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Abstract: This paper present an approach for object surface estimation from a single perspective using a stereo camera 
configuration. The goal of the method is to capture the particularity of an object of interest by fitting a 
generic primitive who best models the recognized shape. The shape modeling process is performed on 3D 
Regions of Interest (ROI) obtained by classifying the objects present in disparity maps. The principle uses a 
number of control points, calculated from the primitive Point Distribution Model (PDM). These control 
points drive the modeling behavior in the disparity point cloud data based on the principle of active 
contours, or snakes. Finally a compact 3D object mesh can be generated using Delaunay triangulation. The 
obtained PDM models are intended to be used for the purpose of precise object manipulation in service 
robotics applications. 

1 INTRODUCTION 

Nowadays most service robotics applications use 
depth perception for the purpose of environment 
understanding. In order to precisely locate, grasp and 
manipulate an object, a robot has to estimate as good 
as possible the pose and the structure of that object 
of interest. For this reason different visual 
acquisition devices, such as stereo cameras, range 
finder or structured light sensors, are used (Trucco 
and Verri, 1998). 

For online manipulation, together with the pose 
of the object, it is needed to determine the 3D 
particularities of the viewed structure in order to 
estimate its shape (Hartley and Zisserman, 2004). 

There are several types of methods that focus on 
the 3D reconstruction of objects using multiple 
perspectives. Such methods try to reconstruct the 
convex hull of the object (Matsuyama et al., 2004), 
or to recover its photo-hull (Kutulakos and Seitz, 
2000). Other algorithms explore the minimization of 
the object’s surface integral with a certain cost 
function over the surface shape (Lhuillier and Quan, 
2005). 

On the other hand, the reconstruction can be 
addressed also from a single view. This technique is 
usually efficient when applied to regular surface 
objects. An early approach for this challenge was 

investigated for piecewise planar reconstructions of 
paintings and photographs (Horry et al., 1997). 
Subsequent improvements of the technique 
(Criminisi et al., 2000), (Sturm and Maybank, 1999) 
increased the geometric precision especially for 
scenes with multiple vanishing planes.  

In terms of reconstruction resolution and 
accuracy, range images (e.g. from laser scanners) 
provide one of the best surface estimations from all 
techniques. However, it has speed deficiency, sensor 
dimension and power consumption (Kim et al., 
2009).  

The main challenge encountered during 3D 
reconstruction is the automatic computation of the 
3D transformations that align the range data. Thus, 
the registration of different perspective point clouds 
into one common coordinate system represents one 
of the most researched topics in the vision 
community (Kim, 2009), (Stamos et al., 2008). 

The rest of the paper is organized as follows. In 
Section 2 a brief description of the image processing 
chain is provided. The main contribution of the 
paper, that is the 3D shape modeling approach, is 
given in Section 3. Finally, before conclusions, 
performance evaluation results are presented in 
Section 4. 
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2 MACHINE VISION APARATUS 

The block diagram of the proposed scene perception 
system can be seen in figure 1. 

 
Figure 1: Block diagram of the proposed scene perception 
system. 

The reference coordinates of the obtained visual 
information is related to the on-line determined 
position and orientation (pose) of a robot, that is, of 
a robot’s stereo camera system (Grigorescu et al., 
2011). Once a certain pose is determined, the 
imaged scene can be reconstructed and segmented 
for the purpose of environment understanding. The 
main objective here is to get the depth, or disparity, 
map which describes the 3D structure of an imaged 
scene. This information is further used by the final 
object volumetric modeling algorithm, which is 
actually the main focus of this paper. One of the 
main algorithms used in the proposed vision system 
is the object classification method which delivers to 
the volumetric modeling method the object class and 
the 2D object ROI. The classification procedure is 
based on color and depth information. A detailed 
description of the approach can be found in 
(Grigorescu et al., 2011). 

3 OBJECT VOLUMETRIC 
MODELLING 

The object volumetric modeling system is based on 
the active contour principle used to manipulate a set 
of pre-defined Point Distribution Models (PDM) by 
stretching them over a disparity point cloud 
describing an object in a given Region of Interest 
(ROI). In the considered process, three main 
challenges arise: the sparse nature of the disparity 
maps, the calculation of the 3D ROI and the 
nonlinear object modeling. 

3.1 PDM Primitive 

In the presented work, an object generic primitive is 
defined as a PDM model which serves as a backbone 
element forconstructing a particular object, or shape. 
The generic PDM primitive is represented by a data 
structure that has as background component a shape 
vector ࢄ which contains 3D feature points 
describing the model of an object class. Such 
example models are shown in figure 2. Additionally, 
the structure contains a scale factor ݏ, a rotation 
matrix ܴ and a translation matrix ݐ that relates the 
PDM to a canonical reference coordinate system. 

(a) 
 

(b) 

Figure 2: Generic meshed PDM models. (a) Potato. 
(b)Bottle. 

Since in the considered source of visual 
information, that is disparity images, only one 
perspective of the imaged object is available, the 
PDM model is actually used to compensate for the 
missing information. In this case we consider objects 
that have a symmetrical shape. Nevertheless, the 
proposed approach can be applied on irregular 
shaped entities. Depending on the complexity and 
regularity of the surface object, the primitive model 
can be defined either by a low or a high number of 
3D feature points. For example, the bottle shown in 
figure 2 is described by 382 feature points. Since the 
PDM describing such an object represents a regular 
surface, not all these points are important for the 
object modeling process. The so-called control 
points, namely those points that define the shape of 
an object, can be automatically determined based on 
three main characteristics (Cootes, 1995): 
1. Points marking the center of a region or sharp 

corners of a boundary; 
2. Points marking a curvature extreme or the 

highest point of an object; 
3. Points situated at equal distance around a 

boundary between two control points obeying 
rule one. 

In the same time, control points can be 
determined manually under the guidance of a human 
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(Zheng et al., 2008). This last method captures the 
features of an object more efficiently but suffers 
from subjectivity on features definition since the 
process is controlled by a human person. Depending 
on the modeled object, in our approach we used both 
the automatic and the manual techniques to 
determine control points. Using the introduced 
points, the computation time is increased since the 
number of points describing the shape of an object is 
usually much lower than the total number of points 
from the PDM. The 3D positions of the PDM points 
are actually directly dependent on the positions of 
the control points, as it will later be shown in this 
section. For example, from a total of 382 points 
describing the bottle primitive from figure 2(b), only 
71 of them (marked with red dots) are considered to 
be control points. On the other hand,for a complex 
object, this number can be equal to the initial PDM 
features number, meaning that all points from the 
primitive are considered to be control points since 
all of them are needed to capture a specific feature. 
Taking into account a lower number of control 
points will considerably increase the computational 
speed of the modeling process. 

3.2 Disparity Map Enhancement 

As opposed to newer structured light sensors, such 
as the MS Kinect®, one main drawback of the 
considered visual information is the sparse 3D 
structure of disparity maps. Namely, it contains 
“holes” or discontinuities in areas where no stereo 
feature matching exists (Brown, 2003). Such 
discontinuities are present in low textured regions or 
constant color areas from the environment. 

To overcome this issue we propose an 
enhancement method which deals with disparity 
maps discontinuities. Basically, the idea is to scan 
each point from a disparity image and determine if 
there is a gap between the considered point and a 
neighboring point situated at a certain distance, as 
shown in figure 3(a). Since we apply the principle 
on disparity maps, which are defined on the 2D 
domain, there are only 5 main neighboring 
directions from a total of 8 in which we search for 
discontinuities. The untreated 3 directions refer to 
the back of the centered point and it is assumed that 
are no discontinuities in that direction since the 
position is already searched.  

The disparity map is actually a grey scale image 
with pixel intensities inverse-proportional to the 
distance between the considered 3D world point and 
the camera’s position. Having in mind that the 
disparity image is represented using 8 bits, we 

sample it using 256 layers, each corresponding to 
certain intensity in the disparity domain. The 
enhancement process searches for discontinuities 
only in one layer at a time, since there is no 
information about the connectivity of the intensities. 
In this sense, the layers are stored using a 256 bins 
histogram. For each pixel in each layer the number 
of the same intensity along a direction is calculated. 
In order not to merge two different objects, the 
search area is reduced to a finite value, dynamically 
calculated. The search process starts from the lowest 
neighboring distance value, which has a two pixels 
length, and ends when a discontinuity is found or the 
maximum length is reached. The discontinuity is 
determined by comparing the length of the direction 
with the number of the same intensity pixels found 
along this direction. If the number of pixels found is 
below the length of the considered direction, the 
missing positions are filled with pixels with the 
same intensity as the ones alreadyfound. 

 
(a) 

(b) (c) 

Figure 3: Disparity enhancement algorithm. (a) Missing 
pixels searching principle. (b)Original disparity map. (c) 
Enhanced disparity image. 

There is a slight chance that two closely 
positioned objects are merged by the algorithm. In 
order to overcome this challenge, a variance driven 
image of the disparity map has been used (Turiac et 
al., 2010). From the variance image only object 
contours are extracted. In this way it can be 
determined if the points which take part in the fill 
process belong to one single region or to a 
neighboring region. The result of the presented 
method will be a compact and dense representation 
of the disparity image, as shown in figure 3(c). On 
the other hand, it is needed to connect the layers 
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which are very close (in terms of disparity) in the 3D 
model. This can be achieved by diffusing the 
gradient separating two neighboring intensities. In 
order to preserve the 3D features of the object, the 
diffusing process will occur only for regions with 
translation of intensity no grater then 5 intensities 
layers. In this way, the obtained layers are smoothly 
connected. 

3.3 3D ROI Definition 

The 2D segmentationand classification process 
provides, besides the class to which the object 
belongs, a ROI feature vector ],[

ii RL pp , ݅ = 1,2,3,4 
defined in the stereo image pair domain. This 
description restricts the object search area to a 
quadratic region of interest. By computing the 
disparity between the left and right ROI points we 
obtain a 3D representation of the considered ROI. In 
this way only a planar representation (slice)in the 3D 
space is obtained. The volumetric property is 
evaluated starting with the assumption that the pixels 
inside the 2D ROI describe only the object. The 
depth is determined statistically by finding the 
highest density of 3D points which lie inside the 
planar ROI along the Z 3D Cartesian axis. A 3D 
representation of the ROI can be seen in figure 4. 
However, there is a possibility that the highest 
density of 3D points belongs to a noise entity outside 
the object border but still inside the ROI.  

(a) (b) 

Figure 4: 3D ROI computation. (a) Input image together 
with the calculated 2D ROI. (b) 3D ROI reprojection.  

To overcome this problem, a histogram of the 
disparity image is calculated. Instead of searching 
only the top density value of the intensities in 
histogram, we check also the highest aperture of the 
histogram for the considered top density. Basically 
we determine the highest distribution of connected 
points by summing all the densities from the slices 
of the aperture belonging to a top value of the 
histogram as: 

∑
+

+

=
bi

ai

ihd ))(max( , (1) 

Where d represent the highest cluster of 3D points, ℎ(݅) is the number of pixels for a certain bin i and a, 
b are the closest and farthest non zero ℎ(݅)relatively 
to the considered intensity i, respectively. The 
margin of the aperture is actually defining the first 
and last planes of the 3D ROI volume along the Z 
axis, respectively. 

3.4 PDM Shape Alignment 

The 3D alignment process deals with the calculation 
of the rotation and translation of the primitive shape 
with respect to the point cloud distribution of the 
disparity information inside the 3D ROI. Because 
each PDM, that is primitive and point cloud, is 
defined in its own coordinates system, a similarity 
transformationis used to align the two models. Since 
the ROI’s PDM is related to the same coordinate 
system as the 3D virtual environment, we have 
chosen to bring the primitive’s PDM into a reference 
3D environment coordinate system. The reference 
coordinate system is given by the on-line determined 
pose of the stereo camera (Grigorescu et al., 2011). 
In this sense, the primitive is considered to be a 
translational shape, while the 3D ROI is marked as a 
static cube. The similarity transformation is 
described by: 

 ܺ௡௘௪ = ௢௟ௗܺ)ܴݏ −  (2) ,(ݐ
 

where, oldX  and newX  represent the 3D coordinate 
of a point before and after the similarity 
transformation, s is a scale factor, while R and t are 
the matrices defining the rotation and translation of a 
point, respectively. These coefficients represent the 
Degrees of Freedom (DoF) of a certain shape. 

The scale factor is determined based on the 3D 
point cloud information inside the ROI. Since a 
disparity enhancement is considered before the 3D 
reprojection process, it can be presumed that inside 
the ROI exist one or more large densities of points 
which describe the object of interest. Thus, by 
evaluating the distribution of these densities we can 
compute a percentage of the size difference between 
the object PDM shape and the point cloud within the 
3D ROI. 

The translation of the moving shape is easily 
determined by adding the center of gravity of the 
points inside the 3D ROI from the center of gravity 
of the primitive PDM, as follows: 
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where, pn represent the number of points of the 
model and a and b are the two densities of points, 
that is of the object’s shape (primitive model) and of 
the fixed point cloud inside the 3D ROI. The 
rotation matrix R is determined by evaluating the 3D 
distribution of the disparity point cloud information, 
that is, 3D slope from which the point data is 
aligned.  

By using the proposed alignment method, a 
rough object volumetric estimation is obtained based 
on the fitting primitive principle. An example result 
of the similarity transformation can be seen in figure 
5, where, the green silhouette represents the PDM 
primitive shape. 

 

 
Figure 5: Primitive PDM shape alignment example. 

3.5 PDM Primitive Modeling 

The points which drive the modeling process are the 
control points described in a previous subsection. 
The behaviorof the other points in the PDM model is 
automatically derived from the movement of the 
control points. The modeling process is achieved by 
dragging after each control point the neighbors from 
the surrounding area. Each of the neighbor point is 
moved based on a physical relation describing the 
property of the considered object. This relation can 
be either linear, as in equation 4, or non-linear for 
more complex surfaces. For simplicity if 
explanations, we have considered in this work a 
linear relation between control and the rest of the 
PDM points: 

 

,1
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⎠

⎞
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⎝

⎛
+=

d
d

XX curr
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where, newX  and oldX  represent the new and old 3D 
coordinates of the considered neighboring points, 
respectively, maxd  is the distance between the 
control point and the farthest neighbor within the 
affected area and currd  represent the distance 
between the control point and the translated 

neighbor. The results of such a linear modeling are 
shown in figure 6, where control points are marked 
with red, their neighbors are labeled with blue the 
rest of the PDM points are green.The surrounding 
dragged area has the shape of a cube centered on the 
control point 3D coordinate and has its area defined 
as double the distance between the initial and the 
new position of the control point, as depicted in 
figure 5. 

  

(a) (b) 

Figure 6: A linear dependency between a control point and 
its neighbors. (a) Initial PDM shape model.(b) Point 
deformation along a considered direction. 

The proposed approach for estimating an object’s 
volume starts with a generic object PDM model, 
namely a primitive, and ends by capturing by each 
primitive control point the local features of the 
modeled object of interest. As explained, this is 
achieved by minimizing the distance between the 
control point and the PDM in a respective 
neighborhood. The minimization procedure is based 
on the active contours principle, better known as 
snakes (Kass et al., 1988). This approach represents a 
deformable contour model of the considered object.  

In an image, an active contour is a curve 
parameterized by the minimization of and energy 
functional:  

 

,))](())(([)()()(
1

0
intint ∫ +=ε+ε=ε dsscEscEccc extext

 
(5) 

 

where, intE and extE are the internal and external 
energies, respectively and ܿ(ݏ) = ,(ݏ)ݔ] ,(ݏ)ݕ  [(ݏ)ݖ
represents the curve describing the object’s surface. 
while ]1,0[∈s . By defining an initial contour within 
an image, it will move under the influence of 
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internal forces computed based on the derivatives 
from the active contour an also under the influence 
of the external forces captured from the image.  

In the presented 3D object modeling approach, 
the disparity image domain is equivalent to the 3D 
representation of the scene. For this reason the same 
energy minimization principle has been used to 
model the shape of an object. Instead of using an 
initial active contour, as in the original method, we 
propose the use of a 3D generic primitive PDM 
model. The movement of the contour surface is thus 
described by the direction of the lowest functional 
energy, that specific region actually corresponding 
to aprobable contour in the image (Mark et al., 
2002). In the considered 3D case being the highest 
density of points from the 3D scene.  

The idea of using forces to move the primitive 
points is that the primitive PDM must be attracted 
and fitted on the border of the object. The internal 
forces, which refer exclusively to the primitive 
PDM, are responsible for supervising the shape 
smoothness and continuity. As described in the 
equation 6, the continuity property is controlled by 
the first derivate while smoothens is define by the 
second derivate of the surface. 

 

),)()()()((
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1 2"2'

int svssvsEEE curvcont β+α=+= (6) 

 
where, contE  is the energy responsible for the 
continuity of the surface and curveE  deals with the 
bending property of the hull of the object.α  and β
are two parameters which influence the contE  and 

curveE  forces, while )](),(),([)( szsysxsv =  represent 
the coordinates of a point from the shape vector X. 
In the discreet domain the two energies can be 
rewritten as:  
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where, ix , iy , iz X∈ , pni ...1=  and pn is the 
number of points in the shape PDM vector. In the 

original formulation of the principle, each point 
from the shape can be moved in one of the eight 
possible 2D directions. In current3D approach, 
because of the third dimension, a number of 24 
directions are taken into account.  

The correct moving direction is mainly 
influenced by the external energy extE  which 
evaluates for each direction the highest density of 
3D points. Because this density can be spatially very 
close, a weight factor for the external energy is 
introduced. Thus, if these candidate positions have 
an appropriate number of points, the weight factor 
will be considered zero.  

Since we have only one perspective of the 
object, there are large object areas with no 3D point 
cloud description needed to drive the contour 
energies. The un-imaged back side of an object 
represents such an example. In the proposed 
approach, the missing information is filled by the 
generic data introduced by the PDM primitive 
model. 

4 EXPERIMENTAL RESULTS 

For evaluation purposes, a Point Grey Bumblebee® 
stereo camera system mounted on an autonomous 
platform equipped with a robotic manipulator was 
used. The objects used during tests were placed at 
random location on flat surfaces present. The exact 
location of an object is unknown. We tested the 
algorithm on two different types of objects, namely 
bottles and potatoes having different irregular 
shapes. The bottles object class represents a large 
number of geometrical regular shapes frequently 
encountered in domestic settings. The potato is used 
to test the algorithm against complex irregular 
surfaces. 

The Ground Truth (GT) data against which the 
proposed method has been tested is composed of a 
number of manual measurements conducted on the 
objects: width, height, thickness, translation and 
rotation. The translation and rotation was measure 
with respect to a fixed reference coordinate system 
represented by an ARToolKit® marker. 

Table 1: Performance evaluation results for the proposed volumetric modelling system. 

Shape  Width[m] Height[m] Thickness[m] Φ[deg] θ[deg] ϕ[deg] ݔ[m] ݕ[m] ݖ[m] 
Bottle GT 0.085 0.35 0.08 0 1.3 5.7 0.1 0.05 0.850 

Online 0.086 0.3491 0.0749 1.121 2.12 5.27 0.088 0.061 0.869 

Potato GT 0.087 0.059 0.06 0 2.5 1.5 0.1 0.05 0.850 
Online 0.0855 0.0637 0.0651 2.08 1.67 -0.38 0.09 -0.055 0.873 
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Because of its regular shape, the volumetric 
estimation of bottles had the lowest modeling error, 
as can be seen from Table. 1. The modeled primitive 
captured efficiently the particularity of the surfaces, 
thus resulting in a precise surface estimation. On the 
other hand, due to their irregular shape, a higher 
estimation error has been determined for the 
considered potatoes. An example of obtained test 
results can be seen in Table 1, were Φ, θ and ϕ are 
Euler angles and x, y, and z are positions along the 
three Cartesian axes, respectively. 

5 CONCLUSIONS 

In this paper, an object volumetric modeling 
algorithm for objects of interest encountered in real 
world service robotics environments has been 
proposed. The goal of the approach is to determine 
as precisely as possible the 3D particular surface 
structure of different objects. The calculated 3D 
model can be further used for the purpose of visually 
guided object grasping. As future work the authors 
consider the time computation enhancement of the 
proposed procedure through parallel computational 
devices (e.g. Graphic Processors), as well as the 
application of the method to other computer vision 
areas, such as 3D medical imaging. 
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