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Abstract: This paper introduces an alternative method for using ontologies to create a dynamic data model for RDF 
databases or other schema-less databases. The main challenge is how to continuously adapt the data model 
and its queries to new data, which may be imported with any given structure. 

1 INTRODUCTION 

When using schema-less NoSQL databases (Levitt, 
2010), (Stonebraker, 2010), the possibility to import 
data in its original structure is opened. Often, this 
data is imported from flat tables without further 
normalization. The advantage of such an import is 
that any type of data can be imported and that the 
effort of pre-processing data is reduced. Instead, this 
work is transferred from the import phase to the data 
access. The challenge in building a relational data 
model is to create a model, which is robust and 
general enough to be able to accommodate new data. 
The challenge in building systems with schema-less 
databases is to find a way to give the user access to 
all the data in a heterogenic structure within a single 
request to the system. 

The dynamic data model introduced in this paper 
provides a method for implementing ontologies as 
an additional layer between the user interface and a 
database with heterogenic structure. The challenge 
and the motivation for developing such a model can 
be summarized by five requirements: 

 For a schema-less database, where it is possible 
to import data in its original structure.  

 It shall be possible to access all data by the user 
with a simple query. 

 The data model shall be exchangeable and 
expandable at any time. 

 It shall be possible for the user to adapt and 
create new queries if new sources are added or 
new demands emerge. 

 It shall be investigated how ontologies can be 
used to classify and sort the data in a schema-
less database. 

2 BACKGROUND 

Evaluation of the concept will be done by 
implementing the dynamic data model on a system, 
where the mentioned requirements are present. 

2.1 System Environment and Data 
Sources 

The evaluation system can be categorized as a 
decision support system (Shim et al., 2002). Its goal 
is to provide the user with an overview of the 
situation of a geographical region in the hypothetical 
case of a disaster. This will make it possible to 
estimate consequences of a disaster as well as 
providing insights for strategic planning.  

The system is a web-based solution, where a 
common data store is accessible by several users via 
a web interface. The user interface provides 
possibilities to execute queries and display the 
results on a map (Google Maps, (n. d.)) and in 
tabular form. New sources and data structures can be 
added during operation. For this system, the RDF 
(Resource Description Framework) database 
Allegrograph (AllegroGraph, (n. d.)) was used. It 
supports geospatial queries and several 
programming interfaces, e.g. Java Jena, Java 
Sesame, Python and Lisp.  

Typical questions in case of an epidemic, which 
should be answered by combining different data 
sources in this system are: “In a certain region, how 
many hospitals are there per inhabitant?” or “What 
could be the potential economic loss for companies 
in the grocery branch in a given region, when all 
fowl in another region would be lost?”. Such 
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questions are answered by combining several data 
sources and by performing calculations within the 
queries. 

The available data sources can be categorized 
into the following four domains: Political regions, 
demography, company data and branch data for 
categorizing companies. The original data sources 
are collected in six tables. Additionally, political 
maps are available as shape-files (ESRI, 1998). They 
are imported from csv files, where each row defines 
the subject URI, each column the predicate URI and 
the cell value the object literal. The cell value can 
also be converted to an own URI. 

In this paper, the dynamic data model will be 
explained with an example of the domain “Company 
data”. Companies have provided financial data like 
profit, asset and revenue. The example is based on 
the querying of some attributes of that company 
data. In the original input table, revenue is available 
as pairs of “year1” and “revenue1”, “year2” and 
“revenue2” and so on. “Asset” and “Profit” refer to 
the latest year of revenue, which is “year1”. 

2.2 Potential Usage of Ontologies 

The source data structure uses several predicates and 
subjects for the same thing, in this case pairs of 
attributes like “year1” and “revenue1”. One of the 
advantages of ontology-based models is the potential 
use of reasoners for classifying data. In projects like 
HarmonISA (HarmonISA, (n. d.)) the task is to 
classify land types (grassland, forest, sea). The main 
task for the reasoner is to classify new data from 
different sources into a skeleton ontology, see 
(Peedell et al., 2005) based on its attributes. This is 
used to merge data sources and models and to query 
the whole system, which contains several models 
with a single query. In the query, everything that 
fulfills certain criteria is queried independent of the 
reference model.  

Another application of reasoners is presented in 
(Fallahi et al., 2008, p. 354). In this service oriented 
architecture, the reasoner is used for matchmaking 
of requests to services. Each available service is 
modeled in an ontology. The requests, which are 
also modeled in the ontology, are more specialized 
than the services and are classified into classes by 
the inference engine. From the potential services, 
which could fulfill the request, the best match is 
used for the task. 

In our system and in the example with company 
data, the reasoner could be used to classify 
companies into e. g. small, middle and large sized 
companies depending on certain defined criteria. A 

company could be defined as anything that has some 
values from the classes “address”, “employees” and 
“revenue”. However, in order to do that, the 
“address” of a company must not be a literal of the 
class “company”, which happens at the import of flat 
tables (unprocessed in its original form), but it has to 
be assigned its own class “address”. A new layer of 
hierarchy has to be inserted between the company 
URI and the actual address values. The flat data 
structure in the database would have to be 
normalized like in relational databases; i.e. literals 
would have to be transformed to URIs. Otherwise, 
an ontology model would be highly populated with 
only a few subjects and several predicates 
connecting them to objects or in this case to literals. 
As long as the data is not processed, this type of 
classification does not make much sense here. In 
order to still be able to combine the heterogenic data 
sources in flat tables, the dynamic data model was 
developed. 

3 CONCEPT 

This data model is based on two main concepts: The 
creation of artificial classes and the creation of 
database queries by combining elements of subject-
predicate relations. If the content of the model is 
queried, a new query is generated with the concepts 
of the model and used for the actual database. The 
main function of the data model is to provide a 
flexible way to automatically generate queries for 
the database by considering the requests of the user. 
This is done by defining a meta-ontology, which 
consists of the following classes: Class, 
SubjectClass, QueryConcept, SubQueryConcept, 
Group, AtomQuery. The classes and instances in the 
meta-model are completely separated from the 
classes and instances in the actual database. The 
only thing they share is the RDF-database as a 
storage medium. In Figure 1, the database is shown 
to the left with a class “Class1”, an instance 
“Instance1”, two literals “Literal1” and “Literal2”, 
which are connected with “Instance1” via the 
predicates “Predicate1” and “Predicate2”. 

Within the meta-ontology, on the right side of 
Figure 1, instances of Class (Meta-Ontology classes 
are written in italic) are created, which represent 
subdomains in the database and are usually defined 
from the predicates in the database, i.e. the 
predicates in the actual databases are transferred into 
instances of Class in the model. The instances of 
Class are independent of the real classes in the 
database (to the left in Figure 1). In Figure 1, the real 
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Figure 1: Creation of artificial classes for the data model.  

class “Class1” is created as “Class1”, which is an 
instance of Class. SubjectClass instances are 
created, which are mapped to the real existing 
classes in the database. “Class1” in the database is 
represented here by the SubjectClass instance 
“SubjectClassInstance”. This is done by adding the 
URL and name of “Class1” to 
“SubjectClassInstance”. SubjectClass instances are 
then mapped to the instances of Class with the 
predicate “belongsTo”. In that way, the data model 
is independent of the existing classes. Further, the 
predicates in the database e. g. “Predicate1” can also 
be created as classes. This is useful when bundling 
data. The instances of Class are directly accessible 
on the user interface. By selecting an instance from 
Class the possibility to execute queries assigned to 
these instances, is given. The instances of Class can 
be seen as categorizer for queries. 

 In the company data example, the following 
instances are created in Class: “Organization”, 
“Finance”, “Revenue”, “Profit” and “Asset”. In the 
database, the class “Organization” can be found, but 
not the class “Finance”. “Finance” is created as a 
new hierarchical layer between the “Organization” 
and its attributes “Revenue”, “Profit” and “Asset”. 
“Revenue” is made an instance of Class, as it 
contains pairs of “revenue1” and “year1” and so on. 
Although the database is flat, the user interface gets 
a hierarchical structure. 

In order to query the data, QueryConcepts are 
defined and assigned to the corresponding instances 
of Class. A QueryConcept is a template of the 
structure of a query for the database. It works like a 
function   with   filter  parameters   as   inputs  and  a 

SPARQL-query string as output.  
The idea of using QueryConcepts origins from 

(Lutz, 2007), (Klien et al., 2004) and (Bügel et al., 
2007), where a concept with the same name is 
applied for service discovery. Services in systems 
and requirements stated by the user can be described 
using ontologies. It is possible to compare service 
descriptions with the requirements’ descriptions of a 
certain operation. According to (Lutz, 2007, p. 14), 
domain ontologies contain the primitives of a 
domain and provide a shared vocabulary for services 
in the system. Application ontologies, which are 
derived from a domain ontology, contain necessary 
constraints for a certain operation of the system. 
They allow the creation of semantic queries (Lutz, 
2007, p. 21), which contain information about 
requirements and conditions from a certain user 
request. Semantic advertisements are equivalent to 
the semantic queries, but are created for each 
provided service. The semantic queries and semantic 
advertisements are matched against each other, in 
order to select the best fitting service for a selected 
operation. It is possible for a user to select a domain, 
choose an operation and set constraints for that 
operation via a QueryConcept. In the dynamic data 
model, only the idea to define a domain and then to 
select an operation is used. 

A QueryConcept can be explained bottom-up, 
starting with the smallest element, the AtomQuery. 
An AtomQuery is a representation equal to an 
SPARQL statement of one subject and predicate (see 
below).  The  subject  is  related  to  one  instance  of 
SubjectClass.  This   is   a  subject-predicate relation. 
The  constraints  for  the  object are set by filters. An 
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Figure 2: The structure of a QueryConcept. 

example of the structure of a QueryConcept is 
shown in Figure 2. 

In the company data example, the predicate 
“revenue1” and its domain instance “Company” is 
represented as an instance of SubjectClass, forming 
such an AtomQuery. The AtomQuery additionally 
contains information about the data type of the 
predicate for use in filters. As seen in the result 
section, the order of the SPARQL-Statements plays 
a major role for the performance of the system. 
Therefore, it is also possible to define a certain order 
for a statement, which can be adapted for each 
QueryConcept. 

One or more AtomQueries are assigned to a 
Group. Within a Group, each AtomQuery is 
connected by a logical conjunction (AND, in 
SPARQL “.”).  

The purpose of the Group is to allow parallel 
querying of the same thing, which is addressed by 
different predicates.  

One or more Groups define a SubQueryConcept. 
Within the SubQueryConcept, the Groups are 
connected with a logical disjunction (OR, in 
SPARQL “UNION”). In this way, several Groups 
are queried in parallel but with common result 
columns. This process simulates the use of a higher 
normal form in the database. The result format and 
column names of the executed queries for each 
group are the same for all groups. 

Finally, the SubQueryConcepts define the 
QueryConcept, where the SubQueryConcepts are 
connected with a logical conjunction (AND, in 
SPARQL “.”). It allows adding common predicates 
of  parallel  groups  to  the  query  without  having to 

include them in each group.  
The construction of a QueryConcept can be 

demonstrated with the company data example. An 
AtomQuery contains the predicates “year1” and 
“revenue1”. The subject of the statement is an 
instance of the real class “Company” (in the 
database). The AtomQueries are assigned the Group 
“revenueyear1”. The next Group “revenueyear2” is 
made up of “year2” and “revenue2”. The 
SubQueryConcept “revenueyears” is a union of the 
Groups “revenueyear1” and “revenueyear2”. 
Another SubQueryConcept is the company address 
“companyaddress”, which contains one Group. This 
Group contains the AtomQueries for “Street”, “ZIP-
Code” and “City”. The SubQueryConcepts 
“companyaddress” and “revenueyears” now define 
the QueryConcept “companyrevenueaddress”. The 
result of the executed QueryConcept contains the 
following columns: “Street”, “ZIP-Code”, “City”, 
“year” and “revenue”. The code parts below, show 
how a standalone Atomquery, Group, 
SubQueryConcept and QueryConcept could look 
like: 

Atomquery: 
SELECT ?year WHERE {?company x:year1 
?year} 

Group: 
SELECT ?year ?revenue WHERE {?company 
x:year1 ?year; x:revenue1 ?revenue} 

SubQueryConcept: 
SELECT ?year ?revenue WHERE {{?company 
x:year1 ?year; x:revenue1 ?revenue} UNION 
{?company x:year2 ?year; x:revenue2 
?revenue}} 
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QueryConcept: 
SELECT ?name ?revenue ?year WHERE 
{?company x:name1 ?name. {?company 
x:year1 ?year; x:revenue1 ?revenue} UNION 
{?company x:year2 ?year; x:revenue2 
?revenue}} 

As a consequence of the independence from the 
actual database structure, it enables the use of 
several different data models at the same time. The 
data model is customizable for each user. It allows 
data to be imported in its original structure. After the 
import of the original data, where flat tables are 
imported, the data model can be generated in an 
OWL-editor like Stanford Protégé (Stanford 
Protégé, (n. d.)). There, the data model has to be 
manually adapted for the new data sources. 
Afterwards, it can be imported into its own 
namespace and context in the database. 

4 IMPLEMENTATION AND 
RESULTS 

The dynamic data model was implemented with an 
Allegrograph RDF database on a set of about 
300 000 Austrian companies. A Java Sesame API 
was used to access the database. In the software, 
each class of the meta-ontology was equally 
modeled in Java. From these classes, the user 
interface was automatically generated based on the 
data model. In order to use the model, inputs are 
given. In the user interface (see Figure 3), the user 
selects the class (here equivalent to a domain), 
which contains the requested query. After getting the 
class of interest, all available QueryConcepts are 
shown. The user selects a QueryConcept, fills out 
the constraints and generates the query. The query is 
executed in the database returning a result table 
and/or geographic structures on the map. 

 
Figure 3: A screenshot of the user interface. 

Tests on an Intel® Xeon® 3.0 GHz processor 
with 4 GB RAM did show that it was possible to 
construct several types of SPARQL queries, by 
combining the “building blocks”. Also JOINs can be 
created efficiently. The main issue when using the 
dynamic data model was performance, but that is an 
issue for SPARQL and triple stores in general. 
Often, due to the long query times, the execution 
time was not satisfactory and the query did not 
complete. Here, the query complexity was too high 
due to the use of several joins as well as keywords 
like ORDER BY. In order to be able to complete a 
query, the LIMIT keyword had to be used. 
Furthermore, one of the most important performance 
factors, which is can be optimized, is the order of the 
single statements within the query (Stocker et al., 
2008), (Vidal et al., 2010). Therefore, statement 
ordering was considered within the data model. For 
instance, if the order of the statements was 
considered, a certain query did complete within 2 s, 
else it did not complete before execution time-out (4 
min). This shows the impact of wrong statement 
ordering. 

The usage of Stanford Protégé as a data model 
editor has both advantages and drawbacks. Users, 
which are supposed to modify the model, complain 
about the large effort, in order to understand how to 
use the editor and to create queries. On the other 
side, for a person with basic knowledge about 
ontologies, Stanford Protégé provides a very fast 
method for constructing database queries. It is done 
by populating the data model with instances without 
the need of knowing SPARQL. 

5 CONCLUSIONS AND 
OUTLOOK 

The purpose of the dynamic data model was to fulfil 
the requirements stated in Section 1. Results showed 
that it is possible to adapt the data model on a 
running system when new data is imported into the 
schema-less database. The user just needs to add the 
new structure to the model and creates new 
SubQueryConcepts for the corresponding 
QueryConcepts replacing the model in the database. 
This way, the model is exchangeable and 
expandable at any time. A user who knows Stanford 
Protégé or any other OWL editor can add and 
modify each query by manipulating the instances of 
the meta-model. Finally, it could be shown that it is 
not useful to implement the reasoner for this type of 
data but this approach provides an alternative for 
accessing data. The main issue is the performance 
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and the high effort to understand how to use 
Stanford Protégé. It is possible to optimize the 
queries by changing the order of the statements. 

Further development of the dynamic data model 
would be to involve functions from other programs 
or databases, i.e. to let the result table of a 
QueryConcept be the input of another QueryConcept 
containing functions. An AtomQuery could contain 
the link to an operation instead of the link to a 
predicate in the database. That way, the dynamic 
data model would be more powerful in calculation 
and simulation tasks. Another use could be to 
transport the dynamic data model to a relational 
database instead of the RDF-Triple store and use it 
as a query editor. The queries would not be 
SPARQL, but SQL. This would solve the 
performance problem and the RDF-Triple store 
would only be used as storage of the data model. 
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