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Abstract: The fast and robust recognition of human actions is an important aspect for many video-based applications
in the field of human computer interaction and surveillance. Although current recognition algorithms provide
more and more advanced results, their usability for on-line applications is still limited. To bridge this gap a on-
line video-based action recognition system is presented that combines histograms of sparse feature point flow
with an HMM-based action recognition. The usage of feature point motion is computational more efficient
than the more common histograms of optical flow (HoF) by reaching a similar recognition accuracy. For
recognition we use low-level action units that are modeled by Hidden-Markov-Models (HMM). They are
assembled by a context free grammar to recognize complex activities. The concatenation of small action
units to higher level tasks allows the robust recognition of action sequences as well as a continuous on-line
evaluation of the ongoing activity. The average runtime is around 34 ms for processing one frame and around
20 ms for calculating one hypothesis for the current action. Assuming that one hypothesis per second is
needed, the system can provide a mean capacity of 25 fps. The systems accuracy is compared with state of the
art recognition results on a common benchmark dataset as well as with a marker-based recognition system,
showing similar results for the given evaluation scenario. The presented approach can be seen as a step towards
the on-line evaluation and recognition of human motion directly from video data.

1 INTRODUCTION

The recognition of human action is a growing field,
perhaps even one of the key topics for human com-
puter interaction and surveillance applications. It can
be applied in the context of simple communicative
interaction like waving or pointing, but also help to
understand complex tasks and enable reasonable ser-
vice, e.g. in the context of service or industry robots.
One of the main goals in this field is the understanding
of what the current behavior aims at and the context
in which this happens. This would allow a forward-
looking and anticipatory behavior and enable the sup-
port of the current task execution and the adaption to
the users needs.

The following paper presents a system for the
video-based recognition of complex tasks in order to
allow a recognition of basic actions and to understand
the intention behind. It works on-line and is able to
recognize the ongoing action. The system combines
three components: first, the video images are conver-

ted into global histograms of sparse feature flow. This
can be seen as a valuable alternative to histograms of
oriented flow (HOF), as feature based histograms can
reach a similar recognition performance while being
more efficient allowing on-line application as they are
needed in the field of human computer interaction.
The second component is the HMM-based recogni-
tion of small action units based on the feature flow
histogram input. In a third step, the action units are
combined by a higher level grammar that guides the
concatenation of small action units into a meaningful
sequence and so, the recognition of the overall task.

The here presented scenario takes place in the
household domain considering typical kitchen tasks
like cutting fruits or pouring a glass of water. Exam-
ples for such a setting can be seen in Figure 1. Each
complex task is decomposed into action units, and a
grammar has been set up that allows the combination
of the action units to continuous action sequences.

We show that the recognition performance with
the histograms of sparse feature flow is comparable to
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Figure 1: Example for action sequences in a kitchen sce-
nario: a) ’Basic Kitchen Tasks’ dataset: pouring water into
a bowl (Gehrig et al., 2009), b) ’Activities of Daily Living’
dataset: chopping a banana (Messing et al., 2009).

the one with optical flow histograms as well as with
state of the art systems and that both approaches have
similar recognition rates as the marker based system
in the given scenario. To be able to compare the
recognition performance of motion histograms with
the one of marker based recognition systems, half
of the performed tasks of the here presented ’Basic
Kitchen Tasks’ dataset were captured with video as
well as with a commercial marker based motion cap-
ture system from Vicon. Additionally, we evaluated
the runtime of the optical flow as well as of the fea-
ture based approach, showing that the feature based
approach is fast enough to allow a on-line recognition
during execution.

2 RELATED WORK

The use of global and local histograms has become
a more and more important technique in the context
of action recognition for a lot of different applica-
tion scenarios, e.g. presented by Efros et al. (Efros
et al., 2003) in the context of sports, by Marszalek
et al. (Marszalek et al., 2009) for video and movie
databases or by Danafar and Gheissari (Danafar and
Gheissari, 2007) for surveillance applications.

Many approaches use local accumulated optical
flow histograms, i.e. Lucena et al. (Lucena et al.,
2009). The flow histograms are computed from a
number of tiles in the region of interest. The input

vector is a concatenation of the aggregated his-
tograms. A closely related approach that is also build
on tiled optical flow histograms but that focuses on
the modeling of HMMs for recognition is presented
by Mendoza et al. (Mendoza et al., 2009). They split
the region of interest into 8 tiles and calculate optical
flow histograms with 4 bins for magnitude and 8 bins
for orientation for each tile. After a PCA this 256D
feature vector reduces to a 32D vector which is used
for recognition. For the modeling of actions they pro-
pose products of HMMs (PoHMM).

More abstract approaches are dealing with the
syntactic structure of actions and tasks. The decom-
position and concatenation of complex tasks has e.g.,
been described by Ivanov and Bobick (Ivanov and Bo-
bick, 2000). The approach proposes the decompo-
sition of complex action into smaller tasks and their
reassembling by a higher level grammar. Following
this idea, the task of action recognition is also split up
into two steps. First small action units had to be rec-
ognized, e.g. by simple HMMs, then the result of this
low level recognition is processed by a higher level
stochastic action grammar.

3 FEATURE FLOW
HISTOGRAMS

Motion information can be gained from dense op-
tical flow fields or from tracking of feature points
only. The feature tracking used in this paper is based
on the Lucas-Kanade method described in (Lucas
and Kanade, 1981) and (Tomasi and Kanade, 1991).
The initialization and tracking of features follows the
pyramidal KLT feature tracking implementation by
(Koehler and Woerner, 2008). The initialization of
new features is done for every frame following the al-
gorithms of Shi and Tomasi (Shi and Tomasi, 1994).
Every frame of the video sequence is represented by a
global histogram of its overall motion directions with-
out any further local information. The weighted his-
togram for framet is calculated from the motion vec-
tor of the feature points of imagesI at time indext and
t+1 (It , It+1). The motion vector(u(δt),v(δt)) of the
feature is used to calculate the resulting motion direc-
tion θ, indicated by an angle value from[−π,π] and
γ defining the motion intensity. The feature motion
directions are weighted with their norm values. The
elements for one bin of the histogram are calculated
based on the motion angleθ. As the motion angle
ranges from[−π,π], the vector of elements for thek-
th bin h(k) of a histogram withn bins can be defined
as:
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Figure 2: Comparison of feature motion (a) and optical flow
(b) histogram: 1) example for vector plot, 2) bar plot of
weighted motion histograms.

h(k) = {(u,v)|θ(u,v) ≥
(k2π)

n
−π ∩

θ(u,v)<
((k+1)2π)

n
−π} .

(1)
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Figure 3: Example for feature motion histogram distribu-
tion for action sequence ‘Pouring’.

The number of elements inh(k) is indicated by
N(h(k)), and the elements represent the motion vec-
tors (u,v) of the related feature points. Thek-th bin
for the weighted histogram is calculated from the in-
tensity of all elements in the vector as shown in

H(k) =
N(h(k))

∑
i=1

γ(h(ki)). (2)

Examples for the feature flow motion compared to the
optical flow motion as well as the resulting histograms
can be seen in Figure 2. The histograms are sampled
over time resulting in a 30-dimensional input vector
for the HMMs. An example for the histogram distri-
bution over a complete action sequence can be seen in
Figure 3.

4 ACTION UNITS AND
GRAMMAR

Complex tasks, in this case in the household domain,
usually consist of concatenated action units. If some-
one wants to cut vegetables, one usually has to take
it, get a knife, start cutting, put the knife back etc.
Action units in this context refer to a motion that is
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performed continuously and without interruption. So,
action units are the smallest entity, which order can be
changed during the execution, for example is it pos-
sible to first take the knife then the vegetables, but it
could also be done the other way around. Addition-
ally all tasks, as long as they have a meaningful aim,
have to be executed in a certain order. It would not
make sense to start cutting vegetables without hold-
ing a knife or without the vegetables in front. As the
order in which the different tasks are executed is not
random, it is possible to formulate a grammar, which
has to be followed. This action grammar defines the
action sequences, which are a concatenation of action
units that result in a meaningful task. A example for
a simplified grammar can be seen in Figure 4. This
grammar describes the three idealized actions stirring,
mashing and pouring in case they were always exe-
cuted this way. The action that will be recognized
depends on the path through the graph. The here pre-

idle_start

pick_bowl

pick_spoon

stirring

put_away_spoon

put_away_bowl

idle_end

pick_masher

mashing

put_away_masher

pick_bottle

pouring

put_away_bottle

Figure 4: Sample grammar for three tasks: stirring, mashing
and pouring.

sented tasks take place in the kitchen domain. They
comprise taking kitchen utensils from a table, work-
ing with them and putting them back to their places. If
a cyclic action unit like stirring or grating is involved,
this action unit can be individually repeated. The ac-
tion sequences and action units had been defined be-
forehand.

5 ACTION RECOGNITION
SYSTEM

The action recognition system is made up of two com-
ponents. First, a low level modeling is done on the
level of action units using HMMs. Second, for the
recognition of action sequences, the low level HMMs
are combined with a stochastic context free grammar,
which controls the longer sequences of action units
and also allows to solve disambiguaties at the level of

action units. During the recognition of the sequences,
an implicit automatic segmentation of the action se-
quences into action units is performed.

Our action recognition system features the one
pass IBIS decoder (Soltau et al., 2001), which is part
of the Janus Recognition Toolkit JRTk (Finke et al.,
1997). We use this toolkit to recognize actions based
on Hidden Markov Models (HMMs).

Each action unit is statistically modeled with a 4-
state left-to-right HMM. Each state of the left-to-right
HMM has two equally likely transitions, one to the
current state, and one to the next state. The emis-
sion probabilities of the HMM states are modeled by
Gaussian mixtures. The number of Gaussians per
mixture is taken from cross-validation experiments.
An action sequence is modeled as a sequential con-
catenation of action unit models.

Initialization and Training. To initialize the HMM
models of the action units, we manually segmented
the data into the action units. As action units are
modeled by a 4-state HMM, the manually segmented
data are equally divided into four sections, and a
Neural Gas algorithm (Martinetz and Schulten, 1991)
is applied to initialize the corresponding HMM-state
and its emission probabilities. HMM training was
performed featuring the Viterbi EM algorithm based
on forced alignment on the unsegmented action se-
quences.

On-line Recognition. The on-line decoding of the
systems is carried out as a time-synchronous beam
search. Large beams are applied to avoid pruning er-
rors, using a context free grammar to guide the recog-
nition process. The context free grammar consists of
10 start symbols, one for each sequence type, leading
to a sequence of terminals representing the sequence
of actions units of the specific activity. The idle po-
sitions are optional and the number of repetitions for
the cyclic action units is arbitrary, but at least one.

6 EVALUATION

We evaluate the recognition performance of the pro-
posed system by applying it to two different datasets.
The first dataset is the Basic Kitchen Tasks dataset1

consisting of 10 action sequences with a total of 48
action units. Each action sequence has been recorded
20-30 times resulting in an overall of 250 action se-
quences samples and over 6000 action unit samples.
The video data is captured with 30fps and a resolu-
tion of 640x480 px with a Prosilica GE680C camera.

1http://www.sfb588.uni-karlsruhe.de/bkt-dataset/

ON-LINE ACTION RECOGNITION FROM SPARSE FEATURE FLOW

637



Table 1: Comparison of optical flow (HoOF) and feature
flow (HoFF) on the Basic Kitchen Tasks (BKT) dataset(10
sequences / 48 action units) and the ADL dataset(10 se-
quences / 53 action units).

BKT dataset I HoOF HoFF
Sequence recog. 100.0 % 100.0 %
Unit recog. 96.7 % 96.6 %

ADL dataset HoOF HoFF
Sequence recog. 82.0 % 71.3 %
Unit recog. 63.5 % 55.0 %

Parallel to the video data acquisition, five of the per-
formed action sequences are recorded with a marker
based motion capture system (Vicon). Each sequence
has been repeated 20 times. Overall 100 samples
with over 2400 action units were recorded. Reflective
markers were attached to the test persons upper body
and mapped onto a kinematic model to calculated the
related joint angle trajectories of the test persons mo-
tions. The system outputs a feature vector of the 24
joint angles, describing the actual pose of an upper
body model. For the recognition deltas of joint angles
are calculated as the input vectors. The second dataset
is the University of Rochester Activities of Daily Liv-
ing dataset2. This set also comprises 10 different
tasks, which have been manually segmented using a
total of 53 action units. The input feature vectors of
all systems are normalized by mean subtraction and
by normalizing the standard deviation to 1.

6.1 Feature Flow Recognition

To compare the recognition performance of the fea-
ture based approach with the optical flow based ap-
proach, we compute the histograms of oriented fea-
ture flow (HoFF) as well as the histograms of oriented
optical flow (HoOF) for all video sequences. Both
histograms consist of 30 bins corresponding to a 30
dimensional input vector for the HMMs.

For HMM action unit model training and evalua-
tion we use a 10-fold (Basic Kitchen Tasks dataset I)
/ 3-fold (ADL dataset) cross-validation over all action
sequences. To initialize the HMMs, hand-segmented
action units of the training data are used. For training
we use the training data without segmentation infor-
mation. The test set is also used without any segmen-
tation information. The given recognition results refer
to the mean recognition rates over all test runs.

Both datasets were evaluated according to the
recognition performance of optical flow and feature
flow. For the first dataset, the sequence recognition

2http://www.cs.rochester.edu/ rmessing/uradl/

Table 2: Comparison with marker based system for 5 se-
quences.

Marker
based

HoOF HoFF

Input vector dim. 24 30 30
Gaussians per state16 16 16
States per unit 4 4 4
Sequence recog. 100.0% 100.0 % 100.0 %
Unit recog. 98.3 % 96.9 % 97.5 %

rate is optimal for both approaches and the mean unit
recognition rates rank at 96.7% for optical flow and at
96.6% for the feature flow based approach (Table 1).
For the second dataset the overall recognition rate is
82.0% for optical flow and 71.3% for sparse feature
flow (Table 1). Comparing those results to the recog-
nition performance published for this dataset so far
(Messing et al., 2009), it outperforms motion-based
approaches without local information, which is what
we need to allow flexible settings and environments.

6.2 Comparison with a Marker based
System

Five of the performed actions of the Basic Kitchen
Tasks dataset were simultaneously recorded with a
marker based motion capture system (Vicon). To en-
sure comparability, the recognition differs only in the
type of input vector, while all other system compo-
nents are the same for both systems.

The recognition performance while using a con-
text free grammar is for all systems optimal. The
action unit recognition rate (see Table 2), describing
how many actions units were correctly recognized,
is best for the marker based systems, while the op-
tical flow based system is the worst. The problems in
recognition result mainly from the mistakes in count-
ing of cyclic motions. Action units can be overlooked,
because they only consist of a few frames. Regarding
the good performance of the video based systems, one
has to remark that the recorded setting was optimal for
vision systems, with a camera standing in front of the
test person, whereas the marker based system is view
point independent.

6.3 Runtime Performance

The runtime is evaluated for feature flow histograms,
optical flow histograms and a CUDA-based Java
implementation of feature flow histograms on a
2.83GHz Intel Core2Quad processor with 8GB RAM.
For the evaluation the processing time per frame for
each sequence is analyzed. It can be shown that the
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Figure 5: Runtime for optical flow compared to feature
based system.

optical flow histogram calculation takes around 764
ms and the openCV based implementation of feature
flow histograms needs 34 ms. It is constant for any
type of sequence as can be seen in Figure 5. The run-
time for the decoding ranges between 20 and 35 ms. It
is done by beam search over all possible action units
giving a hypothesis of the current action unit as well
as the history of action units and type of sequence that
has been performed. This leads to an over all process-
ing time of the system of 25fps, which can be seen as
acceptable for on-line recognition.

7 CONCLUSIONS

In this paper a system for the on-line recognition of
human actions is presented. The video based action
recognition techniques are qualified for the recogni-
tion of sequences of action units and complex activi-
ties. The combination of feature flow histograms and
HMMs enables an on-line action recognition system
to recognize human activities during their execution
in a natural, unrestricted scenario. We see this as a
valuable step towards an on-line action recognition
that allows to adapt to the user and its needs while
still being robust and scalable enough to work in a
real live environment.
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