
USING GENETIC ALGORITHMS WITH LEXICAL CHAINS

FOR AUTOMATIC TEXT SUMMARIZATION

Mine Berker
1
 and Tunga Güngör

1,2

1 Boğaziçi University, Computer Engineering Dept., Bebek 34342, Istanbul, Turkey

2 Universitat Politècnica de Catalunya, TALP Research Center, Barcelona, Spain

Keywords: Automatic text summarization, Lexical chains, Genetic algorithms, Lexical cohesion.

Abstract: Automatic text summarization takes an input text and extracts the most important content in the text.

Determining the importance depends on several factors. In this paper, we combine two different approaches

that have been used in text summarization. The first one is using genetic algorithms to learn the patterns in

the documents that lead to the summaries. The other one is using lexical chains as a representation of the

lexical cohesion that exists in the text. We propose a novel approach that incorporates lexical chains into the

model as a feature and learns the feature weights by genetic algorithms. The experiments showed that

combining different types of features and also including lexical chains outperform the classical approaches.

1 INTRODUCTION

With the rapid increase in the amount of online text

information, it became more important to have tools

that help users distinguish the important content.

Automatic text summarization (ATS) is a process

that addresses this need, where a computer produces

a summary of a text that contains the most important

information. Text summarization studies mostly use

sentence scoring methods (Mani, 2001). Following

the work of Edmundson (1969), several text features

were introduced in text summarization studies. Paice

and Jones (1993) used stylistic clues and constructs.

Kupiec, Pedersen and Chen (1995) checked the

presence of proper names. Statistical measures of

term prominence derived from word frequencies

were used by Brandow, Mitze and Rau (1994).

Generally, a number of features drawn from

different levels of analysis may contribute to the

salience of a sentence. A summarization system

must have an automatic way of finding out how to

combine different text features. A solution is to use

machine learning methods. In some studies, genetic

algorithms (GA) were employed to learn the

importance of different features for summarization

(Mani and Bloedorn, 1998; Kiani and Akbarzadeh,

2006; Dehkordi, Khosravi and Kumarci, 2009;

Fattah and Ren, 2009).

Barzilay and Elhadad (1997) proposed lexical

chains to identify the cohesion in the text. A lexical

chain can be defined as a sequence of words that are

related to each other (Barzilay, 1997). The semantic

relations between words were found using WordNet.

Once the chains are built, the concepts represented

by strong chains are used to select the sentences.

After this work, many researchers followed the

lexical chain approach. Silber and McCoy (2000)

proposed an algorithm to compute lexical chains that

is linear in space and time. Brunn, Chali and Pinchak

(2001) used the degree of connectiveness among the

chosen text portions to identify the most important

parts of the text which are topically more salient. Li,

Sun, Kit and Webster (2007) proposed a model for a

query-focused summarizer. Fuentes and Rodriguez

(2002) proposed a system that combined lexical

chains, coreference chains, and NamedEntity chains.

In this work, we combine the two approaches of

sentence scoring and lexical chain computing to

generate summaries by using genetic algorithms. In

addition to shallow, syntactic text features, we use

lexical chains as a feature to score sentences in a

deeper and semantic manner. One novelty of this

study is incorporating the lexical chain concept into

a sentence scoring system as a new type of feature.

These chains are expected to identify the cohesion

that exists in the text and assign higher scores to

sentences that are semantically related to each other.

595Berker M. and Güngör T..
USING GENETIC ALGORITHMS WITH LEXICAL CHAINS FOR AUTOMATIC TEXT SUMMARIZATION.
DOI: 10.5220/0003882405950600
In Proceedings of the 4th International Conference on Agents and Artificial Intelligence (SSML-2012), pages 595-600
ISBN: 978-989-8425-95-9
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

2 PROPOSED APPROACH

In this work, we use a sentence extraction approach

that makes use of different properties of the text to

weight the sentences. Each sentence is given a score

calculated using the scores of different features. The

system first goes through a training phase, where the

weights of the text features are learned using

machine learning methods. Then, in the testing

phase, the sentence score is calculated for each

sentence in a newly-introduced document using the

feature scores for that sentence and their respective

score weights. Then the sentences are sorted in

descending order of their scores and the highest

scored sentences are selected to form the summary.

2.1 Text Features

In this study, we represent each sentence as a feature

vector formed of 12 features extracted from the text.

For each sentence in a document, a sentence score is

calculated using the feature scores of these text

features. Each feature score is normalized to the

range [0,1]. We group the text features used in this

study into three classes according to their level of

text analysis. Table 1 shows the features and the

classes. The features are explained below.

Table 1: Features used by the summarizer.

Feature class Feature

Location features Sentence location

 Sentence relative length

Thematic features Average TF

 Average TF-IDF

 Similarity to title

 Cue words

 Named entities

 Numerical data

 Sentence centrality

Cohesion features Synonym links

 Co-occurrence links

 Lexical chains

F1-Sentence location: Usually the initial

sentences in a document are the most important

ones. We score the first sentence of the document

with 1.0, the second sentence with 0.8, etc., and the

sentences past the fifth sentence get a score of 0.

F2–Sentence relative length: We assume that

longer sentences contain more information. For a

sentence s in a document d, the feature score is

calculated as follows, where ns denotes the number

of sentences in the document:

(1)

F3–Average TF: The term frequency (TF) metric

is based on two assumptions: i) The importance of a

term for a document is directly proportional to its

number of occurrences in the document, ii) The

length of the document does not affect the

importance of the terms. The TF score for a term t in

a document d is calculated as follows, where nt

denotes the number of terms in the document:

(2)

For a sentence s in the document d, the feature score

is the average of the TF scores of all the terms in s.

F4–Average TF-IDF: The term frequency-

inverse document frequency (TF-IDF) metric makes

one more assumption: iii) A term in a document that

occurs rarely in the document collection is more

important than a term that occurs in most of the

documents. For a term t in a document d given a

corpus c, the TF-IDF score is calculated as follows,

where nd is the total number of documents in the

corpus and the document frequency df denotes the

number of documents in which the term occurs:

(3)

For a sentence s in document d, the feature score is

the average of TF-IDF scores of all the terms in s.

F5–Similarity to title: This feature considers the

vocabulary overlap between a sentence and the

document title. It is calculated as follows:

(4)

where s-terms and t-terms are the set of terms that

occur, respectively, in sentence s and in the title.

F6–Cue words: This and the next two features

assume that sentences that include some types of

special items contain salient information about the

document. Thus the scores of these sentences are

increased depending on the number of such entities.

This feature counts the number of cue words (such

as especially, certainly) in a sentence:

(5)

F7–Named entities: This feature counts the number

of named entities (such as proper nouns) in a

sentence. In this work, named entities are recognized

using the University of Illinois Named Entity Tagger

(http://cogcomp.cs.illinois.edu/page/software/). The

ICAART 2012 - International Conference on Agents and Artificial Intelligence

596

feature score is calculated as follows:

(6)

F8–Numerical data: Terms that are written in

numerical form sometimes convey key information

about a document. We test the usefullness of such

terms using this feature. This feature counts the

number of numerical terms in a sentence:

(7)

F9–Sentence centrality: This feature measures

the vocabulary overlap between a sentence and the

other sentences in the document. This is an

indication of the importance of a sentence for a

document. For a sentence s in the document d, the

feature score is calculated as follows:

(8)

where c-terms is the number of common terms that

occur both in s and in a sentence d other than s, and

nt is the number of terms in the document.

F10–Synonym links: This feature is another form

of sentence centrality and attempts to measure the

centrality of a sentence using the number of

common synonymous words in the sentences. We

consider nouns only and we extract the nouns in

sentences using the LingPipe part-of-speech (PoS)

tagger (http://alias-i.com/lingpipe/). The synonymy

relation between two nouns is determined by looking

whether they have a synset in common in WordNet.

The feature score is calculated as follows:

(9)

where s-links is the number of synonym links

between s and other sentences in the document, and

ns is the number of sentences in the document.

F11–Co-occurrence links: The co-occurrence of

two terms signals semantic proximity between these

terms. A sentence whose terms have several co-

occurrences with terms in other sentences can be

deemed as important. To compute this feature, all

the bigrams in the document are considered and their

frequencies are calculated. If a bigram in a document

has a frequency greater than one, then this bigram is

assumed to be a collocation. Then, terms of the

given sentence s are compared to the terms in other

sentences. This comparison checks if a term in s

forms a collocation with a term in another sentence.

If so, there is a co-occurrence link between this

sentence and s. The feature is calculated as follows:

(10)

where c-links is the number of co-occurrence links

of s and ns is the number of sentences in document.

2.2 Lexical Chains

A novel aspect of the proposed approach is using the

lexical chain concept as a sentence feature in the

system. We first compute the lexical chains for the

document, give a score to each chain, and select the

strongest chains. Then, we score the sentences

according to their inclusion of strong chain words.

The lexical relations between words are extracted

using WordNet. When lexical chains are computed,

each word must belong to exactly one chain. There

are two challenges here. First, there may be more

than one sense for a word (ambiguous word) and the

correct sense must be identified. Second, a word

may be related to words in different chains. The aim

is to find the best way of grouping the words that

will result in the longest and strongest chains.

In this work, we consider only nouns as the

candidate words and first determine the nouns using

the LingPipe PoS tagger. Then, we use a novel

method to disambiguate the candidate words. The

nouns are sorted in ascending order of their number

of senses. Hence, the least ambiguous words are

treated first. For each word, we find an appropriate

chain that the word can be added according to a

relatedness criterion between the chain members and

the word. This criterion compares each member of

the chain to the candidate word to find out if

 the sense of the lexical chain word belongs to

the same synset as the sense of the candidate word

 the synset of the lexical chain word has a

hyponym/hypernym relation with the synset of the

candidate word

 the synset of the lexical chain word shares the

same parent with the synset of the candidate word in

a hyponym/ hypernym relation.

The search process continues for every sense of

the candidate word until an appropriate chain is

found. If such a chain is found, the current sense of

the candidate word is set to be the disambiguated

sense and the word is added to the chain. Otherwise,

a new chain is formed for every sense of the word.

When a new candidate word is compared to these

chains, it will be possible to find a relation between

the new word and any of the senses of the previous

word. The problem is that there may be more than

one chain for the same word. This problem is solved

by removing the word from the other chains as soon

as a second word is related with a sense of the word

in one of the chains. This is illustrated in Figure 1

where the word flower is related to the second sense

USING GENETIC ALGORITHMS WITH LEXICAL CHAINS FOR AUTOMATIC TEXT SUMMARIZATION

597

of the word plant and thus the other two senses of

plant are deleted.

Step 1: No chains

Step 2 (processing the word plant):

Chain1  plant: buildings for carrying on industrial

labor
Chain2  plant: a living organism lacking the power

of locomotion

Chain3  plant: something planted secretly for
discovery by another

Step 3 (processing the word flower):

Chain2  plant: a living organism lacking the power

of locomotion; flower: a plant cultivated
for its blooms or blossoms

Figure 1: Lexical chain management example.

As the lexical chains are formed, each chain is

given a score. The score of a chain depends on both

its length and its homogeneity, and is a product of

these two measures. The length is the number of

occurrences of the members of the chain. Its

homogeneity is inversely proportional to diversity:

(11)

After the chain scores are obtained, strong chains

are determined and selected. In this work, a strong

lexical chain must satisfy the following two criteria:

 (12)

Finally, after the chains are constructed and

scored for a document d, the lexical chain score of a

sentence s is calculated as follows, where frequency

denotes the term frequency of a term and ns is the

number of sentences in the document:

 (13)

2.3 Learning Feature Weights and
Summary Generation

The weights of the features are learned using a

genetic algorithm. The score of a sentence is a

weighted sum of the feature scores for that sentence:

(14)

where Fi denotes the score of the ith feature and wi

its weight. In this work, wi’s can range from 0 to 15.

During training, for each training document, first

the feature scores are computed for the sentences in

the document. At each iteration of the genetic

algorithm, feature weights are initialized randomly.

Then the sentence scores are calculated and a

summary is generated and evaluated for each

document. The process repeats and the average of

the precisions (Eqn. 15) gives the performance of

that iteration. The best of all the iterations is selected

by the genetic algorithm.

Each individual of the population is a vector of

feature weights. The vector has a length of 48 bits

since there are 12 features and each feature value

(between 0 and 15) can be represented by four bits.

There are 1000 individuals in the population. At

each generation, the mating operator selects the

fittest 50 individuals and carries them directly to the

next generation. The other 950 individuals are

produced by a selected pair of parents. Each

individual is selected to be a parent according to a

probability rate calculated from its fitness value. A

child is produced by merging the first n bits of the

vector of one parent and the last 48-n bits of the

vector of the other parent, where n is random for

each reproduction. After a child is produced, it is put

through mutation with a predetermined probability.

If it goes through mutation, one of its bits is set to a

random value. Finally, after mutation, the produced

child is added to population for the next generation.

The genetic algorithm is run for 100 generations

to obtain a steady combination of weights. The best

individual that is produced after these iterations is

selected to be the set of feature weights. During

testing, for each document, the sentence scores are

calculated using the learned feature weights.

3 EXPERIMENTS AND RESULTS

The proposed approach was tested using the CAST

(Computer-Aided Summarization Tool) corpus

(http://www.clg.wlv.ac.uk/projects/CAST). We used

100 documents, of which 80 were used for training

and 20 for testing. We performed a five-fold cross-

validation. The results show the average of these

five runs. We used precision as the performance

measure defined as follows, where T is the manual

summary and S is the machine generated summary:

 (15)

3.1 Performance of Single Features

Before analyzing the performance of the proposed

approach, we tested the effect of each feature on the

ICAART 2012 - International Conference on Agents and Artificial Intelligence

598

summarization task separately. For this purpose, we

used the score function (Eqn. 14) with one feature

weight being equal to 1 and the rest to 0. Table 2

shows the success rates.

We can see that using only sentence location

gives one of the best results. The leading sentences

in a document usually give a general understanding

about the topic. Sentence centrality also yields good

results. This feature favors sentences that mention

many of the topics that appear throughout the text.

Moreover, named entities feature shows high

performance. This is a sign that sentences that give

information about specific people or organizations

are likely to be selected for the summary.

Table 2: Success rates of individual features.

Feature Average precision

Sentence location 0.43

Sentence relative length 0.42

Average TF 0.32

Average TF-IDF 0.30

Similarity to title 0.39

Cue words 0.36

Named entities 0.43

Numerical data 0.29

Sentence centrality 0.43

Synonym links 0.42

Co-occurrence links 0.41

Lexical chains 0.40

The lexical chain feature is also among the high

performance features. This can be regarded as a

quite high success rate since it corresponds to using

solely the lexical chain concept without any other

clue important for summarization. This shows that

lexical chains can be used as an intermediate

representation of lexical cohesion that exists

throughout the text to determine the importance of

sentences in that text. This feature makes better

predictions than many of the other text features.

3.2 Performance of the Proposed
Model

In the next experiment, we measured the

performance of the proposed approach which

incorporates the lexical chain concept as a new type

of feature and integrates this with genetic algorithm

learning. Table 3 shows the weight of each feature

calculated during training and the average precision

of the documents summarized during testing.

When all the features are used in the algorithm,

the performance of the system increased to 46%,

which outperforms the success rate obtained by the

best individual feature. Moreover, the system

succeeds to distinguish the features whose effects on

the summarization task are high, and rewards them

by giving the highest weights to these features.

Sentence location and sentence centrality are two

such features that obtained the best individual

success rates and the highest feature weights. The

weight of the lexical chain feature does not seem to

be as high as the weights of features like sentence

location and sentence centrality. However, it

supports and reinforces the results of the sentence

centrality and co-occurrence link features as it

analyzes the cohesion in the text from a different

perspective. While the sentence centrality and co-

occurrence link features analyze the cohesion at the

sentence level, lexical chain feature goes deeper and

analyzes the relations among the nouns that are

spread throughout the text. Also, since the individual

performance of the lexical chain feature is among

the highest rates, it brings a valuable understanding

about the salience of the sentences in the text.

Table 3: Feature weights and success rate of the model.

Feature Feature weight

Sentence location 14

Sentence relative length 3

Average TF 1

Average TF-IDF 5

Similarity to title 4

Cue words 12

Named entities 11

Numerical data 2

Sentence centrality 13

Synonym links 10

Co-occurrence links 12

Lexical chains 5

Average precision 0.46

The results of the experiment show that using

combination of different features increases the

performance of summarization and genetic

algorithms are successful to learn a set of weights

for those features that would result in a better output.

3.3 Alternative Models

In order to compare the results of the proposed

approach with similar methods, we built two other

models by changing some of the parameters of the

system. In the first model, we used a smaller set of

features. Instead of using a single feature or

combining all the features, we considered the first

three features that scored best on their own, together

with the lexical chain feature, and analyzed the

USING GENETIC ALGORITHMS WITH LEXICAL CHAINS FOR AUTOMATIC TEXT SUMMARIZATION

599

performance using only these four features.

The second column in Table 4 shows the weights

of the features learned during training and the

success rate of the model on the test corpus. We can

see that the result is almost the same as the

performance of the system when all the features are

considered.

Table 4: Feature weights and success rates for the

alternative models.

Feature
Feature weight

(top features)

Feature weight

(modified criterion)

Sentence location 14 15

Named entities 3 3

Sentence centrality 14 9

Lexical chains 10 9

Average precision 0.45 0.46

Another alternative model is decreasing the

threshold for determining strong lexical chains.

Assuming that an increase in the lexical chain scores

might affect the performance of the system, we

changed Eqn. 12 in such a way that chains whose

scores are more than one standard deviation from the

average are accepted as strong chains. The four

features in the previous experiment were used in this

model also. The results are shown in the last column

of Table 4. The success is a bit higher, but the

difference is not statistically significant. In order to

observe the effect of the threshold more clearly, the

experiments should be repeated with other

thresholds on corpora of different sizes.

4 CONCLUSIONS

In this work, we combined two approaches used in

automatic text summarization: lexical chains and

genetic algorithms. Different from previous works,

this paper combines information from different

levels of text analysis. The lexical chain concept is

included as a feature in the proposed model. We also

make use of machine learning to determine the

coefficients of the feature combinations. The results

showed that the combination of the features yields

better success rates than any individual feature.

Also, incorporating lexical chains into the model as

a feature increases the success of the overall model.

ACKNOWLEDGEMENTS

This work was supported by the Scientific and

Technological Research Council of Turkey

(TÜBİTAK) BİDEB under the programme 2219.

REFERENCES

Barzilay, R., 1997. Lexical Chains for Summarization.

M.Sc. Thesis, Ben-Gurion University of the Negev,

Department of Mathematics and Computer Science.

Barzilay, R., Elhadad, M., 1997. Using Lexical Chains for

Text Summarization. In ACL/EACL Workshop on

Intelligent Scalable Text Summarization, pp. 10-17.

Brandow, R., Mitze, K., Rau, L., 1994. Automatic

Condensation of Electronic Publications by Sentence

Selection. Information Processing and Management,

31(5), 675-685.

Brunn, M., Chali, Y., Pinchak, C. J., 2001. Text

Summarization Using Lexical Chains. In Document

Understanding Conference, pp. 135-140.

Dehkordi, P. K., Khosravi, H., Kumarci, F., 2009. Text

Summarization Based on Genetic Programming.

International Journal of Computing and ICT

Research, 3(1), 57-64.

Edmundson, H. P., 1969. New Methods in Automatic

Abstracting. Journal of the Association for Computing

Machinery, 16(2), 264-285.

Fattah, M. A., Ren, F., 2009. GA, MR, FFNN, PNN and

GMM Based Models for Automatic Text

Summarization. Computer Science and Language, 23,

126-144.

Fuentes, M., Rodriguez, H., 2002. Using Cohesive

Properties of Text for Automatic Summarization. In

Workshop on Processing and Information Retrieval.

Illinois Named Entity Tagger. http://cogcomp.cs.illinois.

edu/page/software/

Kiani, A., Akbarzadeh, M. R., 2006. Automatic Text

Summarization Using Hybrid Fuzzy GA-GP. In IEEE

International Conference on Fuzzy Systems, pp. 5465-

5471.

Kupiec, J., Pedersen, J., Chen, F., 1995. A Trainable

Document Summarizer. In ACM-SIGIR.

Li, J., Sun, L., Kit, C., Webster, J., 2007. A Query-

Focused Multi-Document Summarizer Based on

Lexical Chains. In Document Understanding

Conference.

LingPipe. http://alias-i.com/lingpipe/

Mani, I., 2001. Automatic Summarization. John

Benjamins, Amsterdam.

Mani, I., Bloedorn, E., 1998. Machine Learning of

Generic and User-Focused Summarization. In 15th

National Conference on Artificial Intelligence, pp.

821-826.

Paice, C., Jones, P., 1993. The Identification of Important

Concepts in Highly Structured Technical Papers. In

ACM-SIGIR.

Silber, H. G., McCoy, K. F., 2000. Efficient Text

Summarization Using Lexical Chains. In 5th

International Conference on Intelligent User

Interfaces, pp. 252-255.

ICAART 2012 - International Conference on Agents and Artificial Intelligence

600

