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Abstract: In this paper we first present two convergence theorems which give a theoretical justification of the Non-Local
Means Filter. Based on these theorems, we propose a new filter, called Non-Local Mixed Filter, to remove a
mixture of Gaussian and random impulse noises. This filter combines the essential ideas of the Trilateral Filter
and the Non-Local Means Filter. It improves the Trilateral Filter and extends the Non-Local Means Filter.
Our experiments show that the new filter generally outperforms two other recent proposed methods. A careful
discussion and simple formulas are given for the choice of parameters for the proposed filter.

1 INTRODUCTION Non-Local Means Filter (NL-means) by Buades, Coll
and Morel. The key idea of this filter is to estimate
The main objective of this paper is to extend the Non- the original image by weighted means along simi-
Local Means Filter (Buades et al., 2005) for removing lar local patches. Since then a series of important
Gaussian noise to the case where the image is contamworks have been done by many authors in various
inated by a mixture of Gaussian and random impulse contexts using this interesting idea, see e.g. the op-
noises, based on two convergence theorems for thetimal spatial adaptive patch-based filter in (Kervrann
Non-Local Means Filter that we will present. and Boulanger, 2006), the K-SVD (Elad and Aharon,
Let us first introduce the Gaussian and impulse 2006) and BM3D (Dabov et al., 2007) algorithms.
noise models. As usual, we denote a digital im- There are also many methods to remove impulse
age by aN x N matrix u = {u(i) : i € I}, where noise, see e.g. the variational methods in (Nikolova,
| ={0,1,...,N—1}?and 0< u(i) < 255. The additive ~ 2004; Chan et al., 2004; Dong et al., 2007).

Gaussian noise model is(i) = u(i) +n(i), where However, few filters are known to remove a mix-
u={u(i) :i €1} is the original imagey = {v(i) :i € ture of Gaussian and impulse noises, although such
I'} is the noisy one, ang is the Gaussian noise(i) noises can take place quite often. On this subject,

are independent and identically distributed Gaussianin (Garnett et al., 2005) an interesting statistic called
random variables with mean 0 and standard deviationROAD is introduced to detect impulse noisy pix-
o > 0. We always denote by the original imagey els; this statistic is combined with the Bilateral Fil-
the noisy one. The random impulse noise model is:  ter (Smith and Brady, 1997; Tomasi and Manduchi,
nG)  with probabilityp 1998) leading to the so_—ca_lled Trilateral Filter.(T.riF).

V(i) = { uli)  with probabilit (1’7 ) The performance of TriF is related to the efficiency

P y P); of the ROAD statistic for detecting impulse noise and

where p is the impu|se probab"ny (the proportion the performance of the Bilateral Filter for removing

of the occurrence of impulse noise), and) are in- Gaussian noise. A slightly different version of the
dependent random variables uniformly distributed on ROAD statistic is proposed in (Dong et al., 2007).
the intervallmin{u(i) :i € I'},max{u(i) :i € 1 }]. In this paper, we first (cf. Section 2) present two

There is a large literature for removing Gaussian convergence theorems, which gives a good theoreti-
noise. A very important progress in this classical cal justification for NL-means with a probabilistic in-
research field was marked by the proposition of the terpretation of the similarity phenomenon which ex-
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ists very often in natural images. We then (cf. Sec- distribution of the observed imagéx;) is just that of
tion 3) propose a new filter called Non-Local Mixed the corresponding random variable.

Filter (NLMixF) to remove mixed noises, using the pafinition 2.1. Two patches (aG) and \((;) are
presented convergence theorems in an adaptive Waycajieq similar if they have the same probability dis-
This filter improves the Trilateral Filter and extends ipution.

NL-means. Our experimental results (cf. Section . . .

4) also show that for removing mixed noise, our fil- We sometimes simply say that the two windows
ter NLMixF outperforms the two algorithms recently i and »\; are similar in the same sense. Defini-
proposed in (Yang and Wu, 2009) and (Xiao et al., tion 2.1 is a probabilistic interpretation of 'ghe simi-
2011) which are based respectively on the ideas of !anty phenomenon that occurs very often in natural

BM3D (Dabov et al., 2007) and K-SVD (Elad and Mages. According to this definition, two observed
Aharon, 2006). ’ patches/(;) andv(«j) are similar if they are issued

from the same probability distribution. In practice, we
consider that two patchagaj) andv(«(j) are simi-
lar if their-Euclidean distance is small enough, say

2 CONVERGENCE THEOREMS [Iv(7G) — v(#)|| < T for some threshold.
FOR NON-LOCAL MEANS The following theoremiis a kind of Marcinkiewicz

law of large numbers. It gives an estimation of the
The Non-Local Means Filter (NL-means) (Buades almost sure convergence rate of the estimator to the
et al., 2005) is mainly based on the similarity of realimage in NL-Means.
local patches. For c I andd an odd integer, let  thegrem 2.1. Letie 1 and let § be the set of |
Ai(d) = {j €1 [j—i] <(d=1)/2} be the win-  gch that the patches; and A are similar (in the

dow with centeri and sized x d, where|j —i| = sense of Definitio.1). Set
max(|j1 —i1l,[j2—i2[) fori = (i1,i2) andj = (j1, j2). o
Seta;°(d) = aG(d)\{i}. We sometimes simply write (i) = ¥ e, WO(i, J)V(j)

AG and ;0 for aG(d) and2;°(d), respectively. De-
notev(ai) = {v(k) : k € A; } as the vector composed
of the gray values of in the windowAj arranged lex-
icographically. WOl i) = e V60 () 3/ (207) 3
The denoised image by NL-means is given by (i) =e J ' 3)

_ Y jeaq oy W, Hv(])

ZJEIi\NO(iaj) ’

where

Then for anye € (0, 3], as|li| — o,

V(i —
¥ Y jeas )W, 1) V(i) —u(i) = o(|li|~(279) almostsurely (4)
with where|l;| denotes the cardinality of.
.o _ ) 12 2 . .
w(i, j) = e IMOVIR/200) - (jo£i), (1) Theorem 21 improves the similarity principle in

(Li et al., 2011) which is just (4) witke = 1/2. It
_ ) shows that®(i) is a good estimator of the original
V(26) — (2 2= S kea(d) @l K)V(K) = V(7 ()| imageu(i) if the number of similar patche| is suf-
a 3 keni (d) a(i,k) ’ ficiently Iafg_e. Here we use the vyelgWB(hJ) in-
2) stead ofw(i, j), asw?(i, j) has the nice property that
a(i,k) > 0 being some fixed weights usually chosen it is independent ofi(j) if j ¢ AG. This property is
to be a decreasing function of the Euclidean norm used in the proof, and makes the estimafir) to be
[[i — k| or|i —k|, andT = 7; is the translation map- “almost” non-biased: in fact, if the familyv(j)}; is

whereg; > 0 is a control parameter,

ping of aG ontoaj: T (k) = k—i+ j,k € aG. Origi- independent of the familyw (i, i)} (e.g. thisis the
nally, AG (D) in (1) is chosen as the whole imabebut case when the similar windows are disjoint), then it
in practice, it is better to choosg (D) with an appro-  is evident thaV°(i) = u. We can consider that this
priate numbeD. We callj(D) searches windows, non-biased property holds approximately as for each
anda; = «j(d) local patches. j there are few pixel& such that(i,k) are depen-

We now present some convergence theorems fordent ofv(j). A different explanation about the biased
NL-means via probability theory. For simplicity, we estimation of NL-means can be found in (Xu et al.,
use the same notatior(;) to denote both the ob- 2008).
served image patches and the corresponding random  Notice that whenv(«(j) is not similar tov(j),
variables (in fact the observed image is just a real- then the weightw?(i,j) is small and negligible.
ization of the corresponding variable). Therefore the Therefore in practice we can take all windows. But
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selecting only similar windows can slightly improve

contains the spatial factows(i, ) = e i-i*/(209),

the restoration result, and can also speed up the algothe radiometric factowr(i, j) = e~ (v()-v(i))?/(203)

rithm. The difference betweew(i) and\°(i) is also
small, so that Theorem.2 shows thav(i) is also a
good estimator ofi(i). But very often/°(i) gives bet-
ter restoration result.

The following result is a generalized central limit
theorem; it states thalﬁi‘(i) tends tou(i) just like

1/+/|li] in the sense of probability distribution.

Theorem 2.2. Under the condition of Theore@1,
assume additionally thatv(a) : j € I;} with the lexi-
cographical order is a stationary sequence of random
vectors. Then afj| — oo,

VIOG) (i) S £,

d Y S
where— means the convergence in distributianjs

(which measure the similarity between the pixelad
i), the impulse factow (i) and the joint impulse fac-
tor Ji (i, j) defined by

_ ROAD(I?

w(i) = e 2 | (7)
_ ((ROAD()+ROAD(j))/2)2

3ij) = e N C)

0s,0R,0) andaj being control parameters. (In fact,
Garnett et al. (2005) initially defined the joint impulse
factoras)(i, j) =1—J(i, ). We found that it is more
convenient to us@ (i, j) instead ofJ(i,j).) Notice
that if eitheri or j.is an impulse noisy point, then the
value ofJi (i, j) is close to O; otherwise it is close to
1. Similarly,w; (i) is close to O ifi is an impulse noisy

a mixture of centered Gaussian laws in the sense thatpoint, and to 1 otherwise.

it has a density of the form
1 o
f(t) = /Rm"l o © V(X
v being the law of ;%) and & > 0.

By Theorems 2L and 22, the larger the value of
|li|, the better the approximation (i) to u(i). This
will be confirmed in another paper where we shall in-
troduce the notion of degree of similarity for images,
showing that the larger the degree of similarity, the
better the quality of restoration. Due to the limitation
of space, the proofs of theorems will be given else-
where.

3 NON-LOCAL MIXED FILTER

In this section, we will define our new filter. Be-
fore this we first recall the Trilateral Filter (Garnett
etal., 2005). This filter is based on the statistic ROAD
(Rank of Ordered Absolute Differences) defined by

ROAD(i) = ry(i) +---+rm(i), (%)

re(i) being thek-th smallest term inf|u(i) — u(j)] :
j € AG(d)\{i}}, ma constant taken a8 = 4 in (Gar-

Our new filter will be based on the following
weighted norm that we cathixed norm

(2% ~ V(a2 ©)
a0 Wa(i.K)31 (k.7 (K)) [v(k) V(7 (k)2
Senco Wen (1K) (K7 (K)) ’

wherews (i,k) = e ~K*/2%w) andJ (k, 7 (k)) is
defined in (8). Recall that i or 7 (k) is an impulse
noisy point, thenJ,(k,7 (k)) is close to 0, so that
the concerned point contributes little to the weighted
norm (9). Therefore the mixed norm (9) filters im-
pulse noisy points. Clearly, it also measures the simi-
larity between the patchega;) andv(«(j;) and takes
into account the spatial factor. Our new filter that we
call Non-Local Mixed Filter(NLMixF) is by defini-
tion

_ Zjeaa Wi, V()

NLMixF (v)(i) S jenq (o) Wi )

)

where

w(i, j) = ws(i, j)wi ())wm (i, )
contains the spatial factovs(i, j) = e~i=1*/(209) the
similarity factor wy (i, j) = e~ IMO)-v(G) I/ (205)
and the impulse factow, (j) defined in (7), withos

nett et al., 2005). The ROAD statistic serves to detect and oy being parameters. Notice that NLMixF re-

noisy points: in fact, ifi is an impulse noisy point,
then ROAD) is large; otherwise it is small. The Tri-
lateral Filter (TriF) is by definition

_ Y ieagy W, V(i)

TriF(v) (i) TR

: (6)

where

w(i, j) = ws(i, j)wr(i, )7 CDw (j)E 0D

duces to NL-means wheoy = 03 = s = «. This
filter NLmixF is an improved version of the filter in-
troduced in (Li et al., 2011). Compared to the filter
of (Li et al., 2011), it improves the quality of restora-
tion and contains entirely NL-means filter thanks to
the added spatial factavsy in the mixed norm (9).
Notice that for each impulse noisy poipin 2; (D),
the weightw(i, j) is close to 0. Hence our new filter
can be regarded as an application of Theorerhga@d
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2.2 to the remained image (which can be considered 06+p o=0 (Imp)
to contain only Gaussian noise) obtained after filter- 15 0>0 (GauorMix)
ing the impulse noisy points by the mixed norm (9). 15 o0=0 p>0 (Imp)
osMm =< 15 0>0 p=0 (Gay
2 0>0 p>0 (Mix)
9
5
7

4 SIMULATIONS AND CHOICES 0=0 p>0 (Imp or Mix)
OF PARAMETERS d — 0=10 p=0
0=20 p=0 (Gau
30
In this section, we present some experimental results -
to compare the new filter NLMixF with NL-means, ; 0: 20 pig (Imp)
TriF, and two recently algorithms proposed in (Yang 13 0: 20 p: 0 G
and Wu, 2009) and (Xiao et al., 2011). As usual we 15 o _ 30 p: 0 (Gay
use PSNR (Peak Signal-to-Noise Ratio) defined by D= 0= P=
7. 0=10 p>0
2551 11 0=20 p>0 (Mix)
PSNR(v) =10logjg—————— —
(_) Y0 Sic (V(I)—U(I))z 15 0=30 p>0

to measure the quality of a restored image, where In the calculation of ROAD, we choosex33 neigh-
is the original imagey the restored one. In our ex- - borhoods andn = 4. For impulse noise or mixed
periments we use the 5512 images Lena, Bridge, ~noise withp=0.4,0.5, to further improve the restora-
Boats and the 256 256 image Peppers. They are all _tion results, we use 5 5 neighborhoods anah = 12
available on liné: to calculate ROAD (5). Consistently, the choice of
In our implementations, image boundaries are 01,03 depend omm, thus they should be multiplied
handled by assuming symmetric boundary conditions. Py & factor empirically chosen as 4.2. Evidently, our
In the original image Peppers, there are black bound- choice of parameters is not restrictedte- 10,20,30
aries of width of one pixel, we therefore compute the andp =0.2,0.3,0.4,0.5. This choice can also be ap-
PSNR value for the image of size 25254 obtained ~ Plied to any value ob in the interval [10,30] angb in
after removing the four boundaries. the interval [0.2, 0.5], or even larger intervals. Note
There are several parameters to be tuned inthatwhenos=15orosm = 15, we getws(i, j) ~ 1
NLMixF. Recall that NLMixF reduces to NL-means ©OF Wsm(i, j) ~ 1. This means that for impulse noise
wheno, = 0; = 0s = . So for removing Gaus- W€ can omit the factowsm(i, j), and for Gaussian
sian noise, a reasonable choice is to takes; and ~ NOise and mixed noise we can omit the faatg(i, j).
os large enough (though this choice is not necessar-A full discussion of the roles of the different choices
ily optimal). To apply our filter easily in practice, we Of Parameters goes beyond of the scope of this paper.
look for a simple and uniform formula in terms pf The problem of choice of parameters for NL-means
ando. We first look for a linear relation: when this has been considered in the literature, see for example
does not seem possible we test some slightly more (XU €tal., 2008) and (Duval et al., 2011). _
complicated functions. To obtain the formulas, we  For TriF, we choose parameters and apply the filter
consider Gaussian noise with= 10, 20,30, impulse according to the suggestion of (Garnett et al., 2005).
noise withp = 0.2,0.3,0.4,0.5 and their mixture. We ~ We used; = 40,065 = 50,0s = 0.5,0r = 20qeN,
have done our best to choose the formulas, but we canVherédqen is an estimator for the standard deviation
not guarantee that our formulas are always optimal Of “quasi-Gaussian” noise defined in (Garnett et al.,
due to the complexity of the subject. Our choices of 2005). For impulse noise, whep > 0.25, it was
parameters for NLMixF are shown in the following, Proposed in (Garnett et al., 2005) to apply the filter
where Gaussian noise, impulse noise and mixed noiseith two to five iterations. We apply two iterations

are abbreviated respectively as Gau, Imp and Mix;  for p=0.3,0.4, and four iterations fop = 0.5. For
mixed noise, we apply TriF twice with different val-

0y =60+20—-50p, 0;=45+0.50—50p, ues ofos as suggested in (Garnett et al., 2005): with
all impulse noise levelp, for o = 10, we use first
om = 4+ 0.40 4 30p — - G , 04 = 0.3, thenos = 1; foro = 20, firstos = 0.3, then
Osp = 15; for o0 = 30, firstog = 15, thencs = 15.
Lor Lena, Peppers and Boats, cf. Note that wheros = 15, we can omit the spatial fac-

http://decsai.ugr.esjavier/denoise/tesimages/index.htm; tor.
for Bridge, cf. www.math.cuhk.edu.hktchan/paper/dcx/.
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Table 1: Choice of parameters for NL-means.

Table 3: PSNR values to remove Gaussian noise.

o 10 20 30 -
Lena Bridge
d(size of local patcheg (d)) | 7 9 13 5 0 s 30l 10 2(? %0
D (size of search windows (D)) | 9 9 11 TAE | 3321 2948 2651|3062 2742 2505
NLMixF |3492 3173 2981| 3265 2933 2756
Table 2: PSNR values for removing random impulse noise. NL-means| 3503 3178 2989| 3272 2984 2793
P 02 03 04 05 _ _ _
Lena TriE 34.44 3255 3127 2914 Table 4: PNSR values for removing mixed noise by
NLMixF 3535 3309 3152 2985 NLMixF and TriF.
Bridge | TnF 26,70 2520 2443 2331
NLMixF 27.65 2546 2445 2331 P 02 03 0402 03 04
Peppers, TriF 3085 2864 2774 2614 Lena 0=10 Bridge o0=10
NLMixF 3194 2940 2834 2647 TrF | 3160 3088 2966 || 2514 2459 2393
Boats | TNE 3010 2857 2764 2613 NLMix |3278 3147 2994|2606 2471 2380
NLMixF 3124 2905 27.50 2610 Lena 0=20 Bridge o0 =20
. THE | 2875 2811 2726|2373 2332 2284
For NL-means, we use; = 4+ 0.40 in accor- NLMixF | 30.54 2965 2844 || 2444 2361 2286

dance with the choice afy in NLMixF (with p=0).
This choice is different from the proposed one in
the original NL-means algorithm, and generally gives | mixE

Lena o=30

2648 2577 2502
2887 2807 2734

Bridge 0=30
2240 2206 2152
2338 2279 2224

better restoration results. The values doandD are
shown in Table 1.

Peppers o =10 Boats 0=10

: TriF 29.05 2795 2663|2832 2760 26.79
We now present some experimental resul_ts. Ta- NLMixE | 3049 2856 2747l 2973 2820 26.76
bles 2 and 3 show the performances of NLMixF for
L . : : Peppers o=20 Boats 0=20
removing impulse noise and Gaussian noise by com- TiE | 2670 2587 2529 2635 2574 2507
paring it with Tri and NL-means (for whichwe use . | 5854 2737 2651|2766 2661 2560
w(i,i) = max{w(i, ) : j #i, ] € 26(D)} anda(i,k) =
1 (d-1)/2 1 (2 Table 4 Peppers =30 Boats 0=30
@022 @iz N (2). Table 4 compares TriF | 2471 2391 2327|2454 2401 2337
NLMixF with TriF for removing mixed noise. We NLMixF | 27.04 2591 2514|2634 2556 2469

add Gaussian noise and then impulse noise for simu-
lation of mixed noise. Since NL-means is not suitable
for removing impulse noise, we do not include it in
Tables 2 and 4. We can see that NLMixF improves
TriF in almost all the cases, especially wheis small
(p=0.2), oragis large ¢ = 20,30). Some examples
are shown in Figs. 1. In Table 5, we compare the
PSNR values with the two algorithms in (Yang and
Wu, 2009) and (Xiao et al., 2011), where we show
the reported PSNR values for these two algorithms.
In Fig. 2, we show the denoised images by NLMixF
and IPAMF+BM in (Yang and Wu, 2009), using the
same noisy image.

5 CONCLUSIONS

We have first presented two convergence theorems for

the Non-Local Means Filter (Buades et al., 2005).

Table 5: Compare PNSR values for mixed noise.

Lena 0=10 p=01 p=02 p=03

(Xiao etal., 2011) | 32.75 31.66 30.42

(Yang and Wu, 2009) 33.61 32.12  30.69
NLMixF 3410 3278 3147

the choice of parameters which can at least be used
for Gaussian noise witls € [10,30], impulse noise
with p € [0.2,0.5], and their mixture. Our experi-
ments show that NLMixF outperforms TriF, as well as
the more recent methods proposed in (Yang and Wu,
2009),and (Xiao et al., 2011) based respectively on
the ideas of BM3D (Dabov et al., 2007) and K-SVD
(Elad and Aharon, 2006).
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Figure 2: Restored images by NLmixF and IPAMF+BM
(Yang and Wu, 2009).
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