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Abstract: An algorithm for solving continuous-time stochastic optimal control problems is presented. The numeri-
cal scheme is based on the stochastic maximum principle (SMP) as an alternative to the widely studied dy-
namic programming principle (DDP). By using the SMP, (Peng, 1990) obtained a system of coupled forward-
backward stochastic differential equations (FBSDE) with an external optimality condition. We extend the
numerical scheme of (Delarue and Menozzi, 2006) by a Newton-Raphson method to solve the FBSDE system
and the optimality condition simultaneously. As far as the authors are aware, this is the first fully explicit
numerical scheme for the solution of optimal control problems through the solution of the corresponding
extended FBSDE system. We discuss possible numerical advantages to the DDP approach and consider an
optimal investment-consumption problem as an example.

1 INTRODUCTION sentation, which is an extension of the well-known
Feynman-Kac formula. However, the FBSDE repre-
We consider continuous-time stochastic control prob- sentation cannot be directly applied to the HIB equa-
lems where the state variable is a controlled stochastiction unless the optimal control is known as an explicit
process of Markovian type and the objective function function. Instead, by using the SMP, we obtain a cou-
depends on the state and on the control. These typePled FBSDE system for the adjoint equations. The
of problems typically appear in mathematical finance coupling arises through the additional optimality con-
and economics. The most common method to solve dition only.
these problems is the dynamic programming princi- In addition to reviewing briefly the connection be-
ple (DPP), which leads to the well-known Hamilton- tween stochastic control problems and FBSDE sys-
Jacobi-Bellman (HJB) equation. Various numerical tems, the main objective of this paper is to present a
schemes take advantage of the DDP’s discrete versioncomplete numerical algorithm by obtaining approx-
by performing a backward algorithms or directly solv- imate solutions to a certain class of optimal control
ing the HJB partial differential equation using a finite problems. We need to use advanced numerical meth-
difference scheme. ods for the FBSDE because of the coupling which
In this paper, we consider an alternative approach arises from dependence of the state process on the
to the problem based on the stochastic maximum controls and is therefore connected to the controlled
principle (SMP), which leads to a system of cou- objective function. Therefore, we take advantage of
pled forward-backward stochastic differential equa- an existing numerical scheme for coupled FBSDEs,
tions (FBSDE) plus an external optimality condition. initially proposed by (Delarue and Menozzi, 2006)
This was first studied by (Peng, 1990). It is well and extend it to satisfy the optimality condition.
known that a quasilinear PDE has a FBSDE repre-  The paper’s outline is as follows. After the prob-
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lem definition in section 2, we briefly derive the corre-

sponding FBSDE representation for the adjoint equa-
tions and state a verification theorem in section 3. In
section 4 we discretize the time-continuous problem
and provide the numerical scheme using a Markov
chain approximation and a Newton-Raphson method
for the optimization. A brief comparison of the com-

e b(-,m),0(-,m satisfy a linear growth condition
with respect toc:

vreA,  |b(x,m|+|o(x,m| <C(1+x|). (6)

To ensure the boundedness of the objective function
(2) we further assume:;

putational costs between our method and the stan- e f(t,-,1),9(-) satisfy a quadratic growth condition:

dard dynamic programming approach together with
first results from an application on an investment-

consumption problem are presented in section 5. The

paper concludes with some outlook to further devel-
opment.

2 PROBLEM STATEMENT

Throughout the paper we assume a given probability
spacg Q,F,P), endowed with a d-dimensional Brow-
nian motion(W):>0, whose natural filtration is de-
noted by{F }t>o.

Consider the following problem. The dynamics of
a controlled diffusion proces§, which represents the
state of our system, are given by:

dX% =b(X, % )dt+0 (X, %)dW, Xo=x€eR", (1)

and the goal is to maximize a given objective function
with finite time horizon[0, T] over admissible con-
trols ft= {T }tcjo,1) € A:

- T
J(t,x, 1) ;== §" [/t f(s,Xs, T)ds+ g(Xr)

X = x} .
)

Here, A is the set of all progressivekt-measurable
controls which takes its valuag in a compact set
ACTRR". Ifit exists, we will denote the optimal control
by:

" ;= argmax(t, x, T1),
TeA

V(t,x) €[0,T] xR", (3)
and the value function by:
V(t,X) 1= supeaJ(t, X, 71, V(t,x) € [0,T] xR

4)

2.1 General Conditions

For each fixedt e A, we ensure the existence of a
unigue solution to the controlled forward SDE (1) by
the following assumptions:
e b(-,1),0(-, ) are uniformly Lipschitz continuous
with respect to:

vie A, dlb(xa, ) — b(xp, 70| + o1, 1) — G (%o, 0|

S C|Xj_ - X2|7

®)
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Yt € [0,T], VIte A, e
90|+ [ (t.x ] <C(1+[x?), VxR
Both proofs can be found in (Pham, 2009) chapter 3.2.
For further proceedings we assume also that:

e b,o,f g are twice continuously differentiable
with respect tocandTt

vt e[0,T), (b,0,f,0)(t,,-) €CH¥R"A), (8)
e f, g are uniformly concave with respect xoand
T

To be explicit, we use a Markov Chain approxima-
tion in section 4.1. In order to calculate the Brown-
ian increments for this Markov chain approximation
in (36),0 needs to be invertible. This also means that
d = n. Otherwise, we can use Quantization methods
or Monte Carlo simulations to calculate expectations
instead. This would make no difference to the general
scheme.

3 THE STOCHASTIC MAXIMUM
PRINCIPLE

3.1 Derivation of the FBSDE

Following (Pham, 2009), let us suppose there exists
a unique solutiov € C13([0,T) x R") nCO([0, T] x
R") to (4) and an optimal contrdt* € A described in
(3) with associated controlled diffusioq satisfying
(2).

The adjoint equations can be derived in two basic
steps, namely 1) derive the HIB equation at the opti-
mal control with respect tg:

Ox (Buv(t, %) + G(t X, 78, Dev(t, %), CRv(t, X)) ) = O,

(9)
whereG: [0,T] x R"x Ax R"x R™" — R is given
by:

G(t,x, 1, p,M) := b(x, ) p+ tr(c0’ (x, M)
+f(t,x ).
(10)
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2) Apply Ito’s formula toCyv(t,X;) and plug in the
above relation (9). After a few calculations, the ad-
joint equations come out as:

) —dOMmEX) =
OxH (t, X, T, Dxv(t, %), TRv(t, X))o (X, 1§ ) )dt
—DEV(ta)Q)G(XtaT'f)de

Oxv(T, X7) = Oxg(%
where the so called Hamiltoniaih:

)s
[0,T] x R"x Ax
R" x R™9 —; R is defined by:

H (t,x,TLY,2) := b(x, Ty + tr(a’ (x, 1)Z] +  (t. %, T0).
(11)
Furthermore, sinces is continuously differen-
tiable with respect tat, we get:

0= 0nG(t, X, T, Dhv(t, %), O2v(t, X))
= OnH (6. X, T8, Oxv(t, %), RV(t, X) o (%, 1))

Assuming concavity oH with respect tat, H must
attain a maximum at;’ .

Let us summarize the above results. Under the

above assumptions ahtlbeing concave with respect
to 11, the triple:
(R ¥, 20) = (X, Oxv(t, %), ORv(t, X)o (X, %))
is the unique solution to the coupled FBSDE system:
X = x+ [ob(X TE)ds+ Jo0(Xs, TC) AV,
Vo= Oxg(Xr)+ i OcH(S X, T8, Ys, Zs)ds

— )i ZsdW,
(12)
such that the following optimality condition holds:

% = argma (t, X, 7, %, Z). (13)
TREA
3.2 \Verification Theorem

Theorem 1. Suppose that there exists a unique so-
lution v € C13([0, T] x R",R) of the value function
(4). Let(X,¥;,Z) and the controft := {1¢ };cjo.1) be

value u(T,X7) := g(Xr) and apply Ito’s formula to
Oxu. Comparing the diffusion term with the backward
SDE forY; we getZ; = 02u(t, X )o (X, ¢). Compar-
ing the drift terms we get a third order PDE which
is exactly the derivative of the HIB equation with re-
spect tox. Since the solution of this PDE is unique,
the verification is completed by using the verification
theorem for the HIB equation.

The concavity oH is an important condition for
the connection of the optimal control problem and the
optimality condition for the FBSDE. This condition
mainly specifies the problem class for applications.
Recall that we already assumédj to be concave in
section 2.1.

4 ANUMERICAL SCHEME FOR
SOLVING THE FBSDE

Let us state the complete (coupled) FBSDE problem
one more time:

X =X+ f(; b(X57 Tlé)dS—l— f(g O-(XSa le)dV\éa

Yo =Y+ [ OH(S X6, TG, Yo, Zo)ds— ;T Zed W,

TI;K :argma)ﬁ(GAH(t;)(thrt;Yt;Zt)v

whereXo = x andYy = Oyxg(X7).

(14)

4.1 The Discrete Problem

Following (Kushner and Dupuis, 1992), let us define
a fixed, scalar approximation parameter 0. In the
following, the superscriph denotes the dependency
on this approximation parameter. LZHC >0, fork=
0,....,N—1,N < o, discretize the time intervg0, T|
by defining:

k-1

to:=0, ti:=AM to= ZoAtih, tn=T.
=l

Suppose thait!! — 0, ash — 0. Let:

associated solutions to the FBSDE system (12) such Ck:= {(&))jei, Ik CN} CR", Vk=0..N, (15)

that the optimality condition (13) holds. Additionally
assume thag(-) andH (t, -, Y, Z ) are uniformly con-
cave in(x,m). Then:

e it is the optimal control of the stochastic control
problem (4) and; is the solution of the associated
controlled state process (1),

o (Y.20) = (Dv(t, %), DRv(t, X)o (R, 7))
Proof. The proof of the first statement is given in
(Pham, 2009) Theorem 6.5.4.

For the second step we define a functidh, %)
via its first derivativelku(t, %) :=Y; and its terminal

be a spatial grid satisfying {Cc Cj, for all

j < i. Furthermore, we denote the set of ad-
missible, piecewise constant controls by =
{fte A| T is constant ovelty, tx.1), Yk < N —1}.

To calculate the propagation of the state process
from time tx to tx, 1, we choose the Markov chain
approximation method here. As mentioned above,
we can use different methods like Quantization. The
Markov chain is defined by its transition probabilities:

vk=0,..,N—1,V& € Cy, V& € Ciua,

P(E], & |Ti(&1)) = pll (Tw(&))). (16)
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We denoteAgy = Ex.1 — k. The discrete Markov
chain approximatiorfx converges to the real state
process (1) ay — 0, if the following local consis-
tency conditions hold:

ExA&k = b(&k, Th) A (Ek, Th) + 0(AtP (Ek, T)),
Van A& = [00] (8k, Ti) ALY 8k, Th) + (AR &k, k),
SUR ,/A&k| — 0, ash — 0,

17)
whereEy is the conditioned expectation given all in-
formation up to timé& and Vay is the variance accord-
ingly. For methods to derive proper transition proba-
bilities see (Kushner and Dupuis, 1992).

For any controfi" € A", we define the following
approximation of the objective function (2):

Jh(tk,X,ﬁh) =
EL (30 (6, &, )AL+ g(En) [ 8 =X,
and the approximation of the value function (4) by:
V(%) = maxd(t, x, ). (19)
fhcAh

(18)

4.2 A Controlled Forward-Backward
Algorithm

Starting from final timeT going backwards, let us

1

ZE) =% S PO E)aw,  (24)

th
k &eCyig

whereAijI is calculated via the Euler relationship:

o' = o (el i) (&' — & - b(E] n)atl). (25)
The main contribution in our paper is the explicit

pre-calculation ofit* via (20). This is the essential
step in our scheme to solve an optimal control prob-
lem through a FBSDE representation. The signifi-
cance is that the optimization is performed externally
from the backward calculations f&,Y;,Z in (22),
(23), (24) and does not include the calculation of ex-
pectations. This will be outlined more precisely in the
following sections.

4.3 Optimization

At first appearance, the difference of the above
method to dynamic programming is that in the for-
mer method the optimization does not have to be per-
formed over an expectation operator. Instead, opti-
mization is performed over a known explicit function
in (20) whereH is given by:

b(E!, Y., , +trlo’ (&), mZ), ] + f(t. &), 1), (26)

suppose we have already calculated the approxima- .

tionsY ;(-), ZR ;1 () for (41). Now, let us use these
functions as natural predictors for the still unknown
Y (-) andZ})(-) respectively. Theivé) € C we cal-
culate:

%, (&) = argmanH (. € Y1 (8)), 20, (8)).
_ (20)
For notational simplicity we denote (£!) by ", If
we think of the contrott; in (41) as being a function
of t, X, ¥, Z:

nii(t,Xt,Yt,Zt)=arg]r12g>H(tk,Xt,Tr,%,Zt), (21)

we can replace the control variable by this function in
the FBSDE system (41) and receive a fully coupled
FBSDE system without control.

To solve the coupled FBSDE system we make

whereY,,; := Y ;(&)). To be explicit, we consider
the Newton method in a line search algorithm, see
(Nocedal and Wright, 2006) for details. For fixed
points in space and time j we guess a starting point

1 € A and perform the following iteration:

ntl=m4p, fori=1,..,m (27)

A careful reader might notice that the step length is
1 here, which is enough in Newton’s method to hold
the Wolf conditions. In the exact Newton method, the
search directionp' € R" are calculated by solving the
linear system:

O2H (1) p' = OpH (10). (28)

SinceH is smooth enough and the HessiagH (1t) is
positive definite - see above assumptions - the method

use of existing numerical schemes. In particular, we CONVErges to a local minimum and the rate of conver-
choose the algorithm for coupled FBSDE systems 9ence of{ 1t} is quadratic. For a proof see (Nocedal
proposed by (Delarue and Menozzi, 2006) using the and Wright, 2006), Theorem 3.2 and Theorem 3.5.

pre-calculated controrﬂf‘ (20). The algorithm then
reads as follows:

VRE) = f(tkzi,rqij)mp

+ ZE'eCkH le< (TQ*)VJ‘H(E' ),
= DXH(tk,éi_,lrr{i,YkL(aj>,ZL‘+1(EJ'))mp
+ ZE'eCkH le< (Tﬁi*)Yﬂl(E' ),

(22)
YP(ED)

(23)
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In detail, to solve the optimization in (20) for one
point(tx,&’') we denote:

H (T[) = fH (tkvaj 7T[7_Ykh+1(§j )’ZE_H-(EJ)) -
—b(&!, MY, , —tr[o’ (8], mZ}, ] — f(t, &1, m),
(29)
and calculate:

Hr= *beYkhﬂ—l - Z OHZILjﬂ — fr
I’J
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Hroe = —br¥f .y — 5 Ol 1 — o 4.5 Known Convergence Results

1,]
For a specific subclass of stochastic control problems,
b,o, f,F by gr = Ung(m) and the Hessians b the convergence of the proposed FBSDE scheme can

accordingly. Note thaby, by, 0%, oW, fri, fro are be rigorously proved. Suppose that only the drift is

known continuous functions, given by the problem controlled, i.e.o(x,-) = o(x). We also drop the time-
definition. Then we solve the system: dependence in the coefficients. Furthermore, suppose

o _ that
(R
Hrn(Tt) p' = Hr(0), e 00’ is positive definite,

and repeat this procedure until the error is smaller o [, H(x 1(x,y,2),y,2) and Oxg(x) are Lipschitz
than a certain specified. If b, o, f are too complex continuous irx,

to derive the first or second derivatives by hand, one 24a Tor . .
can use methods of automatic differentiation’ to cal-  *® Exg ed% (R"), for a >0, and its norm in
culate them. An introduction into these methods can Wnoec.
be found for example in (Nocedal and Wright, 2006). Note thatH = by+tr[a’Z + f, is linear and Lipschitz

where we denote the gradients for all functians

4.4 Full Algorithm

Recall that the the space grid at time polatis

indexed byl in (15) and G is defined by (10).

Therefore, the full algorithm reads as follows:

Vj€ln,

i = argmaxG(T. &), 1 O.g(E)). I50(8))). (30)

VI(E) =g(&), Y =0.g(E),

I
Yk=N-1..0,
VJ S Ika
setrqj(0 = qu(*_l. Fori = 1..imax SOIve:
H i i =H i )
mifp o
Tq( = Tq( + P,
until || p'|| < ce". Setr* = ",
hegiy — i i \Ath
V(&) f(t, &, 1 )AL (33)

+ ZE' €Cr1 le<| (T[li*)vkh.kl(al ),

WE) = Dl 08 T W (6, 204 (61)
+ 3 e, P (YL (E),
1 (34)
ZE) =25 3 PEONEAY, (35)
k &'eCyia

whereAijI is calculated via the Euler relationship:

A = o1l ) (€' - &~ b(E m)at). (36)

continuous iry, z by definition.

Also remember that we have written the optimal
control variablat as a function of the state variables
X,¥,Z. Then, according to (Delarue and Menozzi,
2006), the numerical FBSDE scheme converges. We
remark that a general proof of convergence for con-
trolled diffusion processes, i.eo(x, ), would be
analogous to proving the existence and uniqueness of
a fully nonlinear PDE. Such a proof is beyond the
scope of this paper.

5 APPLICATIONS

5.1 An Investment-consumption Model

As an example, let us consider an investment-
consumption model with convex transaction costs.
Convex transaction costs preserve the problem from
the usual bang-bang control, see (Davis and Norman,
1990). Itis a reasonable assumption in certain mar-
kets, e.g. scarce commodities.

Let A € R denote the portfolio owner's mone-
tary amount of assets and kat (3; > O denote his in-
vestment and deinvestment rate at timespectively.

Let the convex functiong?, f* € C?(R,R) determine
the transaction costs, respectively. Furthermore, let
B: € R denote the portfolio owner’s bank account,
which pays a deterministic interest rate> 0. Let

the dynamics of the states be given by:

dA = (WA +o0¢—B)dt+oAdW,  Ag=ap,
dB = (rBi—c—a+pB)dt

—(f%on) + fR(Ry))dt, Bo = bo,

(37)

wherepy, o > 0. W denotes a standard Brownian mo-
tion andc¢; > 0 denotes the portfolio owner’s con-
sumption at time.

The goal of the risk averse portfolio owner is to
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maximize his expected, concave utility= C?(R,R)

from consumption over a given time horizén
J(t,a0,bo,a,B,C) =
Eo [ Jg & u(e)dt+ €T u(Ar + Br)| a0, bo|

(38)

v(t,a,b)= max J(,ab,a,B,c), (39)

(a,B,c)eA
whereA is the set of allk-measurable control strate-
gies, o > 0 denotes the owner's impatience to con-
sume andgg denotes the expectation operator with
information set at time zero.
Using this problem setup, the Hamiltonian
H(t,x,y,z 0, B, c) in (11) takes the following form:

H=[oc— B+ LAY
+ 1Bt — & — ot + B — (% (o) + FP(Bo)] y°
+(0A) 2 + e %u(q).
(40)
For the example calculations below, we choose log-
utility and quadratic transaction costs:

u(x) = In(x),

f%a)=ca?, fP(b)=ck? forc>0.
Then, the adjoint equations become:

19
—dYA = (YA +0ZM) dt— ZPMW, YA = &g %;T
—dY® =rY&dt, YB= S

(41)

There are similar problems that have a strictly con-
cave Hamiltonian with respect to the controls. One
example is when the trading activities 3 influence
the asset drifti(a, B), which is called feedback con-
trol.

5.2 Numerical Results

To produce the results below, we implement the nu-
merical algorithm with Matlab using parallel process-
ing on an eight core machine.

We implemented the forward-backward (FB) al-
gorithm of section 4.4 in two ways: using a
Markov chain approximation and using a Quantiza-
tion method. Since the latter method attained bet-

In order to evaluate the functiox,YA Y8 ZAA at

the points( +1vB|]<+1) we used a linear interpola-
tion/extrapolation.
In the Figures below, we usdd? = |I| = 1007

space pointsN = 100 time stepsl. = 20 quantiza-
tion points,C € [0.2,2.2] x [0.2,2.2] as space grid
and[to, T] = [0, 2] as time interval. Moreover, we set
pn=5%,r =3%,06=2%,0=0.2 andc = 0.1%.

Figure 1 shows the consumptionfor five differ-
ent space point6A, B) over time. Figure 2 shows the
surface of the combined contral — 3* at time step
k=98. The average calculation time for one time step
was 2.6 seconds.

(A B)=(0.35,035)
B)= (0.66,0.66)

time

Figure 1: Optimal consumptiog for five different space
points, using the FB algorithm. Plots of the optimal con-
sumption of the original Merton problem are added in red
color.

0.2 0.4 0.6 0.8 1 14 16 18 2 22

Figure 2: Optimal controb*
the FB algorithm.

— B* at timety = 1.96 using

The consumption in this problem is close to the
consumption of the original Merton problem without
transaction costs. A slight irregularity can be seen
for (A,B) = (0.35,0.35) for smallt. This shows the
truncation error that propagates inside the space grid

ter results, we present the results of this method While going backward in time. The selected point is

here. Therefore, leAW, i = 1,...,L denote the pre-
calculated Brownian increments and Ipt denote
their probabilities. For simplicity, we used a log-
scaled, time-constant grid C. Then, for a fixed time
pointty, we calculated for each grid pomf!\k BJ yeC
its propagatio — Al +0A}, foreachi = 1...L,
where:
AA =

(WA + g — Bo)At + CAPIVALAW.  (42)

88

affected first since it is close to the lower space grid
boundary (0.2,0.2). Sind%‘z—r = 0.5, the optimal con-
trols a*, 3* should be zero whenevér= B, as in the
original Merton problem.

To compare the results with the dynamic pro-
gramming (DP) approach, we used the Matlab op-
timization toolbox. We obtained the best results
with the provided Sequential Quadratic Program-
ming (SQP) method, which is based on a line search
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guasi-Newton method. Details can be found at timization iterations are required. For example, in one
http://www.mathworks.com/help/toolbox/optim/. We dimension the FB algorithm h@% the computational

needed to sdt = 40 and used a spline interpolation cost of the dynamic programming approach. The ad-
method to get reasonable results at all. vantage of the FB algorithm is that we do not need

Figure 2 show the surface of the combined, opti- to optimize over the entire value function, which re-
mal controla* — 3* at time stefk = 98. The calcula-  quires one to recalculate the expectation in the value
tion time for one time step was 450 seconds. function for at leasin times. This is very computa-

In this example, our FB algorithm is 170 times tionally expensive. Instead, one only has to optimize
faster than the DP method. This is due to 1) the the Hamiltonian, which is a much simpler procedure.
smaller amount of function evaluations and 2) the dif-
ferent interpolation method needed.

Moreover, thea* — * surface of the FB method 6 CONCLUSIONS
in Figure 2 is smooth, while the surface of the DP
method in Figure 3 already has become rough at time
stepk = 98, indicating instability. One reason may be
that in the DP method, the optimization is performed
over the highly nonlinear value function. In our
FB algorithm, the optimization step depends on the
functionsY; andz; only.

We have proposed a complete numerical algorithm to
solve optimal control problems through the associated
FBSDE system. By complete we mean that the algo-
rithm explicitly includes the optimization step. Our
numerical approach is an alternative to standard dy-
namic programming methods. A comparison of com-
s putational cost between the dynamic programming
" method and the FBSDE method illustrate the advan-
tages of the FBSDE approach.

We included results of a numerical example that
commonly appears in finance and economics. These
results confirm the advantage in accuracy and compu-
tational efficiency of the FB algorithm compared to
the dynamic programming method for certain prob-

12

_ _ ’ _ _ lem classes.
Figure 3: Optimal controtr* — B* at timet, = 1.96 using A next step would be to analyze the convergence
the DP method. speed and the convergence error in theory and practice
in detail.

5.3 Comparison of Computational Cost

We briefly compare our FB algorithm with the stan-
dard dynamic programming approach. Mt = |l|; REFERENCES
that is,M is the number of grid points in each dimen-

. . . Davis, M. and Norman, A. (1990). Portfolio selection with
sion of space where we havedimensions. Also,

transaction costs. |Mathematics of Operation Re-

let L be the number of calculated transition proba- search, Vol. 15, No. 4The Institute of Management
bilities (or, alternatively, the number of quantization Sciences/Operations Research Society of America.
points/simulations if we use a Quantization/Monte Delarue, F. and Menozzi, S. (2006). A forward-backward
Carlo method). N is the number of time-steps and stochastic algorithm for quasi-linear pdes.Tine An-
let m be the number of iterations for the Newton- nals of Applied Probability, Vol. 16, No. 1, 140184
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