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Abstract: MDF tree is a data structure (index) that is used to speed up similarity searches in huge databases. To achieve
its goal the indexes should exploit some property of the dissimilarity measure. MDF indexes assume that
the dissimilarity measure can be viewed as a distance in a metric space. Moreover, in this framework is
assumed that the distance is computationally very expensive and then, counting distance computations is a
good measure of the time complexity.
To tackle with a changing world, a problem arises when new points should be inserted in the index. Efficient
algorithms should choose between trying to be efficient in search maintaining the “ideal” structure of the index
or trying to be efficient when inserting but worsening the search time.
In this work we propose an insertion algorithm for MDF trees that focus on optimizing insertion times. The
worst case time complexity of the algorithm only depends on the depth of the MDF tree. We compare this
algorithm with a similar one that focuses on search time performance. We also study the range of applicability
of each one.

1 INTRODUCTION

In the area of similarity based searches, the met-
ric space searching is an arising general approach
that has received special attention. The main fea-
ture of metric space searching is that no assumption
about the structure of the objects to search (points)
is made. Some examples of objects can be: protein
sequences (represented by strings) (Lundsteen et al.,
1980), skeleton of images (trees or graphs) (Carrasco
and Forcada, 1995), histograms of images (Cha and
Srihari, 2002), etc.

At present, several techniques have been pro-
posed based on this approach, however, many of them
are static (Yianilos, 1993)(Brin, 1995)(Micó et al.,
1994)(Navarro, 2002). That is, the insertion or dele-
tion of an object of the database, requires an expen-
sive complete rebuilding of the index that has been
created to speed up the search. Some indexes that
tolerate efficient insertions have been developed, but
their quality, in search time, degrades as insertions
goes on and requires periodic rebuilds.

In (Micó and Oncina, 2009) was proposed a tech-
nique that is free of this inconvenience. The produced
indexes, based on MDF (Most Distant to the Fa-
ther) trees (Micó et al., 1996)(Gómez-Ballester et al.,

2006), do not degrades with insertions. By construc-
tion, the obtained indexes are exactly the same that
would be obtained if all the inserted elements were
available when the index was firstly built. Moreover,
the proposed technique is shown to allow insertions
making, on average, a number of distance computa-
tions bounded byO(log2n), wheren is the number of
objects in the database.

In some applications an average ofO(log2n) dis-
tance computations can be too high. In this work, we
are going to propose an algorithm to insert in MDF
trees, that tights this bound at expenses of allowing
some degradation. Now, the worst case is bounded by
O(logn), the depth of the tree.

In the Experiments section we study the degrada-
tion and compare both strategies.

2 THE MDF-TREE

The MDF tree is a binary indexing structure based on
a hyperplane partitioningapproach.

The MDF building algorithm (Alg. 1) begins by
randomly choosing a point in the database as repre-
sentative of the root of the tree. Then, it searches the
most distant point of the actual representative and
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Algorithm 1 : Building MDF.

function build(ℓ,S)
input : S∪{ℓ}: set of points to include in the

tree
ℓ: future left representative of the tree

output: T: tree
begin

T = emptyTree() ;
if isEmpty(S) then

MT = ℓ ; // New representative
rT = 0 ; // Assigns radius

else
r = argmaxx∈Sd(ℓ,x);
rT = d(ℓ, r) ; // Assigns Radius
Sℓ = {x∈ S|d(ℓ,x)< d(r,x)} ;
Sr = {x∈ S|d(ℓ,x)≥ d(r,x)}−{r} ;
TL = build(ℓ,Sℓ);
TR = build(r,Sr);

end
return T

end

splits the database in two. The present representa-
tive will become the representative of the left node
and its farthest point will become the representative
of the right node. Each point in the database will be
distributed depending on which representative is the
closest. This procedure is repeated recursively while
there are still points in the database. In each node of
the tree the representative and the distance to the far-
thest point is stored. This information is used by a
branch and bound algorithm to find the nearest neigh-
bour in sublinear time.

The main difference with other tree based indexes
is that, in the MDF, the representative of a left child
is always the same that its father. This allows further
savings in distance computations when searching.

2.1 Dynamic Insertion

When a point is going to be inserted in the tree, firstly
the tree is depth-traversed in order to find the node
where the point should be placed. The place to insert
the new item in the tree is the node were the distance
between the new element and the left representative
exceeds the current radius.

In the restructuring algorithm the subtree is re-
placed by a new MDF subtree built with all the points
in the old subtree plus the point to be inserted (Alg. 2).
It was shown (Micó and Oncina, 2009) that the inser-
tions usually happens in very deep levels of the tree,
then rebuildings are usually not very costly.

In the non restructuring algorithm (Alg. 3),the ra-
dius of the node is updated and the procedure is re-

Algorithm 2 : Restructuring insertion.

function insert(T,x)
input : T: MDF-tree

x: object to be inserted
output: T: tree
begin

if d(MT ,x)> rT then // rT changes
// Rebuild the branch
return build(MT ,T ∪{x}−{MT});

end
if isEmpty(TL) then // Is a leaf

// Build the leave
return build(MT ,{x});

end
// Otherwise, follow the search
dℓ = d(MTL ,x);
dr = d(MTr ,x);
if dℓ < dr then // follow left branch

TL = insert(TL,x)
else

TR = insert(TR,x)
end
return T;

end

Algorithm 3 : Non restructuring insertion.

function insert(T,x)
input : T: MDF-tree

x: object to be inserted
output: T: tree
begin

if d(MT ,x)> rT then // rT changes
; // Update rT
rT = d(MT ,x) ;

end
if isEmpty(TL) then // Is a leaf

// insert as a new leaf
return build(MT ,{x}) ;

end
// Otherwise, follow the search
dℓ = d(MTL ,x);
dr = d(MTr ,x);
if dℓ < dr then // follow left branch

TL = insert(TL,x)
else

TR = insert(TR,x)
end
return T;

end

cursively called to insert the point in the correspond-
ing subtree. Then finally, the point is always inserted
as a new leaf of the tree. It is easy to see that the time
complexity is, in the worst case, the depth of the tree

RESTRUCTURING VERSUS NON RESTRUCTURING INSERTIONS IN MDF INDEXES

475



that grows with logn.
This procedure avoids to rebuild the subtree but

provokes that the resulting tree is no longer MDF: it
can exists sibling nodes such that the right represen-
tative is not longer the farthest point of the left one.
This leads to a degradation on the performance that
will be observed in the experiments section.

3 EXPERIMENTS

Three sets of databases (synthetic and real data) were
used in our experiments:

• Synthetic prototype sets, generated from uniform
distributions in the unit hypercube, with a dimen-
sion of 15. The Euclidean distance was used as
dissimilarity measure.

• Two string databases:

– A database of 69069 words of an English dic-
tionary. The words were randomly chosen from
the entire dictionary.

– A database of 61293 strings representing con-
tour chains (Freeman, 1970) of the handwritten
digits in NIST database.

In both cases, the edit distance (Levenshtein,
1965)(Wagner and Fischer, 1974) was used as dis-
similarity measure.

3.1 Index Depth Experiments

The first set of experiments was devoted to study the
rise of the depth as the trees are degraded by an in-
creasing number of insertions using the non restruc-
turing method. In order to study that three MDF
indexes representing 5000, 10000 and 15000 points
databases with 15 dimensional points uniformly dis-
tributed in the unit hypercube were chosen (other di-
mensions where checked with similar results). Over
these indexes, 5000 insertion (using the non restruc-
turing method) were performed. In steps of 500 in-
sertions, the depth of the tree was measured. To have
a reference, the same experiments were repeated but
using the restructuring method (note that there is not
degradation when this method is used.) The results
are showed in Fig. 1.

In (Serrano et al., 2011), it was noted that MDF
trees tend to be very unbalanced. Then, the quick
growth of the deep in the restructuring method is quite
natural. Although this behaviour may seem a weak-
ness is in fact a strength. In the same work, it was
shown that the unbalance gives a flexibility that can
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Figure 1: Depths of the trees after the insertions, with a
dataset of samples uniformly distributed points in the unit
hypercube of dimension 15.

be exploited to reduce the expected number of dis-
tance computations. Then, deeper MDF trees does
not imply less efficient indexes.

On the other hand the insertions using the non-
restructuring method are made in the leaves. Then, as
the MDF trees are very unbalanced, insertions in the
deeper branch are very unlikely.

The experiments were repeated with theEnglish
(Fig. 2) andNIST (Fig. 3) databases observing a sim-
ilar behaviour.
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Figure 2: Depths of the trees after the insertions, with a
dataset of samples from the English dictionary.

3.2 Insertion Speed up Experiments

In these experiments the expected number of distance
computations provoked by an insertion using both
techniques are compared.

In order to do that, a series of MDF trees, for in-
creasing database sizes (from 250 to 10000 in steps of
250) were built. In each database, a new point was in-
serted (with both methods) and the involved distance
computations were counted. The experiment was re-
peated for 10000 series of databases.

The experiments were also repeated forEnglish
andNISTdatabases.

It can be observed (Fig. 4) that the non-
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Figure 3: Depths of the trees after the insertions, with a
dataset of samples from the NIST database.

restructuring method is much faster that the restruc-
turing one.

This result was expected since the number of
distance computations (in the average case) for the
restructuring method is bounded byO(log2n) and,
as the non-restructuring method is essence a tree
descent, the number of distance computations is
bounded (in the worst case) byO(logn).

3.3 Performance Degradation
Experiments

These experiments are devoted to study the penalty to
be paid, in search time, due to the degradation of the
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Figure 4: Average number of the distance computations
caused by an insertion, for increasing size database sets and
for synthetic and real data.

MDF trees.
In this set of experiments it was used a similar set-

ting to the used in section 3.1. Three MDF trees with
5000, 10000 and 15000 points were built. In each
tree an increasing number of points (from 0 to 5000)
are inserted using the non restructuring method. Each
time 500 insertions was done a search of 5000 inde-
pendent test points was made. In each search, the
number of distances were counted and the average
for the 5000 is displayed. The same experiment was
repeated using the restructuring insertion method for
control.

It can be seen (Fig. 5) that the difference increases
as the tree.
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Figure 5: Average number of distance computations af-
ter the insertions, with a dataset of samples uniformly dis-
tributed points in the unit hypercube of dimension 15.

The experiments were repeated withEnglish
(Fig. 6) andNIST (Fig. 7) databases.
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Figure 6: Average number of distance computations after
the insertions, with a dataset of samples from the English
dictionary.
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Figure 7: Average number of distance computations af-
ter the insertions, with a dataset of samples from the NIST
database.
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4 CONCLUSIONS

In this work we propose an insertion algorithm for
MDF trees. This algorithm focus on reducing the time
complexity when inserting at expenses of search time
complexity.

We have compared this insertion with the pro-
posed in (Micó and Oncina, 2009) that follows a very
similar strategy but focusing on preserving the MDF
structure and then, its efficiency when searching.

We have found that a big speed up can be obtained
at the expense of worsening search times when the
amount of insertions is moderate.

The study suggests that, when the number of in-
sertions exceeds a threshold, a restructuring of the in-
dex should be performed to recuperate the MDF struc-
ture. This issue will be addressed in future works.

ACKNOWLEDGEMENTS

The authors thank the Spanish CICyT for partial sup-
port of this work through projects TIN2009-14205-
C04-C1, the IST Programme of the European Com-
munity, under the PASCAL Network of Excellence,
(IST–2006-216886), and the program CONSOLIDER

INGENIO 2010 (CSD2007-00018).

REFERENCES

Brin, S. (1995). Near neighbor search in large metric
spaces. InProceedings of the21st International Con-
ference on Very Large Data Bases, pages 574–584.

Carrasco, R. C. and Forcada, M. L. (1995). A note on the
nagendraprasad-wanggupta thinning algorithm.Pat-
tern Recognition Letters, 16:539–541.

Cha, S. H. and Srihari, S. N. (2002). On measuring the
distance between histograms.Pattern Recognition,
35:1355–1370.

Freeman, H. (1970). Boundary encoding and pro-
cessing. Academic Press, Picture Processing and
Psychopictorics:241–266.
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