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Abstract: This paper presents a novel and user’s independent model for image restoration based on Lie group transfor-
mations. They allow to define a redundant set of transformations from which automatically select the ones
that better invert the physical formation of the defect. Hence restoration consists of gradually reducing the
visual perception of the defect. Extensive experimental results on original photographs, from Alinari Archive,
affected by semi-transparent blotches show the potential of the proposed approach in removing degradation in
different contexts without altering the original content of artworks.

1 INTRODUCTION

The growing demand for archived material as well as
the improvement of computer technologies has led
to the need of reliable and useful tools for digital
and (semi)-automatic removal of degradation, such as
noise, blotches, line-scratches, tear, moire, shake and
flicker (Kokaram, 1998).

The model proposed in this paper focuses on a
generalization of the plethora of existing restoration
methods for the aforementioned kinds of degradation
— see next section for a short review. In order to
make more concrete the content of the paper, from
now on we will focus on the class of semitransparent
degradations whose main peculiarity is that part of the
original information often survives in the degraded
area (Crawford et al., 2007). The main goal is the
definition of a general framework that is as much as
possible independent of a priori specific assumptions
on the degradation under exam. The framework is re-
quired to select suitable restoration transformations
from a redundant set only accounting for the semi-
transparency of the degraded region. To this aim, the
visual perception of degradation cannot be neglected
(Winkler, 2005). Image defects are detected by hu-
man eye ’at first glance’ even in complicated contexts.
This means that degradation represents an ’anomaly’
in any natural image. Hence, the reduction of the vi-

∗Authors thank Alinari Archive for kindly providing im-
ages.

sual contrast of the degraded region (visual anomaly)
should decrease the visual contribution of the de-
graded area without creating new artifacts. A local
contrast-based restoration process that embeds trans-
formations in a Lie group gives us the opportunity of
defining a redundant set of transformations that also
contains the inversion of the unknown degradation
process. In addition, it allows to develop a restoration
algorithm that automatically selects the more suit-
able transformations for points having the same visual
contrast.

This approach is two-fold innovative:

i) The combination of Human Visual System (HVS)
and Lie algebra allows the proposed model to
have not a precise target to converge — as it
usually happens in Lie algebra based approaches
(see, for instance, (Drummond and Cipolla, 2000;
Porikli et al., 2006; Mansouri and Mukherjee,
2004; Mukherjee and Acton, 2007)). The exact
final solution is not known in advance and the
model is only required to force the contrast of the
final solution to be in a suitable range of values
according to ’typical’ contrasts of the surround-
ing clean image — blotch has to be invisible. To
this aim, the modified successive mean quantiza-
tion transform (SMQT) (Nilsson et al., 2005) is
employed for contrast-based classification of de-
graded pixels;

ii) The rich set of Lie groups transformations over-
comes the search of the solution of the restoration
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problem through simple translation and shrinking
operations, that are commonly used by existing
competitors.

The reminder of the paper is the following. Next
section contains the motivations of the work and a
short state of the art of image restoration methods.
Section 3 briefly introduces Lie group transforma-
tions. Section 4 presents the proposed restoration
model. Finally, Section 5 contains results and con-
cluding remarks.

2 MOTIVATION OF THE WORK

Although semitransparent degradation includes de-
fects like blotches, scratches and so on, for the sake
of clarity, we will focus on the former.

Blotches are usually caused by dirt or moisture
on archived material that partially or completely ob-
scures some image regions. They appear as irregu-
larly shaped regions with a darker average intensity
and a slight variation in color, as shown in Fig.1.
Hence, the lack of distinctive features, like shape and
color, makes their detection and restoration not trivial
tasks. Blotches must be restored using clean infor-
mation from the immediate vicinity of the blotch, al-
though this is not essential. However, part of the orig-
inal information still survives even after the degrada-
tion process. This is due to its physical formation
that can be modeled by the spreading and penetration
of water droplets into material. During the spread-
ing process, the radius of the wet region grows to an
equilibrium point. From this point on, the liquid is
absorbed depending on the porosity of the considered
medium. In ideal conditions, the central pores absorb
more than the external pores, since they come in con-
tact with the liquid earlier. For complete spreading
and absorption processes, one can expect a smooth
transition to the unaffected area; on the contrary a
spurious edge is evident.

Hence, the degraded imageJ at the pointx =
(x,y)T can be modeled as

J(x) = T (I(x)),

whereT is a proper composition of transformations
and I is the original image. The goal should be to
find the inverse ofT in order to reconstruct the orig-
inal imageI . Unfortunately, the evolution of a drop
involves different parameters, such as drop geometry
and the regularity of paper surface, that are unknown
in real applications. HenceT is unknown as well as
its inverseT −1. The proposed model employs the
projective Lie group as a redundant set of transforma-
tions where automatically select the bestT −1. The

selected transformations are not global but they are
adapted to the local properties of the damaged area,
according to a contrast-based classification. External
information is involved just in the definition of the
admissible range values for degraded pixels and for
comparing global measures like the inner contrast be-
tween the damaged area and its surrounding regions,
making the model quite independent as of external
features.

2.1 Blotch Restoration: A Short State of
the Art

A good restoration method is required to preserve all
the original content of the artwork for historical and
artistic purposes. Inpainting methods or texture syn-
thesis approaches (Bertalmio et al., 2000; Bertalmio
et al., 2003; Criminisi et al., 2004; Efros and Free-
man, 2001; Kokaram, 2002) are not appropriate for
the restoration of partially missing data regions, since
they completely discard the original information that
is still contained in those regions.

On the contrary, existing approaches that exploit
the semi-transparency property, like (Crawford et al.,
2007; Stanco et al., 2005; Greenblatt et al., 2008;
Bruni et al., 2011), make implicit or explicit assump-
tions on the physical model that causes the degrada-
tion so that their restoration consists of ’ad hoc’ op-
erations. For example, in (Stanco et al., 2005) semi-
transparency is modeled as a linear dependence be-
tween the intensity values of the degraded and orig-
inal region, assuming similar statistic features inside
and outside the degraded one. A non linear model
closer to the visual appearance of degradation is used
in (Greenblatt et al., 2008): it usesflatteningto em-
phasize blotches darkness andenhancementto ex-
ploit the local image statistics. Affine point-wise
transformations are employed in (Crawford et al.,
2007) and (Bruni et al., 2011). While the former in-
volves a minimization algorithm that emphasizes the
propagation of information from the outside-in, the
latter relies on a precise model of both physical and
visual characteristics of the specific degradation kind.

3 A SHORT REVIEW ABOUT LIE
ALGEBRA

A finite Lie group Gis a set of elements equipped with
a group multiplication∗ : G×G→ G such that:

i) ∀g1,g2,g3 ∈ G (g1∗g2)∗g3 = g1∗ (g2∗g3);

ii) ∃ e∈G, identity element, such that∀ g∈G e∗g=
g∗e= g;
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Figure 1: Examples of semi-transparent blotches in real photographs.
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Figure 2: Left: Contrast curveγ of B. Right: Plane section of a blotch (light gray), the surface of thei − th group (piecewise
curve) and the corresponding paraboloid (dark and solid line).

iii) ∀ g∈ G ∃ g−1 ∈ G : g∗g−1 = g−1∗g= e

and a differentiable manifold of finite dimension, i.e.
a space locally diffeomorphic toRn, if n is the dimen-
sion of G. Moreover the group operation∗ and the
inverse map (G → G, g 7→ g−1) areC∞ with respect
to the differentiable structure of the manifold. So a
Lie group G has algebraic properties coming from
the group structure and geometric properties coming
from the differentiable structure and they are related.
Finally, every finite Lie group can always be viewed
as a matrix group.
A Lie algebrag is a vector space endowed with a bi-
linear operation,

[ , ] : g×g→ g, (X,Y) 7→ [X,Y],

called Lie bracket, antisymmetric and satisfying Ja-
cobi identity.

If G is a Lie group, its tangent space at identity,
g, which is a vector space, has a Lie algebra struc-
ture. Hence,g is a vector space of the same size ofG
endowed with a Lie bracket. IfG is a matrix group,
the Lie bracket is the matrix commutator, i.e.[X,Y] =
XY−YX. SinceG is a differentiable manifold, there
exists a correspondence between its tangent space at
identity (the Lie algebrag) andG itself, that is the ex-
ponential map, exp :g → G. Let X ∈ g be a tangent
vector ate in G; locally there exists the integral curve
of X, a smooth curve starting from the identity with

tangent vectorX, i.e. γ : [0,T]→ G such thatγ(0) = e
andγ̇(0)=X; we define exp(X)= γ(1). The exponen-
tial map is a local diffeomorphism around the origin
of g and it gives a natural way to move fromg (vector
space) toG (manifold). For the matrix group, it corre-
sponds to matrix exponential: exp(X) =∑∞

n=0
Xn

n! . For
a complete treatment of Lie groups and Lie algebras
see (Varadarajan, 1974) and (Helgason, 1962).

3.1 Lie Group Transformations

Most of the matrix Lie groups can be used to describe
transformations in the plane or in the space. For in-
stance, rotations in the plane are represented by the
group

SO2R=
{(

cosθ sinθ
−sinθ cosθ

)

,θ ∈ R
}

.

The dimension of the group can be thought as
the number of free parameters needed to describe the
transformations. In case of plane rotation we just
need one parameter,θ, so the dimension ofSO2R is
1. We can think about its Lie algebra elements, which
are tangent vectors at the identity, as the infinitesimal
transformations (rotation of an ’infinitesimal angle’)
of the points.

In this paper we are interested in using projec-
tive transformations in the space and they can be
described as a group matrix,P3, acting on the space
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points expressed in homogeneous coordinates, with
the convention that the fourth value in the coordinates
is always scaled back to 1. Projective transformations
are characterized by 15 parameters, that is the dimen-
sion ofP3, described by the following basis of its Lie
algebra representing translations, scaling, shear and
projections:

G1 =

[

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]

,G2 =

[

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]

,G3 =

[

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]

,

G4 =

[0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

]

,G5 =

[0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

]

,

G6 =

[ 0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

]

,G7 =

[

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]

,

G8 =

[0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]

,G9 =

[0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

]

,G10 =

[0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]

,

G11 =

[

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

]

,G12 =

[

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

]

,

G13 = GT
1 ,G14 = GT

2 ,G15 = GT
3 ,

with T the transpose operator.
Hence, every real linear combination of

G1, ...,G15 is an infinitesimal projective transforma-
tion in the space that corresponds to a transformation
of the group P3 thanks to the exponential map.
The infinitesimal transformation of a generic point

p =
[ x

y
z

]

is L̃ j = G j

[ x
y
z
1

]

j = 1, ...,15 whose affine

coordinatesL j respectively are

L1 =
[

1
0
0

]

L2 =
[

0
1
0

]

L3 =
[

0
0
1

]

L4 =
[ 0

z
−y

]

L5 =
[

−z
0
x

]

L6 =
[ y
−x
0

]

L7 =
[ x

0
0

]

L8 =
[ 0

y
0

]

L9 =
[

0
0
z

]

L10 =
[ y

0
0

]

L11 =
[ z

0
0

]

L12 =
[

0
z
0

]

L13 =
[

x2

xy
xz

]

L14 =

[

xy
y2

yz

]

L15 =
[ xz

yz
z2

]

.

3.2 Surfaces Distance Minimization by
Projective Transformation

The relation between Lie algebras and Lie groups al-
lows us to define an iterative procedure able to map a
given surfaceS1 to another one,S2, inR

3. ∀p∈S1, let
np be the unit normal atS1 in the pointp anddp the
distance betweenp andS2 alongnp. Hence,∑p∈S1

dp
is the distance betweenS1 andS2.

Let Lp
j , for j = 1, ...,15, be the infinitesimal pro-

jective transformationL j applied to the pointp. The
goal is to estimate 15 real parameters,α1, ...,α15,
such that the infinitesimal projective transformation
∑15

j=1 α jL
p
j , projected onto the normal directionnp,

minimizes the distance betweenS1 andS2, i.e.

(α1, . . . ,α15) = min
α j

∑
p∈S1

[

dp−
15

∑
j=1

α j

(

Lp
j ·np

)

]2

.

Therefore,~α = (α1 . . .α15)
T is such that~α = ~A−1~b,

where the matrix~A and the column vector~b are

A jk = ∑
p∈S1

(

Lp
j ·np

)

(

Lp
k ·np

)

and
bk = ∑

p∈S1

dp(Lp
k ·np

)

.

The exponential map transforms the infinitesimal
transformationG=∑15

j=1 α jG j into a projective trans-
formationT of the group i.e.,

T = exp(G) =
∞

∑
n=0

Gn

n!
.

Finally, S1 is updated applyingT to its points:S(1)1 =
T(S1). The minimization process can be then iterated

using the couples of curves(S(1)1 ,S2), and so on.
For the numerical computation of exp(G) applied

to generic pointx, a 4th order Runge Kutta algorithm
can be used — see (Drummond and Cipolla, 2000)
for details. It is equivalent to cut the 4th order series
expansion of the matrix exponential and apply it to
the pointx, that is

T (x)≈
(

I +G+
1
2

G2+
1
6

G3+
1
24

G4
)

(x) ,

but it directly manages affine coordinates.

4 THE PROPOSED MODEL

Lie group transformations offer a redundant set of
transformations as well as a direct and fast method for
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Figure 3: Top: Degraded image, its detection mask,D1, D2 andD3 masks. Bottom: Restored images after: processingD1
(left), processingD2 (middle) and final masking (right).

Figure 4: Top: Original degraded image, its detection mask,D1, D2 andD3 masks. Bottom: Restored images after: processing
D2 (left) and final masking (right).

selecting them once the final target curve is known.
Unfortunately, in case of digital restoration the final
clean image is unknown. That is why some basic rules
of HVS are used for defining suitable ranges of inten-
sity values for the damaged area to be not visible with
respect to its neighborhood. Despite the wide flexibil-
ity of Lie transformations, the minimization process
is global. In other words, at each step the parameters
{α j} j=1,...,15 are the same for each point. Hence, if on
one hand global transformations preserve the original
information contained in the degraded region, on the

other they forget that pixels may have been subjected
to a different amount of degradation.

In order to find a tradeoff between preservation of
original information and model flexibility,it is neces-
sary to classify damaged pixels accounting for their
visual importance and restore them accordingly.

4.1 Preprocessing of the Damaged Area

Let I be the analyzed image,B its damaged area and
let E be a sufficiently small neighborhood ofB such

VISAPP 2012 - International Conference on Computer Vision Theory and Applications

70



Figure 5: Original (left) and restored (right) images.

that we can assume thatE andB share the same in-
formation. In order to classify the points inB accord-
ing to their contrast properties, the SMQT algorithm
(Nilsson et al., 2005) is used. It groups pixels having
comparable visual contrasts. More precisely, SMQT
builds a binary tree using the following rule: given a

set of dataD and a real parameterL (number of lev-
els), splitD into two subsets,

D0 =
{

x∈ D|D(x)≤ D
}

and

D1 =
{

x∈ D|D(x)> D
}

,

whereD is the mean value ofD. D0 andD1 are
the first level of the SMQT. The same procedure is re-
cursively applied toD0 andD1 and so on until theLth

level, that is composed of 2L subsets. We setL = 3
in order to obtain a log2 quantization of the dam-
aged pixels (i.e. 23 = log2(256) groups,B1, . . . ,B8,
where[0,255] is the gray scale range) and will assume
B1, · · · ,B8 ordered from the darkest to the brightest
pixel. We compute the inner contrastCj =

σ j
µj

of each
B j , with σ j the standard deviation andµj the mean of
B j . Letγ= {C1, · · · ,C8} be the discrete contrast curve
of B, as in Fig. 2 (Left). Darker pixels inB, sayD1,
are those setsB j whose inner contrast is greater thank
(wherek is the least detection threshold given by the
Weber’s law, see (Winkler, 2005)). On the contrary,
brighter pixels inB, sayD3, are thoseB j whose inner
contrast curve has positive first derivative. LetD2 be
the union of the remaining groups.

Summing up, SMQT quantization of the degraded
regionB combined with its contrast properties allows
to split B into three regions: the darkest,D1, the
brightest,D3 and the central one,D2, where most of
information lives. The whole range of values of dam-
aged pixels has been then split into these three inter-
vals: [b0,b1], ]b1,b2[ and[b2,b3]. Let M andm be re-
spectively the maximum and the minimum value for
E (except for outliers).[m,M] is the range of admis-
sible values for the final solution. In fact, a natural
scene component is required to not exceed the range
of values of the surrounding information in terms of
visibility bounds.[m,M] is proportional to the global
contrast of the whole imageI , i.e. M−m

µI
whereµI is

the mean value ofI . Since we are dealing with a lo-
cal degradation, we can think that any transformation
of the degraded region does not influence too much
µI , so that it can be considered constant. That is why
from now on we will just deal with ranges instead of
contrasts.

The second goal of preproccesing is to understand
if each group of pixels must be moved. In fact, even
though the damaged areaB appears darker than the
neighborhoodE, it is important to check if the inter-
section betweenE andB values contains points that
are darker than the blotch, as it is the case for the
blotch on the dome in Fig. 1 (leftmost). To this aim, it
is necessary to check if the darker region ofE, corre-
sponding to those pixels whose value is in the interval
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[b0,b1], masksD1. Setting the just noticeable thresh-
old ε = .33 (Pappas et al., 2005), if their contrast ra-
tio is included in[1− ε,1+ ε], then the same infor-
mation lives outside the blotch, andD1 must be left
unchanged; otherwiseD1 must be transformed and
mapped into the range[m,M − δ], whereδ is such
that [M − δ,M] and is proportional to[b2,b3]. It is
worth stressing that we choose to moveD1 values in
[m,M−δ] and not in[m,M] in order to preserve even-
tual original information.

With respect toD3, i.e. the brightest region of
B, we check if it is masked by the region in E cor-
responding to the values in the interval[b2,b3]. D3
mostly corresponds to the transition area fromE to B,
according to the physical properties of the damaged
area. Hence, the ratio between the inner contrasts is
included in[1− ε,1+ ε] and with high probability we
don’t need to transform it.
Finally, D2 contains most of degradation and it must
be mapped into the interval[m,M]. However, because
of some rigidity of the model, it will be better to shift
the interval, i.e.[m+∆,M+∆]. ∆ measures the dark-
ness of the damaged area and it is well represented by
the difference between the mean values ofB andE.

4.2 Processing of the Damaged Area

The surfaces distance minimization described in sec-
tion 3.2 requires the definition of suitable surfaces
living in the transformation domains,[m+∆,M+∆]
and[m,M − δ], of D2 andD1. To preserve the origi-
nal information, HVS perception mechanisms can be
embedded in the restoration process. In particular,
we aim at processing in the same way points that
are equally perceived by human eye: points having
the same context (same visual contrast), have to con-
verge to the same target surface. To this aim, we ap-
ply the SMQT algorithm toD2. Each group inD2
corresponds to a surface (defined by interpolation).
The target surface of thei-th group is defined as a
paraboloid cut by the plane

z=
m+M+2∆

2
and whose vertex is proportional to the mean value
of the group, according to the values interval. Each
surface converges to the corresponding paraboloid, as
shown in Fig. 2 (Right).

The iterative minimization process stops when the
target surface has been reached in agreement with vis-
ibility bounds. More precisely, letSbe the initial sur-
face, Sn the solution at then-th iteration andP the
target paraboloid;Sn is the final solution if

∑x∈S|S
n(x)−P(x)|

∑x∈SP(x)
≤ k , (1)

wherek is the least detection threshold given by We-
ber’s law. The first member of previous equation cor-
responds to Weber’s contrast evaluated at the points
of the analysed surfaces. ForD1 we use the same rule
with

z=
m+M− δ

2
.

4.3 Masking Refinement

The iteration algorithm tends to preserve the original
information at the expense of some rigidity (solutions
tend to be dark). As a result, we need to stress the
range values relative toD2 in order to have sufficiently
bright solutions and a sufficiently large range values
to avoid oversmoothed solutions. This requires a final
masking operation.

Specifically, letS2 be the output of the minimiza-
tion algorithm applied toD2. LetV be the set of pixels
in S2 whose value is greater thanM− ε, that is

V = {p∈ S2 | v(p)> M− ε},

wherev(p) is the value of the pixelp in S2 andVC its
complementary set inS2. The ratio betweenV andVC

is the inner contrast ofS2. If this ratio is included in
[1− ε,1+ ε], we don’t need masking; otherwise, we
have to replace the values of some pixels inV with
their original ones.

The main idea is to replace those pixels that orig-
inally were sufficiently bright and that became too
bright in the minimization algorithm. More precisely,
let

H = {p∈V | vorig(p)> τ}

and

Vorig = {vorig(p) | p∈V}

wherevorig(p) is the original value of the pixel
p in D2 and τ is a suitable constant related to the
properties ofVorig, thenS2(H) =Vorig(H). Note that
τ = V̄orig + ε, whereV̄orig is the mean value ofVorig.

4.4 Algorithm

Let I , B andE respectively be the initial image, the
degraded area and its neighborhood.

Step 1. Split B into the groupsD1, D3 andD2 using
SMQT;

Step 2. Estimate the range of the solution[m,M]
from the surrounding information;
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Figure 6: Blotch on a textured image.Top to bottom- left to right: degraded, restored image with the present method and
restored using methods in (Greenblatt et al., 2008), (Stanco et al., 2005), (Crawford et al., 2007) and (Bruni et al., 2011).

Step 3. Check ifD1 has to be processed; if so, go to
step 4, otherwise go to step 7;

Step 4. Apply SMQT toD1;

Step 5. Compute paraboloids including the solution
whose vertices are set according to the mean am-
plitudes of the groups computed in step 4 and the
output of step 2;

Step 6. For each group in step 4, apply the iterative
procedure in Section 3.2 where the target surfaces
are the ones computed in step 5, until eq. (1) is
satisfied;

Step 7. Apply steps 4-5-6 toD2;

Step 8. Perform masking refinement.

Fig. 3 shows the results of some steps of the algo-
rithm. In this caseD1 must be processed: the initial
contrast ratio betweenD1 and its corresponding exter-
nal area is 2.5. On the contrary, the one betweenD3
and its corresponding external region is 0.8; hence it
is not necessary to process it.

For the blotch in Fig. 4, bothD1 and D3 don’t
need to be processed — contrast ratios respectively
are 1.1 and 0.9.

5 EXPERIMENTAL RESULTS
AND CONCLUDING REMARKS

The proposed approach has been tested on selected
images from the photographic Alinari Archive in Flo-
rence, affected by semi-transparent defects. Some re-
sults are shown in Figs. 5 and 6. As it can be ob-
served, the visual appearance of the recovered images
is very good: no artifacts appear, the texture of the
background is well recovered as well as eventual de-
tails of the original image (see, for example, the edges
of the dome).

The use of a selective algorithm avoids annoying
halo effects at the border of the defect along with
over-smoothing in the inner part of the restored re-
gion. As a result, the restored region is not still per-
ceived as an anomaly on the image. The convergence
process is different for each group of points so that
it could happen that some groups converge after one
or two iterations while others require longer conver-
gence time. In that way the over-smoothing is avoided
and the preservation of the inner information is guar-
anteed via the visibility based stopping criterion in eq.
(1).

Moreover, the preprocessing of the damaged area
and masking procedures allow the detection mask to
be not precise (it can be larger than the degraded re-
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gion) and to manage complicated cases where the de-
graded area intersects a darker region of the image
as in Fig. 5, so that restoration does not create arti-
facts in correspondence to not degraded pixels. This
is a great advantage, since the detection mask heavily
influences restoration results of available restoration
frameworks.

It is also worth highlighting that even though the
proposed algorithm involves iterative procedures, it
uses simple and fast operations and 4/5 iterations on
average to converge.

Future research will be oriented to refine the pro-
posed model to make it more flexible and adaptive to
different amount of degradation while faithfully pre-
serving original image information.
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