears:

map T [Av B;C v 8r:D; :::]

ouputs the infinite list:

[r1 : A(X)! B(X));r2 : C(X);r(X ;Y)! D(Y); :::]

The main advantage consists in the possibility to dy-
namically include new background knowledge in the
system.

3.4 Efficiency

The system incorporates the Decisive Plausible Logic
tool1. A Haskell glue module that exports functions
requesting proofs (Rock, 2010) is used to make the
connection with the other modules. The efficiency is
mandatory when one needs to reason on huge data
in real time. The efficiency of the proposed solu-
tion is based on the following vectors: i) The im-
plementation of a family of defeasible logic is poly-
nomial (Maher et al., 2001). Plausible logic being a
particular case of defeasible reasoning belongs to this
efficiency class. The possibility to select the current
inference algorithm among fµ;a;p;b;gg can be ex-
ploited to adjust the reasoning task to the complexity
of problem in hand. ii) DLP are subfragments of Horn
logics and their complexity is polynomial, as reported
in (Krötzsch et al., 2007).

1Available at http://www.ict.griffith.edu.au/arock/DPL/

DESCRIPTION PLAUSIBLE LOGIC PROGRAMS FOR STREAM REASONING

563

Milk v Item
Item v 8HasPeak:Time
WholeMilk vMilk
LowFatMilk vMilk
f m1 : WholeMilk
sm1 : LowFatMilk
sm1 : LowFatMilk.

Figure 4: Domain Knowledge for the Milk Monitoring.

r1 : Milk(X)! Item(X)
r2 : Item(X);HasPeak(X ;Y)! Time(Y)
r3 : WholeMilk(X)!Milk(X)
r4 : LowFatMilk(X)!Milk(X)
f1 : WholeMilk(f m1)
f2 : LowFatMilk(sm1)
f3 : LowFatMilk(sm2)
r10: Milk(X);Stock(X ;Y);Less(Y;c1))

NormalSupply(X ;c2)
r11 : HasPeak(X ;Y)* NormalSupply(X ;c2)
r12 : Milk(X);Stock(X ;Y);Less(Y;c1);

hasPeak(X ;Z);now(Z)) PeakSupply(X ;c3)
r13 : AlternativeItem(X ;Z);Milk(X);Stock(Z;Y);

Greater(Y;c4)):PeakSupply(X ;c3)
r14 LastMeasurement(S;Y);HasLatency(S;Z);

Greater(Y;Z)) BrokenSensor(S)
r15 BrokenSensor(S);Measur(S;X)* Stock(X ;)

r13 � r12

Figure 5: Plausible Knowledge Base.

4 RUNNING SCENARIO

The scenario regards supporting real-time supply
chain decisions based on RFID streams. Consider
the stock management of a retailer. RFID sensors
are used to count the items entering on the shelves
from two locations. The clients leave the supermar-
ket from three payment points, corresponding to three
output streams. Monitoring an item like Milk implies
monitoring several subcategories like WholeMilk and
LowFatMilk. The retailer sells a specific item f m1 of
whole milk, and two types of low fat milk sm1 and
sm2. Some peak periods are associated to each com-
mercialised item. This background knowledge is for-
malised in figure 4. The corresponding strict rules are
depicted in the upper part of the figure 5. During peak
periods for an item the usual supply action is blocked
by the defeater r11.

The plausible rule r10 says that if the milk stock
Y is bellow the alert threshold c1, the normalSupply
action should be executed. NormalSupply assures a
stock value of c2. Instead, the PeakSupply action is
derived by the rule r11.

If there is an alternative item Z for the Milk prod-
uct and the stock of the alternative is larger than the
threshold c4, this implies not to supply the higher
quantity c2 (the rule r12). Depending on the prior-
ity relation between the rules r12 and r13, the action is
executed or not.

The sensor related information can be integrating
when reasoning. If the sensor S seems not to function
according to the specifications in the ontology, it is
plausible to be broken (the rule r14). A broken sensor
defeats the stock information asserted in the knowl-
edge base related to the measured item (the defeater
r15).

The merchandise flow is simulated by generating
infinite input and output streams. Assuming that the
function randomItem :: [Item]�> Item, based on the
list of availalbe items returns a random item. The out-
put stream for the payment point out1 would be:

out1 = (randomItem l) : out1
where l represents the available items in
the simulation. Assume a stream of sold
items and the time of measurement s1 :
[(sm1;1);(m1;2);(f m1;3);(m2;4);(m3;5);(sm2;6);
(m4;7); ::::].

The updateStock function continously computes
the current stocks based on the s1 stream. Based on
the fact f1 and the rule r3, one can conclude that f m1
is a milk item. Similarly, based on the facts f2 and f3,
the rule r4 cathegorises the instances sm1 and sm2 as
milk items. The filter function is used to monitor each
milk item, either low fat or not:

milkItems = f ilter milk (map f irst s1)
Here, the predicate milk returns true if the input is
of type Milk according to the rules r3 or r4. The
map function is used to select only the first element
from the tuples (item; time) from the stream s1. The
stream milkItems collects all the items of type milk,
and everytime an item occurs, the updateStock ::
Item�> Stream�> Int function is activated to com-
pute the available stock for a specific cathegory. Thus,
by combining ontological knowledge with plausible
rules one can reason with generic products (Milk),
even if the streams report data regarding instances
of specific products (WholeMilk and LowFatMilk),
minimising the number of business rules that should
be added within the system.

5 DISCUSSION AND RELATED
WORK

Stream integration is considered an ongoing chal-
lenge for the stream management systems (Valle

ICAART 2012 - International Conference on Agents and Artificial Intelligence

564

et al., 2009; Calbimonte et al., 2010; Le-Phuoc et al.,
2010; Palopoli et al., 2003). There are several tools
available to perform stream reasoning.

DyKnow (Fredrik Heintz and Doherty, 2009) in-
troduces the knowledge processing language KPL
to specify knowledge processing applications on
streams. We exploit the Haskell stream operators
to handle streams and list comprehension for query-
ing this streams. The SPARQL algebra is extended
in (Bolles et al., 2008) with time windows and pat-
tern matching for stream processing. In our approach
we exploit the existing list comprehension and pat-
tern matching in Haskell, aiming at the same goal of
RDF streams processing. Comparing to C-SPARQL,
Haskell provides capabilities to aggregate streams be-
fore querying them Etalis tool performs reasoning
tasks over streaming events with respect to back-
ground knowledge (Anicic et al., 2010). In our case
the background knowledge is obtained from ontolo-
gies, translated as strict rules in order to reason over a
unified space.

The research conducted here can be integrated
into the larger context of Semantic Sensor Web, where
challenges like abstraction level, data fusion, applica-
tion development (Corcho and Garcia-Castro, 2010)
are adressed by several research projects like Aspire2

or Sensei3. By incapsulating domain knowledge as
description logic programs, the level of abstraction
can be adapted for the application in hand by import-
ing a more refined ontologly into DLP.

Streams being approximate, omniscient rational-
ity is not assumed when performing reasoning tasks
on streams. Consequently, we argue that plausible
reasoning for real time decision making is adequate.
One particularity of our system consists of applying
an efficient non-monotonic rule based system (Maher
et al., 2001) when reasoning on gradually occurring
stream data. The inference is based on several algo-
rithms, which is in line with the proof layers defined
in the Semantic Web cake. Moreover, all the Haskell
language is available to extend or adapt the existing
code. The efficiency of data driven computation in
functional reactive programming is supported by the
lazy evaluation mechanism which allows to use val-
ues before they can be known.

The strength of plausibility of the consequents
is given by the superiority relation among rules.
One idea of computing the degree of plausibility is
to exploit specific plausible reasoning patterns like
epagoge: ”If A is true, then B is true, B is true. There-
fore, A becomes more plausible”, ”If A is true, then B
is true. A is false. Therefore, B becomes less plausi-

2http://www.fp7-aspire.eu/
3http://www.ict-sensei.org/

ble.”, or ”If A is true, then B becomes more plausible.
B is true. Therefore, A becomes more plausible.”

6 CONCLUSIONS

Our semantic based stream management system is
characterised by: i) continuous situation awareness
and capability to handle theoretically infinite data
streams due to the lazy evaluation mechanism, ii) ag-
gregating heterogeneous sensors based on the ontolo-
gies translated as strict rules, iii) handling noise and
contradictory information inherently in the context of
many sensors, due to the plausible reasoning mecha-
nism. Ongoing work regards conducting experiments
to test the efficiency and scalability of the proposed
framework, based on the results reported in (Maher
et al., 2001) and on the reduced complexity of de-
scription logic programs (Krötzsch et al., 2007).

ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for
their useful comments. The work has been co-
funded by the Sectoral Operational Programme Hu-
man Resources Development 2007-2013 of the Ro-
manian Ministry of Labour, Family and Social
Protection through the Financial Agreement POS-
DRU/89/1.5/S/62557 and PN-II-Ideas-170.

REFERENCES
Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic,

N., and Studer, R. (2010). A rule-based language
for complex event processing and reasoning. In Pas-
cal Hitzler, T. L., editor, Web Reasoning and Rule Sys-
tems - Fourth International Conference, volume 6333
of LNCS, pages 42–57. Springer.

Barbieri, D., Braga, D., Ceri, S., Della Valle, E., and Gross-
niklaus, M. (2010). Incremental reasoning on streams
and rich background knowledge. In Aroyo, L., Anto-
niou, G., Hyvnen, E., ten Teije, A., Stuckenschmidt,
H., Cabral, L., and Tudorache, T., editors, The Se-
mantic Web: Research and Applications, volume 6088
of Lecture Notes in Computer Science, pages 1–15.
Springer Berlin / Heidelberg.

Billington, D. and Rock, A. (2001). Propositional plausible
logic: Introduction and implementation. Studia Log-
ica, 67(2):243–269.

Bolles, A., Grawunder, M., and Jacobi, J. (2008). Stream-
ing sparql extending sparql to process data streams. In
Proceedings of the 5th European semantic web con-
ference on The semantic web: research and applica-
tions, ESWC’08, pages 448–462, Berlin, Heidelberg.
Springer-Verlag.

DESCRIPTION PLAUSIBLE LOGIC PROGRAMS FOR STREAM REASONING

565

Calbimonte, J.-P., Corcho, Ó., and Gray, A. J. G. (2010).
Enabling ontology-based access to streaming data
sources. In Patel-Schneider, P. F., Pan, Y., Hitzler,
P., Mika, P., Zhang, L., Pan, J. Z., Horrocks, I., and
Glimm, B., editors, International Semantic Web Con-
ference (1), volume 6496 of Lecture Notes in Com-
puter Science, pages 96–111. Springer.

Corcho, Ó. and Garcia-Castro, R. (2010). Five challenges
for the semantic sensor web. Semantic Web, 1(1-
2):121–125.

Fredrik Heintz, J. K. and Doherty, P. (2009). Stream reason-
ing in dyknow: A knowledge processing middleware
system. In In Stream Reasoning Workshop, Heraklion,
Crete.

Gomez, S. A., Chesnevar, C. I., and Simari, G. R. (2010).
A defeasible logic programming approach to the inte-
gration of rules and ontologies. Journal of Computer
Science and Technology, 10(2):74–80.

Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. (2003).
Description logic programs: combining logic pro-
grams with description logic. In WWW, pages 48–57.

Krötzsch, M., Rudolph, S., and Hitzler, P. (2007). Complex-
ity boundaries for horn description logics. In AAAI,
pages 452–457. AAAI Press.

Le-Phuoc, D., Parreira, J. X., Hausenblas, M., and
Hauswirth, M. (2010). Unifying stream data and
linked open data. Technical report, DERI.

Maher, M. J., Rock, A., Antoniou, G., Billington, D., and
Miller, T. (2001). Efficient defeasible reasoning sys-
tems. International Journal on Artificial Intelligence
Tools, 10(4):483–501.

Palopoli, L., Terracina, G., and Ursino, D. (2003). A
plausibility description logic for handling information
sources with heterogeneous data representation for-
mats. Annals of Mathematics and Artificial Intelli-
gence, 39:385–430.

Rock, A. (2010). Implementation of decisive plausible
logic. Technical report, School of Information and
Communication Technology, Griffith University.

Savage, N. (2011). Twitter as medium and message. Com-
mun. ACM, 54:18–20.

Stuckenschmidt, H., Ceri, S., Valle, E. D., and van Harme-
len, F. (2010). Towards expressive stream reasoning.
In Aberer, K., Gal, A., Hauswirth, M., Sattler, K.-
U., and Sheth, A. P., editors, Semantic Challenges in
Sensor Networks, number 10042 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik.

Valle, E. D., Ceri, S., van Harmelen, F., and Fensel, D.
(2009). It’s a streaming world! reasoning upon
rapidly changing information. IEEE Intelligent Sys-
tems, 24:83–89.

ICAART 2012 - International Conference on Agents and Artificial Intelligence

566

