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Abstract: Continuing a line of work initiated in (Boyer et al., 2007hetgeneralisation of stochastic string distance to
a stochastic tree distance is considered. We point out sdttmerto overlooked necessary modifications to
the Zhang/Shasha tree-distance algorithm for all-patbsvéarbi variants of this stochastic tree distance. A
strategy towards an EM cost-adaptation algorithm for theaths distance which was suggested by (Boyer
et al., 2007) is shown to overlook necessary ancestry prasen constraints, and an alternative EM cost-
adaptation algorithm for the Viterbi variant is proposedkp&riments are reported on in which a distance-
weighted KNN categorisation algorithm is applied to a carpticategorised tree structures. We show that a
67.7% base-line using standard unit-costs can be impravéd.5% by the EM cost adaptation algorithm.

1 INTRODUCTION as potential means to adapt atomic costs given a cor-
pus of training tree pairs.

Section 2 recalls the standard definitions of string-
and tree-distance. Section 3 goes on to first recall the
stochastic string-distance as proposed by (Ristad and

The classification of tree structures into cate-
gories is necessary in many settings. In natu-
ral language processing an example is furnished by >"**" ; ) .
Question-Answering systems, which frequently have Ylanllqs, 1998) and then defines stpchashc vanapts of
a Question-Categorisation sub-component, whoselree-distance, which we terall-scripts and Viterbi-

purpose is to assign the question to one of a number ofSC'iPt stochastic Tai distancd%(S, T) andD§(S T).

predefined semantic categories (section 5 gives some) "€ standard algorithm of (Zhang and Shasha, 1989)

details). Often one would like to obtain such a clas- [©F the tree-distance is then recalled and some nec-
sifier by a data-driven machine-learning approach, €SSaY m_odlflcatlons to aI_Iow correct an_d eff_|C|ent
rather than by hand-crafting one. Thfistance computation of the All—scrlpts and Viterbi variants
based approach to such a classifier is to have a pre-2re described. Section 4 concerns how one might
categorisecexample seand to compute a category adapt atomic costs from a training corpus of same-
for a test item based on its distances to examples inCt€gory neighbours via Expectation-Maximisation.
the example set, such as via k-NN. The string-case is (ecalled and then a prute-force, ex-
With items to be categorised represented as trees,ponentflag)é&alf(per)5|vz.method.for aclllaptén%\t/?ﬁ pe;ram—
a crucial component in such a classifer is the mea- '?rirﬁr?e;r ca;Secrftsa;'ﬁéiTgre;:c?g:ilsnaiio.n is 'aSt (I)i[:a-
sure used to compare trees. The tree-distance firstbI hich ',t ?f ientimol ati fthppEM
proposed by (Tai, 1979) is a well motivated candidate € which permits eflicientimpiementation otthe
measure (see later for further details). This measure-SCripts method, we show by means of a counter-
can be seen as composing a relation between trees Ou?xa.lmpl.e that for t.he tree case th|§ kind of factori-
of several kinds of atomic operations (match, swap, sation is not applicable, although it has been sug-

delete, insert) the costs of which are dependent on the?es'[ed N (B(()jyer fﬁ aalf 200d7) ';hat tIL is. This I;eadsf
labels of the nodes involved. The performance of such 0 a proposed method for adapting the parameters o

a distance-based classifier is therefore very dependen r;e\ﬁtserb;i-sgrlgttﬂls;a?ce, Someglng)\(/vhlrci:\nlsnie?sr ¢
on the settings of these atomic costs. €. Sectio €N reports some experimenta’ out:

S . comes obtained with this EM procedure for adapting
In the work presented below probabilistic variants e
X : the Viterbi-script distance.
of the standard tree-distance are considered and then

Expectation-Maximisation techniques are considered
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2 NON-STOCHASTIC SEQUENCE o the(i,j) € s: the 'matches’ and 'swaps’

AND TREE DISTANCES D thei€Ss.t.VjeT,(i,]) ¢s: the 'deletions’
I thejeTstVieS(i,j)¢s: the 'insertions’

Let us begin by formulating some definition relation WhereSis the label alphabets of source and target
to the familiar notion of string-distance. The formu- aag lety(i) be the label of nodé Let ¢ be acost
lations follow closely those of (Ristad and Yianilos, tablebf dimensiongS| + 1 x |S| + 1. The cost of a

1998) and are chosen to allow an easy transition to mapping is the sum over the atomic costs definéd by
the stochastic case.

Let S be an alphabet. Let the set of edit operation for (i, j) € &  costisc[g(i)][d(])]
identifiers,EdORp be defined by forie o costisc[g(i)][0]

forjer costisc[0][g())]
EdOp= ((SU{l }) x (SU{l h)\(I 1) _ _ .
The so-calledinit-costmatrix, co1 has 0 on the diag-

and let anedit-scriptbe a sequence;...en#,n >0,  onal and 1 everywhere else. For a given cost matrix
with eache, € EdOpand with # as a special end-of-  ~ the Tai- or tree-distanceD(S, T) is defined as the

script marker. Given an edit-script, it can be pro-  cost of the least-costly Tai mappisgbetweenS and
jected into a 'source’ stringrc(2) € S*, by contenat- T

ing the left elements of the contained operations, and  Thereis an alternative, more procedural definition

likewise into a 'target’ stringrg(2) € S*: route, viatree-edit operations analogous to string-edit
operations. The table below depicts the three edit op-

Sl =) gl ) —uga) S

Srelyl . y)A) = sraa trg({x1 )4 ) =1trg(4 operation script element

sro((x.y)2) =x sro(a)  trg((x,y)a) = ytrg(2) P < b

(ml'(xd)7) (x1)
The yield of edit-scripta can be defined as pair % —(mldTr
of strings(src(a),trg(a)). If (s,t) =yield(a), each
6 € 4 isinterpretable as an edit operation in a process
of transformingstot: deletion(a,l ), insertion(l ,b),
or match/substitutiotia, b). Let E(s,t) be all scripts
which yield (s,t). The multiple scripts irE(s,t) de-
scribe alternative ways to transfosintot. _ A (mT(xd)7) (X,Y)

If costs are defined for such edit-scripts, a string- ixj § iyj § mi (v d
distance betweesiandt can be defined as the cost of
the least-cost script iB(s;t). o )

Alternatively one can consider theartial, 1-to- Thus deletion involves making the daughters of some
1, order-respectingnappings frons to t. Costs can ~ hodex into the daughters of that node’s parent
be defined for such mappings and a distance mea-iNSertion involves taking some of the daughers of a
sure defined via minimising these costs. Script-based0dem and making them instead the daughters of a
and mapping-based definitions are equivalent (Wag- NeW daughtey of m, and swapping/matching involves
ner and Fischer, 1974): fundamentally an edit-script SIMPly replacing some nodewith a nodey at the
is viewable as a particular serialisation of a mapping. S&me position. _

For ordered, labelled trees, the analogue to stan-  The right-hand column shows the script element
dard string distance was first considered by (Tai, Which is used to record the use of particular edit op-
1979). We develop the definitions relevant to this €ration. Using the same table of cestas was used
below, starting first with anappingbased definition. ~ for costing a mapping, a cost can be assigned to the

The equivalenscriptbased definition follows this. script describing the operations to transform a tee

A Taimapping is aartial, 1-to-1mappings from into a treeT, .and.a_sc_rlpt—baged definition of distance
the nodes of source tre&to a target tred which re-  then given via minimising this cost.
spectdeft-to-right orderandancestry. For the pur- The mapping- and script-based definitions are
pose of assigning a score to such a mapping it is con-equivalent (Tai, 1979; Kuboyama, 2007), with a script
venient to identify three sets: serving as a serialised representation of a mapping.

(Zhang and Shasha, 1989) provided an efficient algo-
rithm for its calculation.

1S0if (i1, j1) and(iz, j2) are in the mapping, then (T1) 2See also (Emms and Franco-Penya, 2011) in these pro-
left(iq,iz) iff left(j1, j2) and (T2)and(iy,i2) iff and(jy, j2) ceedings.



To illustrate, below is shown first a mapping be- yield. They then define thell-paths stochastic edit
tween two trees, and second the sequence of edit-distanceP?(s,t), as the sum of the probabilities of all
operations corresponding to it, with some of the inter- scriptse € E(s,t), whilst theviterbi versionPY(st) is
mediate stages as these operations are applied; witlthe probability of the most probable one.

unit-costs the distance i$:3 It is natural to consider to what extent the proba-
B ceereinaeanns -e bilistic perspective adopted for string-distance by Ris-
| PR tad and Yianilos can be applied to tree-distance. The
/K ---- -a a, b simplest possibility is to use exactly the same model
a kI) b g kl) of edit-script probability, which leads to the notions:
t') e BRI Definition 1 (All-scripts stochastic Tai similari-
‘a a ty/distance) The all-scripts stochastic Tai similarity,

[ | QA(ST), is the sum of the probabilities of all edit-
AL (b.,b)(a,a)(b,b)(..2) AL - (bb)@a,) scripts which represent a Tai-mapping from S to T.

a b b a a b The all-scripts stochastic Tai distandg(S, T), is its
*IJ ll) tl) voa negated logarithm, ie.
0N .
S @9 _a a b 255680 —QA(sT)
e —_ N / S
a a b~=- b b Definition 2 (Viterbi-script stochastic Tai similari-
tl) ll) ty/distance) The Viterbi-script stochastic Tai similar-

ity, QY(ST), is the probability of the most proba-

It is easy to see that for strings encoded as linear, P1® €dit-script which represents a Tai-mapping from
vertical trees, the string-distance and tree-distance co—svto T. The Viterbi-script stochastic Tai distance,
incide. We will use tree-distance and Tai-distance in- Ds (S T), is its negated logarithm, ie.
terchangeably, though the literature contains several oV
other, non-equivalent notions bearing the namee- 2756 —QY(sT)
distance Based, as it is, simply on the notion of map-
pings respecting the two defining dimensions of trees, ~ For Q5 and QY the probabilities on each possi-

the Tai distance seems a particularly compelling no- ble component of an edit scripEdOpuU {#}, must
tion. be defined. In a similar fashion to the non-stochastic

case, let this be defined by a talil® of dimensions
|S| +1x |S|+1such that:

3 STOCHASTIC SEQUENCE AND for (xy) €SxS  pl(xy)) = Co(xy
TREE DISTANCES forxes p((x1)) =C%(g(i),0)
foryes p({1,y)) =C°(0,9(j))

(Ristad and Yianilos, 1998) introduced a probabilis- p(#) =C2(0,0)

tic perspective on string distance, defining a model
which assigns a probability to every possible edit-
script. Edit-script compoments € EdOpU {#} are
pictured as generated in succession, independently o
each other. There is an emission probabitityn edit-
script components, such th&tceqopi# P(€) = 1,

and a script’s probability is defined by

For convenienc€®(0,0) is interpreted ap(#). The
sum over all the entries in this table should be 1. It
1js clear that an equivalent cost-tatl® can be de-
fined, containing the negated logs of B8 entries,
and thatDY (S, T) can be equivalently defined by an
additive scoring of the scripts using the entrie€ih
ThereforeDY (S, T) coincides with the standard no-
Pler...en) = CN) o(&) tion of _tree-distanc?eif t_he cost—tab_lt_a is restricted to
o : be the image of a possible probability-table under the

For a given string paits,t), as beforeE(s,t) de- negated _Iogarlthm mapping. We W|I_I c.aI_I such tables
notes all the edit-scripts which havet) as their stocha_stlcally valid cost tables. Again itis easy to see
- that with sequences encoded as vertical trees, these

31t is worth noting that for the equivalence between notions coincide with those defined on sequences by
mapping-based costs and script-based costs, the scriptRjstad and Yianilos.
which correspond to mappings mention each source andtar-—
get symbol exactly once. Thus the ’short’ script segments 4D‘s’(S,T) will include a contribution from the negated
shown in the picture are not representative of the scripts log of p(#). As all pairs will share this contribution, any
which correspond to a mapping application ranking pairs can ignore this contribution.



For the Viterb-scriptdistanceD (S, T), the well input:traversals S and T of two trees
known Zhang/Shasha algorithm is an implementa- a cost table
tion. The Viterbi-script similarityQY can also be ob-
tained by a variant replacing with x. Implementing ~ compute bITIRS),XKR_(T)
the All-script distanceDA(S,T) (or equivalent simi- g;ggig ::blg ;x’ Zlég “ 2“ i ‘1TX‘ T+ 1
larity Q4(S, T)) turns out though to require one sub- '
tle change to the original Zhang/Shasha formulation. TpX(ST) {
This is explained at further length below. for each i € KR(S) in ascending order{
Figure 1 gives an algorithm fd4 andDY . To dis- for each j € KR(T) in ascending order{
cuss it first some definitions from (Zhang and Shasha, execute trealist'(i, )}
1989) are required. The algorithm operates on the ., FX|S][|T]]
left-to-right post-order traversals of trees.klfs the
index of a node of the tree, theft-most leafl (k), is
the index of the leaf reached by following the left- treedist(i, ) {
branch down. For a given leaf there is a highest Where io=1(i)—1jo=1(j) -

(i

node of which it is the left-most leaf and any such for“?mdl(; tg i priLigize
node is called &ey-root For any treeS, KR(S) is TX[iS]F ] [IS: 1ljol+ CPg(i0),0) }
the key-roots ordered by position in the post-order ;- jf :Jol(j) to Sh _ J“f{
traversal. Ifi is the index of a node o8, Si] is the X[i 10 D i
sub-tree ofS rooted ati (i.e. all nodesni[u]ch that 7 "lollieh =% ol it ~ T/£C7(0,000)) }
[(i) < n<i). Wherei is any node of a tre&, for for is=I(i) to is=i
anyis with (i) <is <1, the prefix ofSi] from (i) to for jt =1(j) to jt= ] loop
is can be seen asfarestof subtrees of]i], denoted 7 X[is— 1[jt — 1] +CP(g(is), o(jt))
For(l(i),is). DX*T [is—1fjt] + C°((is).0)

The description instantiates to two algorithms, [st[h 3 4 C°(0, 9o
with x =V for Viterbi, andx = A for All-Scripts. A (lﬂ(fl N el
In both cases, it is a doubly nested loop ascending FX ”st] — OP{(M*, D |>E)
through the key-roots 0% andT, in which for each Tx[, (i) = M* (%
pair of key-rootgi, j), a sub-routinéree_dist*(i, j) is 2 |f(|(|s)7é () or I(jt) #1(j))
called. Values in d@ree-table7 are set during calls to {F Xig][jt] = OPY(DX, IX, TM*)}

tree_dist(i, j) and persist. Each call toee dist*(i, j) ‘ o . .
Figure 1: Viterbi and All-paths tree-distance algorithms.
operates on a sub-regibof theforesttable 7, from Sgt X to V throughout fcf)r Viterbi. with OPV :gmin

I(i) —1,1(j) — 1 toi,j. The loop is designed so that znqx to A for All-paths, with OP* — logsum where

¥ [ig][jt] is the forestdistance fromFor(l(i),is) to logsunix; ... xn) = —log(&;(27%)).

For(I(j),jt). #-entries do not persist between sep-

arate calls tdree dist'(i, j). for the asterixed line, which in the original would be:
In the Viterbi case,TDV, there is no inversion VEo1r Vi o1r

from neg-logs to probabilities, and the algorithm can 7 *is][Je] = 7 " {ig][Je] (+)

be applied wherCP is an arbitrary table of atomic Whereas the original (**) formula for updating the

costs. tree table in case 1 updates it to store the true tree-

It is the design of case 2 that enforces that only distance betweeSis] andT[ji], the (*) variant stores
Tal mappings are considered: when a forest distancejust MV, the cost of the least-cost script for an align-
#Vlig][jt] is to be computed, the possibility thigtis ment ofFor(1(is),is) to For(I(jt), jt) in which nodes

mapped toj; is factored into a forest+tree combina- g and j are mapped to each otheiFor the Viterbi
tion TMY = 7 V[I(is) — 1[I (jt) — 1] + 7 V[ig[jt], SO cost, (*) and (**) could be interchanged and so have
that descendants @f can only possibly match with Q‘V[is][jt] store a cost in whichs and j; might not be
descendants gf and vice-versa. mapped to each other: in such a case when the values
Settingx to V for Viterbi, the algorithm is almost  in 7V are called on in case 2, tieMY component
identical to that in (Zhang and Shasha, 1989), exceptwill just be equal to one or other of thé or DV com-
ponents over which the minimum is calculated.
5The initialisation sets the left-most column of this to AReadlng the a'?"”‘“”.‘ no'w W"’k‘se.t. t.OA’ 7" and
represent the pure deletion cases(1(i),is) to 0, and the 7 representthe "all-scripts’ probabilities, sums over

uppermost row to represent the pure insertion cdses  all scripts which serialize a Tai mapping between the
For(I(j), jt) relevant trees or forests. Looking again at the aster-



ixed line, through not setting A[ig] [jt] = 7 [is][jt], location to be identified as the answer’).

7 Aig][jt] is notthe log of the sum of the probabilities For the tree-distance measures, the performance
of all the scripts which can alig8is] andT [j:] butin- of the classifier is going to vary with the atomic pa-
stead the sum over all the cases in whigis mapped  rameter settings in the cost-talfl®. One might ex-

to j. For the subsequent use of* in case 2, thisis  pect that scripts between pairs of trees (or strings)
now a necessary feature: fAfig][j;] does not have  that belong to thesame categorgliffer from scripts

this interpretation then when these values are calledbetween pairs of trees (or strings) that belonglife
uponin case 2, probabilities of scripts ending in either ferent categories For example, for the question-
deletion ofis or insertion ofj; are doubly counted. categorisation scenario, on same-category pairs one
Example. Lett; =t, = (b (b) (a b)), and suppose  might expect that the substitutiofwho/when to

the cost-table to the right below, which represents as be less frequent that the substitutistate/country.
negated logs the assumptions that all probabilites areln terms of the parameters of the stochastic dis-
0 except forp(a,l ) =1/8 = p(l ,a), p(b,b) = 1/4, tances this would correspond ®(who,when <<

and p(#) = 1/2. The left is the only Tai-mapping P(statecountry), or equivalently in terms of negated
which is associated with a non-zero probability edit- logs, CP(who,when >> CP(statgcountry). This

script in this setting leads to the idea that one might be able to use
I a b Expectation-Maximisation techniques (Dempster et

b-----= b T 3t al., 1977) to adapt edit-probs from a corpusafme-

AN AN al3  inf inf category nearest neighbours

b. a b a

NI b|inf inf 2 2 "SP:aN

b . B b nearest .
cat EM

By inspection, QAti,t) = (1/2)°%(1/64), e | N O\ st
QY(t1,tz) = (1/2)5(1/128), and these are the L
values, or rather their negated logs, which will be AG

calculated by the algorithm in Figure 1. However,
if 7A[ag][ag] were to include the probabilities for
scripts involving the deletions or insertions af
QA(t1,t2) would be incorrectly calculated to be
(1/2)5(3/64).

As a final remark concerning the algorithm for the .
Viterbi case, it is straightforward to extend the algo- 4-1  All-scripts EM
rithm so that it returns not just the cost of the best

script but also the best script itself. Hence we shall As a first step towards a cost-adaptation algorithm,
write (v,V) = TDY(S,T). consider the followingorute-force all-scripts EM al-

gorithm EMpy, consisting in interations of the fol-
lowing pair of steps

4 EMFOR COST ADAPTATION (Exp)a generate a virtual corpus of scripts by treat-

ing each training pai(S, T) as standing foall the
As noted in section 1, a possible use of a distance  edit-scriptss, which can relate S to T, weighting
measure is for deploymentin a k-NN classifier, deter-  €ach by its conditional probability @ /Q(S T),
mining a category for a test item based on its distances ~ under current probalities €

the case in the experiments reported on in section 5. yirtyal corpus to derive a new probability table.
In those experiments the categorised items are the

syntax-structures of natural language questions, andgA Virtual count or expectatiogst (op) contributed by
the categories are broad semantic categories, such a$ T for an operatomp can be defined by
HUM ('the question expects a human being to be iden-

Such a technique, for the case of stochastic string
distance, was first proposed by (Ristad and Yianilos,
1998).

tified as the answer’) drQC ('the question expects a o P(s)
_— ®wT(0p = a [4A T x freqlopes)]
6The reason for the premultiplyind,/2)® factor in these siso1 A(ST)

numbers is that it is easier in this case to calculate first ig- .

noring p(#) and from a table in which all entries are twice and the(Exp)a accumulating these valuggr(op)

as large, and then to correct for the over-estimation; the on  for all possibleop's over all training pairs. The pic-
scripts making any contribution all have length 5 ture below attempts to illustrate this for a particular



operation(a,| ) occuring in various scripts between a I T

. . . ‘6 S
particular tree pair 0] | e
m\ //./’ -7 p

_ (iii)
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Figure 2: The swap-case in expectation calculation.
For the case dinear trees this amounts to the same
adaptation proposal as that put forward by (Ristad
and Yianilos, 1998). This brute-force algorithm is
exponentially expensive. To obtain a feasible equiv-
alent algorithm one may attempt to apply the same
strategy as that used by (Ristad and Yianilos, 1998)
for the case of linear trees, which is for each tree &scg(sT),(myn
pair (S,T), to first computeposition-dependergx- (I
pectationgys)[i][j](op) for each operation and then 8s,eE(
sum these position-independent expectations to give 8 s3¢E (o) (_6(_5)))D[p(s3)]
the expecations per-paist(op). In this approach,
gsm)lil[i](m,n7), the expectation for a swajn,n)
at (i, j) has the semantics

For the pair of trees, we wish to calculate the position-
dependent expectatiagi4, 4](m,m’). (Boyer et al.,
2007) propose an algorithm implying the correctness
of the factorisation

( 4)es[p(3 ] 2)
(D200 [P )]X [()]

(2) sl [P(S2)] X p(m, ) [(ii)]

( [(iiD)]

where the terms (i)—(iii) corresponds to the indicated
regions in Figure 2. The problem is with final term
(iii) in the product. Each edit-scrig € E(S,T) rep-
resents a Tai mapping betweSandT. The summa-
tion &sce(sT),(mym,)es[P(s)] refers to those scripts
which represent a Tai mapping with the property that
my is mapped tar),. This means that if an ances-
tor of my is in the mapping (ie. not deleted) then
its image under the mapping must be an ancestor of

P _2 p(s)
g(ST)['a jlmm) = AscE(ST),(m,m)es [QQ(ST)}

= % X 5seE(sT>,(m,mrj>es [p(s)]

or in words, it isthe sum over the conditional prob-
abilities of any scripts containing a m m; substitu-
tion, given that it is a script between S and T

For the case oflinear trees the position-
dependent expectatiomgs ) [i][j] can be computed

m,, and vice-versa. The final term in the product,
855 ([(-5)],[7(-6(5)]) [P(S3)], sums overany script

feasibly because firstly, the summation in the above between these two sub-trees®&ndT and this will

can be factorised into a product of 3 terms

include scripts in which node of Sis mapped tog

of T, and this corresponds to a mapping in which an

éseE(ST),(m,rﬂj)es [p(s)] (1) ancestor ofry is mapped to a non-ancestorrof:
= éS preGE(Sl;]_,]_,Tl;j,]_) [p(s pfe)] X o ____ - °
p(m7m)x 6.<# -7

éssuffeE(SHl:I ~,Tj+1:J)[p(Ssu”)]

and secondly the summations over the possible scripts, e
prefixing (m,nfj), and the possible scripts suffixing
(mi, ;) can be straightforwardly calculated; the first ® ® T ° » o
is the all-scripts algorithm, and the second an easily
formulated ‘backwards’ variant. __For example if the only non-zero probability script

For the case of general trees (as opposed 10 linearrom (.q(-5)) to (-7(-s(-5))) is one mapping thes of
trees) (Boyer et al., 2007) propose such a factorisa- g 1o the . of T then gi4,4](m,n) should be zero,
tion approach. Their proposal turns out, however, to though according to (2) it will not be.
be unsound, factorizing the problem in a way which For general trees, a feasible equivalent to the
is invalid given the ancestry-preservation aspect of Tai brute-forceE M2 remains an unsolved problem

mapping$. To explain this, consider Figure 2, which A
reproduces the essentials of an example from their P-4 o vjiterbi EM
per. '

An approximation to the the All-scripts proposal con-
sists in simply in replacing thExpa step by

A fact which they concede p.c.
8Fig. 3 p61



(Exp)v generate a virtual corpus of scripts by treat-
ing each training pair (S, T) as standing for
the best edit-script s, which can relate S to
T, weighting it by its conditional probability
P(s)/QA(S T), under current costg

Where# is the best-script, the virtual count or expec-
tationgs T (op) contributed bys, T for the operatoop
would in this case be defined by

Q(ST)

T QAST)

and the (Exp)y step accumulates these values
gs)(op) for all possibleop's over all training pairs.
The picture below attempts to illustrate this for a par-
ticular operation(a,l ) occuring on the best-pati
between a particular tree pair

gst)(op) x freglope V)

B adig NN
=SPGs)) 7 ~U. = () =occ. of (a,.)
d=s / NN d=rwv)
a -/ 2\ T — on best-path
| 4 [ 1 \ L
G e @2 N
e“/?b/dx)éf/tx«/\\hl\‘h—« {‘;4;;‘“ N ‘a‘a )
S N\ / 7
b b \K/,v\\\\ / - b b

—

e

A

Figure 3 spells out this Viterbi cost-adaptation algo-
rithm for stochastic tree-distanée.

input: a set P of tree pairs(ST)
a cost table C size |S|+1 x |S|+1

create tablesg,Cpew Same size as C

while(conv # true) {

zero all entries ing

for each (§T) € P {
let (v, ¥)=TDY(ST), a=TDAST)
gl ]+=27v/2"2
for each (x,y) € EdOp{

gx[y]+=(freq of (x,y) in »)x2V/272
}

}
_CneW: *|09(g/sun(g))
if (Chew# C){C =Cnen} else {conv=true}

return C

Figure 3: Viterbi EM cost adaptation for tree-distance. eNot
Sis the label alphabet of the tree-pairssn The algorithms
TDY andT DA are as defined in Figure 1.

Such Viterbi training variants have been found
beneficial, for example in the context of parameter
training for PCFGs (Benedi and Sanchez, 2005).

9Simple modifications of the algorithm as formulated
force it to generate a symmetric expectation taple

5 EXPERIMENTS WITH VITERBI
EM COST-ADAPTATION

We have conducted some experiments with this
Viterbi EM cost-adaptation approach. In particular
we have considered how it might adapt a tree-distance
measure that is put to work in a k-NN classification
algorithm.

Figure 4 outline the distance-weighted kNN clas-
sification algorithm which was used in the experi-
ments.

knn_cl ass( ExamplesCP,k; T) {
let oD SORT{(SDY(ST)) | S € Examples}
whi | e(!resol ved) {

e =top(k, »), ¥ =weightind )

if(no winner in ) { set k=k +1 }

else { resolved = true }

}

return category with highest vote inv

}

Figure 4: Distance-weighted k nearest neighbour classifica
tion.

top(k,») basically picks the firsk items fromo 19,
The weighting converts the panel of distance-rated
items to weighted votes for their categories, and in the
experiments reported later, the options for the con-
version of an item of categor@, at distanced, into

a votevoteC,d) are Majority: votgC,d) = 1; Du-
dani: voteC,d) = (dmax— d)/(dmax— dmin), or 1 if
Omax = Amin, Wheredmax and dmin are maximum and
minimum distances in the panel (Dudani, 1976).

It can arise that the test trdecontains a symbol
for which CP has no entry. One option is to assign
all operations involving the symbol some default cost
k. See the Appendix for a proof that the ordering of
neigbours is independent of the value choserkfor

In applying theEMV cost-adaptation in the con-
text of the k-NN classification algorithm, the training
set for cost-adaptation was taken to consists of tree
pairs(S,T), where for each example-set ti§¢€T is a
nearest same-category neighbour. The training algo-
rithm should less the stochastic tree-distance between
these trees.

EMV like all other EM algorithms needs an ini-
tialisation of its parameters. We will ugP,(d) for
a 'uniform’ initialisation with diagonal factod. This
will mean thatCP,(d) is a stochastically valid cost-
table, with the additional properties that (i) all diag-
onal entries are equal (ii) all non-diagonal entries are
equal (iii) diagonal entries aittimes more probable

19Modulo some niceties concerning ties which space pre-
cludes detailing



than non-diagonal. For these purposes the cost-tablesults using theDudani-votingvariant of k-NN; the
entry for p(#) is treated as non-diagonal. As an illus- Majority-votingvariant was less effective.
tration, for an alphabet of just 2 symbols, the initiali-

sationsCP,(d) for d = 3, 10, 100, and 1000 are: s e A et
31 a b 10/ a b Sy
13737 37 I | 4755 4755 4755 oF
a|37 2115 37 a | 4755 1433 4755 Y=
b|3737 2115 b | 4.755 4755 1433 L o
100] | a b 1000 | a b S gL
[ [ 7693 7693 7693 | 10.97 1097 1097 3 E
a 7.693 105 7693 a 10.97 1005 1097 \‘2 wr-
b | 76937693 105 b 10.97 1097 1005 T oF
As asmoothingoption concerning a table® de- QEo t'rn?:]aige? StrC:ChfilSti?1 moashcl
rived by EMY, let CY be its interpolation with the @ £ nained stochastic smoothed
original CP,(d) as follows o F v unit costs
< 7 | | | | | | |
2-Co v — | (2-COly 4 (11 )(2-Cruleb)) 1 5 10 20 30 50 100 200
k values

with0<| <1, withl =1 giving all the weight to the
derived table, antl = 0 giving all the weight to the

Figure 5: Categorisation performance with unit costs and
some stochastic variants.

initial table.

The dataset used was a natural language processT he first thing to note is that performance with unit-
ing one, being a corpus of (broadly) semantically cat- €oSts {7, max. 677%) exceeds performance with the
egorised, and syntactically analysed questions, whichnon-adapte@P,(3) costs ¢, max. 638%). Though
was created by from two pre-existing datasets. Ques-not shown, this remains the case with far higher set-
tionBank (QB) is a hand-corrected treebank for ques- tings of the diagonal factor. Performance after ap-
tions (Judge et al., 2006; Judge, 2006b), (Judge,plying EMV to adapt costs/(, max. 532%) is
2006a). A substantical percentage of the questionsworse than the initial performance,(max. 638%).
in QB are taken from a corpus of semantically cat- A Leave-One-Out evaluation, in whiokxample-set
egorised, syntactically unannotated questions (CCG, items are categorised using the method on the remain-
2001). From these two corpora we created a corpusder of the example-set, gives accuracies of 91% to
of 2755 semantically categorised, syntactically anal- 99%, indicatingEM" has made the best-scripts con-

ysed questions, spread over the semantic categories agecting the training pait®o probablepver-fittingthe
follows!! cost table. The vocabulary is sufficiently thinly spread
over the training pairs that its quite easy for the learn-
ing algorithm to fix costs which make almost every-
thing but exactly the training pairs have zero proba-
bility. The performance when smoothing is applied
) (+,max. 648%), interpolating the adapted costs with
For further details of the software and data see tne initial cost, withl = 0.99, is considerably higher
(Emms, 2011). Figure 5 shows some results of a than without smoothing/(), attains a slightly higher
first set of experiments, with unit-costs and then with . aximum than with unadapted costs(but is still
some stochastic variants. For the stochastic variants,ygrse than with unit costsy).
the experiments followed a stratified 10-fold cross- ggapted swap costs.
validation approach. The data was randomly split into

Cat HUM ENTY DESC NUM LOC ABBR
N 647 621 533 461 455 38
% 23.48 2254 19.35 16.73 16.52 1.38

10 equal size folds, with approximately equal distri- 8.50 ? . 12.31 The the
bution of the categories in each. Then in turn each 893 NNP NN  12.65 you |
fold has taken as the test data, and the remaining 9 947 VBD VBZ 13.60 can do

f 9.51 NNS NN 13.83 many much
folds used as the example set. When cost-adaptation 078 a the 13.92 city state
was applied this means that the training pairsgit 11.03 was is 13.93 city country
come from the example set. The figure shows re- 11.03 s is

l1gee (CCG, 2001) for details of the semantic category FoOr the data-set used, these learned preferences are to
labels some extent intuitive, exchanging punctuation marks,



words differing only by capitalisation, related parts of
speech (VBD vs VVZ etc), verbs and their contrac-
tions and so on. One might expect this discounting of

these swaps relative to others to assist the categorisa-

tion, though the results reported so far indicate that it
did not.

Recall that the cost-table for the stochastic edit
distance is a representation of probabilites, with prob-
abilities represented by their negated base-2 loga-
rithms. A O in this case represents the probability
1. Because in a stochastically valid cost table, the
sum over all the represented probabilities must be 1,
a single 0 entry in a cost table impliésfinite cost

entries everywhere else. This means that a stochasti-

cally valid cost table cannot have zero costs on the
diagonal, which is the situation of the unit-cost ta-
ble, co1. This aspect perhaps mitigates against suc-
cess. The diagonal factarin the cost initialisation

is designed to make the entries on the diagonal more

probable than other entries, but even with very high
values ford, indicating a high ratio between the diag-
onal and off-diagonal probabilities, the diagonal costs
are not negligible. This means that the unit-cost set-
ting, co1, which is clearly 'uniform’ in a sense, is not
directly emulated by the 'uniform’ stochastic initiali-
sationsCP(d). The performance with thenadapted
uniform stochastic initialisation was below the perfor-
mance with unit-costs. Although results in Figure 5
show just the outcomes with,(3), this remained the
case with far larger values of the diagonal faatior
This invites consideration of outcomes if a final step
is applied in whichall the entries on the cost-table’s
diagonal are zeroedin work on adapting cost-tables
for a stochastic version aftring distanceused in du-
plicate detection, (Bilenko and Mooney, 2003) used
essentially this same approach. Figure 6 shows out-
comes when the trained and smoothed costs finally
have the diagonal zeroed.

The () series once again shows the outcomes with
unit-costs. In this experiment, with the diagonal
zeroed, this is necessarily also the outcome ob-
tained with any unadapted uniform stochastic ini-
tialisation CPy(d). The other lines in the plot
show the outcomes obtained with costs adapted by
EMV, smoothed at varius levels of interpolatidng
{0.99,0.9,0.5,0.1}) and with the diagonal zeroed.
Now the unit costs base-line is clearly out-performed,
the best result being 72.5% £ 20,1 = 0.99), as
compared to 67.5% for unit-costs-£ 20). Also bet-

ter results are obtained with the higher levels of the
interpolation factor, indicating greater weight given to
the values obtained MV and less to the stochastic
initialisation.

% accuracy

60

|
1

5 10 20 30

k values

Figure 6: Categorisation performance: adapted costs with
smoothing and zeroing.

50 100 200

6 CONCLUSIONS

One can tentatively conclude on the basis of these ex-
periments that the Viterbi EM cost-adaptation can in-
crease the performance of a tree-distance based clas-
sifier, and improve it to above that attained in the unit-
cost setting, though this does require smoothing of de-
rived probabilites and a final step of zeroing the diag-
onal.

Experiments with further data-sets is required.
One type of data of interest would be the digit-
recognition data-set represented by a tree-encoding
of outline looked at by (Bernard et al., 2008). It
would also be interest to look at applications not
to do with categorisation per-se. For example, in
the NLP-related tasks of question-answering and en-
tailment recognition, the aim is assess pairs of sen-
tences for their likelihood to be a question-answer or
hypothesis-conclusion pair. A training set of such
pairs could also serve as potential input to the cost
adaptation algorithm.

Alignments between different pairs of trees can
end up being represented by the same edit-script. A
minimal example is that the scriga, A)(b,B)(c,C)
can serve to connect both the paiftl,t2) and
(t1',t2), where:

t1': (c(b(a))) t2': (C(B(A)))

Therefore the All-script and Viterbi-script
stochastic edit-distances are only a step towards a
fully fledged generative model of aligned trees. A
fully-fledged model would include further factors
to divide the probabilityP(a,A) x P(b,B) x P(c,C)



between the tree-pairs. A direction for further work

is the investigation of such a model of aligned trees,
and how it relates to some other recent proposals

Judge, J. (2006b)Adapting and Developing Linguistic Re-
sources for Question Answering?hD thesis, Dublin
City University.

concerning adaptive tree measures such as (Takasu etudge, J., Cahill, A., and van Genabith, J. (2006). Ques-

al., 2007), (Dalvi et al., 2009)
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Now suppose under a higher settingkéffor out-of-
table costs, that’’ # 9 is the least-cost script, so
cost (') < cost (7). But recosting according tk
gives cogt(7’’) < cosk (%), which contradicts min-
imality of ¥ underk. So the minimal script is in-
variant to changes ok, andD),(ST) —D{(ST) =
nx (k —k’). It follows that neighbour ordering is in-

variant to changes df.
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