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Abstract: The definitions of optimal preventive and corrective maintenance of electric power distribution networks can
be seen as a special case of a knapsack problem. This paper proposes a dynamic programming approach to
deal with this problem. The approach is developed for one or more years of planning horizon. Case studies
compare the optimal dynamic programming approach with an heuristic method.

1 INTRODUCTION

The optimal allocation of maintenance resources on
power distribution network must define the best com-
promise between investment and system reliability.
Previous approaches relies on heuristic method to ad-
dress this non-linear multicriteria optimisation prob-
lem.

The problem can be viewed as a special case
of multidimensional knapsack problem (Martello and
Toth, 1990). This paper relies on this interpretation
in order to develop an exact optimisation procedure
based on dynamic programming (DP).

Case studies compare the proposed approach with
a previous heuristic algorithm developed to deal with
the problem. Discussion of the case studies gives
some insights into future developments of these ideas.

2 MAINTENANCE ON ELECTRIC
POWER DISTRIBUTION
NETWORKS

Electric power distribution networks are composed
by electric circuits that transport electric energy from
substations to the customers. The system reliability
is measured by indices such asSystem Average In-
terruption Frequency Index(SAIFI) andSystem Av-
erage Interruption Duration Index(SAIDI) (Brown,
2002) which determine the network quality. After oc-
currence of a failure of one equipment, maintenance

actions are employed in order to repair or replace this
equipment. Since failures deteriorates the reliability
indices, actions must be applied (Endrenyi and An-
ders, 2006; Bertling et al., 2007).

All preventive or corrective actions have a cost,
therefore the objective of the optimisation problem is
to minimize the cost of maintenance regarding safety
values for the system reliability.

This work considers a radial network proposed by
(Sittithumwat et al., 2004). This network is divided
in sections defined by protection equipments such as
break-fuses, switch-fuses and reclosers which seek to
avoid the failure throughout the system distribution
network. Besides, all equipments which compose the
system are described into the optimisation model pro-
posed.

2.1 Optimisation Model

The optimisation model proposed (Reis, 2007)
presents an objective function to minimize the cost
of preventive and corrective maintenance action with
a reliability constraints (SAIFI). The SAIFI is calcu-
lated by following equation:

SAIFIt =
∑s∈Sλt

sNs

NT
, (1)

whereS is the set of all sections,λt
s is the failure rate

of sections in the periodt, Ns is the number of cus-
tomers in sectionsandNT is the total number of cus-
tomers in the network.
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The failure rate of sections in periodt, λt
s, can be

calculated by equations:

∑
n∈Nke

xt
en= 1 , (2)

λt
e = λ(t−1)

e ∑
n∈Nke

δkenxt
en (3)

and

λt
s = λs+ ∑

e∈Es

λt
e , (4)

whereλt
e is the failure rate for equipmente in the

periodt, Nke is the set of all preventive maintenance
actions,δken is the failure rate multiplier for equip-
ment ke for action leveln and xt

en is a boolean de-
cision variable denoting whether the equipmente re-
ceived(xt

en= 1) or not(xt
en= 0) maintenance leveln

in periodt.
Finally, the optimisation model is described as:

min
xt
en

HP

∑
t=1

{

∑
e∈E

[

∑
n∈Nke

(pkenxt
en)+λt

ecke

]

×αt

}

s.t. SAIFIt ≤ SAIFIperm ∀t = 1, ...,HP,

whereE is a set that contains all the equipment which
can receive preventive maintenance,SAIFIperm is the
maximum permitted value for SAIFI,pken is the cost
for action preventive leveln for equipmentke, cke is
the cost for action corrective level for equipmentke
andαt is a parameter which is related to each period.

3 KNAPSACK PROBLEM

Since the problems were developed for more than
one year of planning horizon we are going to con-
sider the multidimensional knapsack problem (MKP)
(Martello and Toth, 1990). The MKP could be defined
as a setN = {1, ...,n} of items that should be packed
in a setM = {1, ...,m} of knapsacks with given capa-
cities, b0,i i ∈ M. Associated with every itemj ∈ N
there is a valuec j and a weightai j , which is the
amount of resource used by the itemj in the ith knap-
sack. The goal is to find a subset of the items that
yield the maximum value subject to the capacity con-
straints of the knapsacks. Therefore, a formulation for
MKP can be defined as:

Fn(b) = max
n

∑
j=1

c jx j ,

s. to :
n

∑
j=1

ai j x j ≤ b0,i i ∈ M (5)

x j ∈ {0,1} , j ∈ N,

whereai j , c j , b0,i ≥ 0 for i = 1, ...,m and j = 1, ...,n.

3.1 Knapsack Problem on Dynamic
Programming

A MKP can be solved via dynamic programming,
that chooses items with highest costsc j and with
volumesv j that do not exceed the knapsack capacity
V (Puchinger et al., 2010). The following equation
shows the dynamic programing for the binary knap-
sack problem:

Get Fn(V0)

Where Fk(V) = max{Fk−1(V),Fk−1(V−vk)+ck}

With F0(V) = 0 ∀v
(6)

To determine the optimal solution we should cre-
ate an indicatorIk that is equal 0 ifFk(V) = Fk−1(V)
and 1 otherwise. After that we analyze all indicators
from In up to I1. If the indicatorIk = 0 thenx∗k = 0,
elsex∗k = 1.

4 ADAPTED KNAPSACK
PROBLEM

As from the optimisation model and the presen-
ted knapsack problem we can formulate an adapted
model for the maintenance problem. First, we are go-
ing to present the knapsack problem on dynamic pro-
gramming for one year of planning horizon. In this
model we should define the parameterSAIFIperm as
the knapsack capacityV and defineδsm

ke
and δcm

ke
as

the failure rate multipliers for equipmentke in the ab-
sence and occurrence of preventive maintenance re-
spectively.

Get Fn(V0)

Where Fke
(V) = min

{

Fke−1(V −vcm
ke
)+ pke

+
(

(λke−1δcm
ke
)cke

)

,

Fke−1(V −vsm
ke
)+

(

(λke−1δsm
ke
)cke

)}

With F0(V) = 0 ∀ V,

(7)

where pke is the maintenance preventive cost for
equipmentke, cke is the maintenance corrective cost
for equipmentke, vcm

ke
is the reliability volume cal-

culated for equipmentke which received preventive
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maintenance andvsm
ke

is the reliability volume for
equipmentke which not received preventive mainten-
ance.

The reliability volumes can be defined as the fol-
lowing equations:

vcm
ke

=
(λke−1δcm

ke
)Ns

NT ,

if maintenance is performed, and

vsm
ke

=
(λke−1δsm

ke
)Ns

NT ,

if maintenance is not performed,

(8)

whereNs is the number of customers in sections.
The problem was divided in two subproblems de-

scribing the possible choices of maintenance action.
It means that we can write the number of subproblem
such as 2HP whereHP is the number of years of plan-
ning horizon. Besides, the number of knapsacks is
going to be exactly the number of years of this plan-
ning. Since that the failure rates are dependent year to
year, we must have a different knapsack for each year.
Therefore, to develop a adapted model for more than
one year we must apply the multidimensional knap-
sack problem to the problem. Likewise, we can de-
note this idea for two years of planning horizon.

Get Fn(V1
0 ,V

2
0 )

Where Fke(V
1
,V2) =

min
{

Fke−1(V1−vcm
1,ke

,V2−vcm
2,ke

)

+(2pke)+
(

((λke−1δcm
ke
)+(λke−1δcm

ke
)2)cke

)

,

Fke−1(V1−vcm
1,ke

,V2−vsm
2,ke

)

+(pke)+
(

((λke−1δcm
ke
)+(λke−1δcm

ke
δsm

ke
))cke

)

,

Fke−1(V1−vsm
1,ke

,V2−vcm
2,ke

)

+(pke)+
(

((λke−1δsm
ke
)+(λke−1δsm

ke
δcm

ke
))cke

)

,

Fke−1(V1−vsm
1,ke

,V2−vsm
2,ke

)

+
(

((λke−1δsm
ke
)+(λke−1δsm

ke
)2)cke

)}

,

With F0(V1
,V2) = 0 ∀ V1

,V2
,

(9)

wherevcm
1,ke

is the volume of reliability for equipment
ke which received preventive maintenance at year one,
vcm

2,ke
is the volume of reliability for equipmentke

which received preventive maintenance at year two,
vsm

1,ke
is the volume of reliability for equipmentke

which not received preventive maintenance at year
one,vsm

2,ke
is the volume of reliability for equipment

ke which not received preventive maintenance at year
two, V1 is knapsack for first year andV2 is knapsack
for second year.

However, is important to note that the volume of
reliability calculated to the second year depends on
the choice taken on previous year and the knapsack of
the second year should tolerate both volume of reli-
ability calculated for each year. Thus, the volume of
reliability in this case must be calculated as follows:

vcm
2,ke

= vsm
1,ke

δcm
ke

=
(

(λke−1(δsm
ke

δcm
ke

)) Ns

NT

)

,

if not realized maintenance at year one or

vcm
2,ke

= vcm
1,ke

δcm
ke

=

(

(λke−1(δcm
ke

))2 Ns

NT

)

,

if realized maintenance at year one and

vsm
2,ke

= vsm
1,ke

δsm
ke

=

(

(λke−1(δsm
ke
))2 Ns

NT

)

,

if not realized maintenance at year one or

vsm
2,ke

= vcm
1,ke

δsm
ke

=
(

(λke−1(δcm
ke

δsm
ke
)) Ns

NT

)

,

if realized maintenance at year one.

(10)

Finally, to more years of planning horizon we pro-
ceed in the same way. We increase a knapsack for
each year added and the volume of equipments con-
tinues being calculated depending of choices taken in
previous years.

5 CASE STUDIES

These case studies rely on a comparison between the
dynamic programming approach (DPA) and a heur-
istic method previously developed. This heuristic
method is a state space search which consist in com-
bine the depth search with simulated annealing (DSA)
(Bacalhau, 2009).

We have created three instances for these case
studies. All instances were executed for one year of
planning horizon and for each instance five values of
reliability constraints were chosen through the follow-
ing equation:

SAIFIβ = SAIFImin+(SAIFImax−SAIFImin)×β (11)

whereSAIFImin is minimum value that can be cal-
culated for reliability indices,SAIFImax is maximum
value that can be calculated for reliability indices and
β is 0.2, 0.4, 0.6, 0.8 and 1.0.

An instance with 30 equipments was tested, in the
attempt to show the efficiency of the DPA method
with a limited number of options of optimisation.
Table 1 illustrates the optimal results obtained for this
instance:

Table 1: Results - Instance with 30 equipments.

DPA DSA

Cost Time Cost Time Profit
SAIFI (x 1000) (s) (x 1000) (s) (%)

0.3476 10.076 0.156 11.345 1.201 11.14

0.3819 6.821 0.702 7.114 0.296 4.11

0.4163 4.785 1.622 4.815 0.218 0.61

0.4506 3.369 2.854 3.369 0.140 0

0.4849 2.414 4.633 2.414 0.171 0
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The best results are described by numbers in bold.
The DPA method performed better when the reliabil-
ity constraints were tighter.

After that, we have increased the number of equip-
ments, trying to show the robustness of the DPA
method for cases where the optimisation procedure
is more complex. We have created an instance with
300 equipments. The Table 2 illustrates the optimal
results obtained for this instance:

Table 2: Results - Instance with 300 equipments.

DPA DSA

Cost Time Cost Time Profit
SAIFI (x 1000) (s) (x 1000) (s) (%)

2.9757 80.498 11.528 107.627 290.825 25.20

3.2543 53.466 52.244 54.908 250.846 2.61

3.5330 33.562 124.738 35.879 1295.747 6.45

3.8117 24.962 242.035 26.664 1681.954 6.38

4.4068 19.169 398.083 22.214 231.554 13.70

The DPA method performed better in all cases and
the computational time is better in all except one case.
These results show the efficiency of the approach in
cases with a larger number of equipments.

Following this idea, we have created an instance
with 400 equipments. The idea was to show the
growth of computational time. In the Table 3 we can
see the results for this instance.

Table 3: Results - Instance with 400 equipments.

DPA DSA

Cost Time Cost Time Profit
SAIFI (x 1000) (s) (x 1000) (s) (%)

3.9625 106.270 25.755 142.048 7258.345 25.18

4.3336 70.830 111.821 72.987 705.412 2.95

4.7046 44.351 255.748 47.611 2240.451 6.84

5.0757 33.111 446.880 38.455 1290.745 13.89

5.4468 24.437 712.909 28.601 5070.507 14.55

The performance obtained in this case is similar
with the previous results, but the computational time
obtained by DPA method is much lower.

6 DISCUSSION

We have done case studies in order to make a compar-
ison between dynamic programming approach and a
heuristic method.

Three examples of networks were executed using
the radial network mentioned. One of them was cre-
ated with a reduced number of equipments and two of
them with a large number of equipments.

The DPA method got a cost profit in all instance
where the reliability constraints were tighter, taking
up to 25% profit in large instances cases.

In instances with a small number of equipments,
the heuristic method got the best results for compu-
tational time and obtained the same results when the
reliability constraints were looser. However, when the
number of equipments increased the computational
time of the heuristic method was much greater than
the DPA method.

For two-years of planning horizon the results were
promising as well, however the algorithm has in-
creased its computational resources since thebell-
man’s principleleads to a combinatorial explosion of
the problem (Bellman, 2003). For this reason, we
have done some approximations of parameters into
the procedure. In some cases, these approximations
lead the algorithm to produce a non-optimal solution.

However, some alternatives could be studied to
apply this approach, trying to reduce the complexity
and the computational time for this problem. With
these approximations, the dynamic programming still
provide good quality solutions, although it may lose
the optimality guarantee.

7 CONCLUSIONS

We have developed a knapsack problem approach us-
ing dynamic programming for the problem of pre-
ventive maintenance on power distribution networks.
The approach was studied for one and two years of
planning horizon and its optimisation model for knap-
sack problem adapted was presented.

Cases studies were conducted followed by a dis-
cussion about the results obtained for three examples
of radial networks developed.

The results obtained by dynamic programming ap-
proach were promising in relation to a presented heur-
istic method. In all cases the approach had a better
performance, but the best results of cost and compu-
tational time were obtained when the reliability con-
straints were tighter and the number of equipments
larger.

A discussion was produced from the case stud-
ies. The results were analysed proving the robustness
of the approach. Besides, results for more than one
year of planning horizon were discussed, highlighting
some alternatives for the problem complexity.
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