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Abstract: Tuberculosis is an ancient disease; however, the molecular mechanism of tuberculosis pathology is not 
completely elucidated yet. In our research we aim to contribute to the understanding of the genes/proteins 
that are involved in the infection. As a model for the infection study we use the bacterium Mycobacterium 
marinum, which is closely related to Mycobacterium tuberculosis, the causative agent of tuberculosis in 
humans. M. marinum causes tuberculosis like disease and is applied to the zebrafish larva as a model (host) 
organism. We are using a novel pattern recognition framework which allows for in depth analysis of the 
spread of infection within the zebrafish organism. The amount of infection has been analyzed. However, in 
depth analysis of the spatial distribution was not yet accomplished. Therefore, as a proof of concept we 
investigate the presence of specific spatial and quantitive infection patterns. 

1 INTRODUCTION 

Tuberculosis is a serious disease and a significant 
part of the world population is infected. 
Unfortunately, effective treatment is still difficult 
due to bacteria resistance. In order to elucidate 
which genes are responsible for infection, the 
behavior of the tuberculosis bacteria - 
Mycobacterium tuberculosis needs to be analyzed. 
In our study this behavior is modeled by a close 
relative – the Mycobacterium marinum (Mm). The 
Mm is hosted in cold blooded animals. For our study 
the zebrafish is used as a host. Zebrafish makes a 
good model for analysis as its immune system is in 
many ways comparable to human. The zebrafish 
larvae can be obtained in large numbers and studied 
by fluorescent imaging. In this matter a visual 
inspection of bacteria can be obtained.  

Infection of the zebrafish with Mm is 
characterized by the presence of granulomas. 
Granulomas are clusters of immune cells and 
bacteria indicating infection. They can be visualized 
with fluorescent agents.  

In order to determine which genes of Mm are 
involved in formation of granulomas we created 

1000 random mutants of the Mm bacteria and 
screened for those mutants that were not able to 
efficiently infect zebrafish larvae (Stoop et al., 
2011). We have identified 30 mutant bacteria unable 
to infect larvae.  

In order to gain more insight on the progression 
of Mm infection it is required to analyze infection 
spread in the host, c.q. the zebrafish, over a certain 
period of time. This requires the following questions 
to be answered: (1) Is there a pattern in the 
appearance of granuloma clusters in certain tissues, 
(2) does appearance differ in bacterial mutants.  

The analysis is accomplished though imaging. 
For each zebrafish a bright field and fluorescence 
microscopy image is acquired.  Until recently, these 
images were analyzed manually. The analysis 
included localization of the zebrafish shape and 
qualitative estimation of the granuloma cluster size 
and spread. Consequently, no objective numerical 
data could be retrieved. 

We have designed and implemented an 
automated framework for shape retrieval and cluster 
analysis (Nezhinsky and Verbeek, 2011). This 
framework has been applied in large scale 
applications (Stoop et al., 2011).  
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The framework is based on an algorithm for 
shape retrieval (Nezhinsky and Verbeek, 2010) to 
automatically find the zebrafish shape(s) in the 
image. The algorithm uses deformable template 
matching (Jain et al., 1998) and labels the regions 
for further analysis. This approach made it possible 
to analyze the infection amount per fish in an 
automated fashion.  

As a proof of principle, a study for the detailed 
analysis was performed to find a strategy for 
analysis. As a test case we have chosen mutant 714, 
as it is one of the 30 mutants which does not make 
the fish ill. We are focusing on the question: can we 
analyze the spread and size of the granuloma 
clusters after infecting the zebrafish. In addition, we 
compare similarity in larvae infected with the wild 
type Mm and mutant 714.  

2 DATASET 

The dataset we have used for the analysis consisted 
of 189 infected zebrafish larvae. The larvae were 
divided into 3 groups: not infected larvae [NI](5), 
infected with Mycobacterium marinum [MM](67) 
and those infected with the 714 mutant [714M] 
(117). 

For the infection approximately the same amount 
of bacteria was used; the volume was plated on 
7H10 plates. At injection the zebrafish were 6 days 
old; the imaging was done 5 days past infection 
injection. 

2.1 Microscopy 

Images of wells containing zebrafish were acquired 
with a Leica DC500 microscope. During the 
experiment up to 3 zebrafish larvae were present in a 
single well, as a result a single image can contain up 
to 3 individuals.  

For each well, both bright field and fluorescent 
images were acquired. The bright field image 
contains the zebrafish shape, while the fluorescent 
image contains the signal at granuloma locations. An 
example of such images for a single well is 
presented in Figure 1 and 2. As can be seen the 
fluorescent images have very low (and different) 
intensity values, which makes consistent manual 
analysis very difficult and imprecise.  

Images were taken in batches of 30 wells. Each 
batch contained sibling zebrafish larvae of the three 
groups in the same imaging settings. 

 
Figure 1: A bright field image containing up to 3 shapes of 
the zebrafish larva. 

 
Figure 2: A fluorescent image containing the signal of 
granuloma spread. For visualization purposes the contrast 
is enhanced. 

2.2 Software 

The images are the input for the analysis framework 
(Nezhinsky and Verbeek, 2011), which consisted of 
two steps. First the zebrafish are localized and the 
result is used as a mask for the fluorescent image. 
Within the mask a threshold value is determined. 
Finally the data is analyzed and written to a comma 
separated file. 

2.2.1 Bright Field imaging: Shape 
Localization and Annotation 

The algorithm is applied to the bright field images so 
as to obtain a were region of interest (ROI) and 
annotation of the relevant areas. A deformable 
template was used for the retrieval of the zebrafish 
shapes. In order to be able to detect different regions 
of the fish, the template was divided in 11 parts 
counting from head to tail (numbered from 0 to 10). 
This allows annotating the shape as well as doing 
spatial analysis. In Figure 3 the graphical 
representation of a prototype template (Felzenwalb, 
2003) used for our experiments is shown. Parts 0 
and 1 can be seen as the head region, 2 till 4 as the 
trunk region and other slices as the tail region. This 
division of the larva in parts is inspired from the 
literature  (Volkman et al., 2004).  The  injection site 
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of infection is located at approximately part 5 
(Cosma et al., 2006). 

 
Figure 3: Graphical representation of the prototype 
template used for our experiments. The template is created 
from averaging a test set of 20 training shapes(Cootes et 
al.,1994).  

2.2.2 Fluorescent Imaging: Analysis 

For the actual measurement of clusters fluorescent 
images were used and related to the mask size, 
obtained from the bright field images. 

The NI group is expected to have no infection at 
all and thus the level of their maximal fluorescent 
signal is considered as noise level n. No infection/ 
granuloma formation is present at NI, therefore this 
group was only used to obtain a noise level 
reference. In the other groups all signal below n is 
considered noise, while all signal above represents 
granuloma presence. This signal is analyzed per fish 
and written to an csv file as shown in Table 1 

2.2.3 Output and Dataset Creation 

Output is created in the form of an overlay image 
containing the found zebrafish and infection as 
shown in Figure 4 and csv file. 

 
Figure 4: Graphical output of the framework overlaid on 
the original image for the top fish in the image. The 
magenta line denotes the shape mask contour and the blue 
regions indicate the presence of granuloma formation. 
This image is created in an automated fashion. 

 

Table 1: Fields contained in the output csv per larva.  
Field name Explanation 
TotalArea Total shape area 

ClusterCount (CC) Total amount of 
clusters in the larva. 

ClusterTotalSize (CS) Total sum of the area 
covered by all clusters. 

ClusterCountAt[#] 
(CC[#]) 

Like ClusterCount but 
measured for a single 

template part. 

ClusterTotalSize[#] 
(Short: CS[#]) 

Like ClusterTotalSize 
but measured for a 

single template part. 

Clusters of bacteria are labeled and for each of the 
clusters the surface area is determined (CS[#]). The 
total area (CS) of the spread is the sum over all 
clusters. From the template we define 11 parts and a 
cluster is always assigned to the part center with 
closest geometrical distance (Nezhinsky and 
Verbeek, 2010). In Figure 5 we show the part 
centers as they are annotated on the fish. 

 
Figure 5: Output for a single zebrafish larva. The yellow 
dots denote the annotated part centers. 

3 ANALYSIS AND RESULTS 

In this section an analysis of the results is presented. 
First the distribution of the clusters is discussed and 
second a relation to the amount of infection is 
established from the data. 

3.1 Distribution of Cluster Amount 

In our study we set out to analyze the relationship 
between mutant and wild type in the amount of 
clusters and spatial distribution. To that end we 
compare the average number of clusters (CC[] 
variable) between MM and 714 (cf. Figure 6). 
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Figure 6: Spatial comparison of the average amount of 
clusters for MM and 714M in relation to the zebrafish 
template with a 95% confidence interval. 

At this point this distribution is not conclusive. This 
is due to the fact that the mean was taken from a 
dataset with a certain scatter. We have analyzed the 
scatter and the results are depicted in Figure 7. 

 
Figure 7: Scatter plot of the amount of clusters in each 
case of the test set used. 

We are interested in the distribution of the 
granuloma clusters and in order analyze the different 
batches in the same way we normalize the CC[#] 
over the total CC. The normalization is done for 
each individual case and subsequently the mean is 
calculated. In Figure 8 the results are depicted.  

 
Figure 8: Spatial comparison of the normalized amount of 
clusters for MM and 714M with a 95% confidence interval 
as compared to the zebrafish template. 

From the graph we can observe that MM and 
714M have the same behavior. The mean and the 
95% confidence interval suggest that the two 
distributions can be considered as similar.  

Our null hypothesis states that, under assumption 
that the two groups are independent, their variances 
are equal. We therefore, apply the Levene's Test for 

Equality of Variances to the CC[i], i in range [0,10]. 
The results are shown in Table 2.  

Table 2: Levene’s test for equality of variances for CC[i]. 

Part assume F Sig. 

CC0 Equal var 5,836 0,017** 
CC1 Equal var 1,526 0,218* 
CC2 Equal var 6,834 0,010** 
CC3 Equal var  0,403 0,526* 
CC4 Equal var 0,431 0,512* 
CC5 Equal var 1,508 0,221* 
CC6 Equal var 6,545 0,011** 
CC7 Equal var 4,200 0,042** 
CC8 Equal var 0,483 0,488* 
CC9 Equal var 4,029 0,046** 
CC10 Equal var 0,192 0,662* 

For zebrafish parts 1, 3, 4, 5, 8, 10 the 
significance is always > 0.05 and thus the hypothesis 
is accepted, the corresponding variances are equal 
(marked with * in Table 2). 

For parts 0, 2, 6, 7 and 9 the variances 
significantly differ (marked with ** in Table 2). 
Finally, we performed the independent samples t-
test. Based on the results from Levene’s test we 
know which variances significantly differ; in Table 3 
only the correct assumptions are listed. 

Table 3: t-test for Equality of Means. 

Part assume t Sig. 
(2-t) 

Mean 
Diff 

Std. Err 
Diff 

CC0 !Equal var 0,014 0,989 0,000 0,014 

CC1 Equal var 0,244 0,808 0,006 0,023 

CC2 !Equal var -0,909 0,365 -0,024 0,027 

CC3 Equal var 0,417 0,677 0,005 0,013 

CC4 Equal var 2,216 0,028* 0,020 0,009 

CC5 Equal var -0,844 0,400 -0,018 0,022 

CC6 !Equal var -1,225 0,222 -0,015 0,013 

CC7 !Equal var 0,815 0,416 0,005 0,007 

CC8 Equal var 2,093 0,038* 0,013 0,006 

CC9 !Equal var 1,603 0,112 0,008 0,005 

CC10 Equal var 0,270 0,787 0,000 0,001 

We observe that there is a significant difference 
(this means significance < 0.05) in the mean value 
for parts 4 and 8 (marked with * in Table 3). 

Preliminary conclusions are as follows. In the 
head the largest percentage of clusters is found, 
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followed by the injection site. Globally the 
distribution is the same for both the MM and the 
714M. Exceptions are part 4, adjacent to the 
injection site, and part 8 where a significant larger 
distribution of the MM bacteria is found compared 
to 714M. 

3.2 Distribution of the Amount of 
Infection 

Next, we analyze the relation between mutant and 
wild type in the area covered by granulomas (cf. 
CS[#]). In Figure 9 a graph, with 95% confidence, is 
depicted of the comparison of the average area of 
infection between MM and 714M. 

 
Figure 9: Spatial comparison of the average total cluster 
size for MM and 714M in comparison to the zebrafish 
template. 

Again, as with the cluster count, we normalize the 
CS[i] over the total CS for both MM and 714M and 
compare the results in Figure 10.  

 
Figure 10: Spatial comparison of the normalized average 
total cluster size for MM and 714M. 

From the graph in Figure 10 it seems the mean 
and the distribution is similar for some parts and 
very different for others; i.e. 1, 4, 5 seems to have a 
very different mean. Again, our null hypothesis 
states that, under assumption that the two groups are 
independent, the variances are equal. We apply the 
Levene's Test for Equality of Variances to the CS[i], 
with i in range [0,10]. The results are shown in 
Table 4. 

Table 4: Levene’s test for equality of variances for CS[i].  

Part assume F Sig. 

CS0 Equal var 1,245 0,266* 

CS1 Equal var 0,060 0,807* 

CS2 Equal var 5,108 0,025** 

CS3 Equal var 0,159 0,690* 

CS4 Equal var 12,545 0,001** 

CS5 Equal var 10,019 0,002** 

CS6 Equal var 0,750 0,388* 

CS7 Equal var 1,306 0,255* 

CS8 Equal var 0,014 0,907* 

CS9 Equal var 4,466 0,036* 

CS10 Equal var 1,202 0,274* 

For parts 0, 1, 3, 6, 7, 8, 9,10 the significance 
> 0.05 and thus our hypothesis is accepted. The 
variances marked with * in Table 4 are equal and the 
variances marked with ** are different. In Figure 10, 
the differences in the mean seem considerable 
though the variances for MM and 714M remains the 
same.  

To determine the difference of the mean values 
we use the knowledge gained from the Levene’s test 
to do the independent samples t-test. The results are 
shown in Table 5. 

Table 5: t-test for Equality of Means. 

Part assume t Sig. (2-t) Mean 
Diff 

Std. Err 
Diff 

CS0 Equal var 0,016 0,987 0,000 0,021 

CS1 Equal var 2,065 0,040* 0,073 0,035 

CS2 !Equal var -1,739 0,084 -0,046 0,027 

CS3 Equal var 0,517 0,606 0,006 0,012 

CS4 !Equal var 2,176 0,032* 0,041 0,019 

CS5 !Equal var -2,102 0,037* -0,060 0,029 

CS6 Equal var -0,850 0,397 -0,018 0,022 

CS7 Equal var -0,305 0,761 -0,003 0,009 

CS8 Equal var 0,558 0,578 0,004 0,007 

CS9 Equal var 1,443 0,151 0,004 0,003 

CS10 Equal var -0,528 0,598 0,000 0,001 

We observe there is a significant difference in 
the mean value for parts 1, 4 and 5 (marked with * in 
Table 5). This result is in correspondence with initial 
observation of Figure 10 in which these means 
seemed rather different.  

The preliminary conclusions from these findings 
are the following. 
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The larger part of the infection migrates towards 
the head of the zebrafish. The second large part of 
infection, however, remains at the injection site. In 
wild type infected fish (MM), a larger percentage of 
bacteria is located in the head compared to the 714M 
mutant; i.e. significant difference of the mean while 
the variance is equal.  

4 CONCLUSIONS 

We have used a novel framework for automated 
granuloma cluster recognition in order to analyze the 
spatial distribution in zebrafish larvae.  

As a proof of concept we have analyzed the data 
for the zebrafish larva infected with the wild type 
Mycobacterium marinum and one of its mutants 
(714M). 

From a statistical analysis of the data we can 
derive information on the spread of granuloma. 
More granuloma clusters are found in the 
Mycobacterium marinum infected fish. However, if 
we look at the normalized spread of infection it 
behaves approximately the same; it either stays at 
the site of injection or it moves towards the head of 
the larva. For the Mycobacterium marinum it seems 
that the infection is likely to migrate towards the 
head compared to the 714 mutant; in the 714 mutant 
it is established that the majority of the infection 
stays at   the injection site.  

The percentage of the amount of clusters is 
distributed approximately in the same way for both 
test groups. 

In the near future this approach will be further 
elaborated with more mutants and larger dataset. 
Moreover, other measurement parameters will be 
considered in the analysis. Large volumes of 
analysis data will allow doing predictions from the 
measurements using machine learning approaches. 
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