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Abstract: Here, we intend to introduce a new estimate of the L2 probabilistic dependence measure by Fourier series 
for 2-dimensional reduction. Its performance is compared to the Fischer Linear Discriminate Analysis 
(LDA) and the Approximate Chernoff Criterion (ACC) in the mean of classification probability error. 

1 INTRODUCTION 

One of the well studied problems in the statistical 
pattern recognition field is feature selection. It is 
well known that pattern recognition systems usually 
need many features to improve its performances. 
The definition of suitable representation requires 
generally a serious study in order to consider only 
pertinent features. A large training and test samples 
are therefore constructed in order to design and 
evaluate the performances. In practice, the training 
sample serves to estimate conditional probability 
density functions of each class. The convergences of 
the different estimates have been well studied in the 
statistical literature according to the size N of the 
training sample. It is well established that the sample 
size which is needed to estimate the probability 
density function as the histogram, the kernel or the 
orthogonal series, has to increase exponentially with 
the dimension D of the feature vector. In order to 
undergo over such limitation, the discriminate 
analysis for reducing the dimensionality is generally 
required. The convergence of such algorithms could 
be possible since the estimation of the criteria is 
realized in the reduced d-space (d<<D). However, 
when one of the conditional distributions is not 
Gaussian, the popular Fisher discriminate analysis 
based on the scatter matrices (Fisher, 1936, Loog et 
al., 2001) could give a not well reduced d-space. 
Later, Patrick and Fisher have proposed a non 
parametric solution based on probability density 
function distances. In the same work, they have 
introduced  a  kernel  estimate  for the Patrick-Fisher 

distance (Patrick and Fisher, 1969).  
A. Hillion (1988) has applied a Gaussian kernel 

estimate for a scalar feature extraction in order to 
classify image by its texture. They showed 
experimentally the better performance of their 
method relatively to the Fisher one in the mean of 
the probability error. Thus, we intend to introduce 
new estimators of the dependence probabilistic 
measure by using the density orthogonal estimate 

This estimator could be extended to the 
multivariate reduction. The optimization of 
smoothing parameters will be discussed in the 
present work. 

2 L2-PDM ESTIMATE 

A rectangular matrix W from a D-dimensional 
feature space to a d-dimensional reduced space is 
obtained by optimizing criteria which are defined 
according to the between scatter and the within 
scatter matrices. Note that those matrices are defined 
from first and second order statistical moments of 
the conditional random vectors of observation. For 
multimodal conditional distributions the feature 
extraction algorithms based on these scatter matrices 
called linear discriminate analysis (LDA) could not 
give the best classifier in the sense of the probability 
error. In order to dispose of this limitation, distances 
between the conditional probability density 
functions weighted by the prior probabilities have 
been suggested in the literature. An estimate of such 
distance  has  been  proposed  for scalar extraction in 
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the context of binary classification. The d-
multivariate reduction has been extended by the 
pursuit procedure. We propose here to extend this 
procedure to the 2-dimensional reduction by using 
the orthogonal series probability density estimate.  

We begin by defining a new orthogonal series 
estimate for the scalar reduction which will serve to 
derive the multivariate reduction. 

The orthogonal probability density estimate 
assumes that the density function belongs to Hilbert 
space which is having an orthogonal basis 
functions	݁௟(ݔ).  

According to a sample { ௜ܺ , ݅ = 1. . ܰ} of a 
random variable X, the estimate can be written as: fመ(x) = 1ܰ ෍K୫ొ൫ݔ, ܺ௝൯ே

௝ୀଵ  (1) 

Where					ܭ௠ಿ(ݔ, ܺ௝) =෍݁௟௠ಿ
௟ୀଵ ௟൫݁(ݔ) ௝ܺ൯ (2) 

and mN is a sequence of integer which is similar to 
the well known smoothing parameter for kernel 
density function estimator. Thus, the L2-Probabilistic 
Dependence Measure (L2-PDM) estimate ܫመଶ could be 
deduced and expressed according a supervised 
sample ௜ܺ௞as following: ܫመଶ= 	 1(∑ ௞ܰ௄௞ୀଵ )ଶ 	෍ቌ෍ൣܭ௠ೖ൫ ௜ܺ௞, ௝ܺ௞൯൧ேೖ

௜,௝ୀଵ
௄
௞ୀଵ+	 ෍ ෍෍ൣܭ௠ಿ൫ ௜ܺ௥, ௝ܺ௟൯൧ே೗

௝ୀଵ
ேೖ
௜ୀଵ

௄
୰,௟ୀଵ 		

− 2	෍෍෍ൣܭ௠ೖ൫ ௜ܺ௞, ௝ܺ௟൯൧ே೗
௝ୀଵ

ேೖ
௜ୀଵ

௄
௟ୀଵ ቍ							 

(3) 

With Nk the number of instances for the label k. 
Now, we assume that the two dimensional 
conditional probability densities of the class k, 	belong to Hilbert space L2(R2) which has ݁௟,௞(ݒ) as 
an orthogonal basis. Their estimates could be written 
according a supervised sample ௜ܸ௞ as follow: 

መ݂௏ೖ(ݒ) = 1ܰ 	෍ܭ෩௠ಿ൫ݒ, ௜ܸ௞൯ே
௜ୀଵ  (4) 

Where		ܭ෩௠ಿ(ݒ, ௜ܸ) = ,ݔ)௠ಿܭ	 ௜ܺ). ,ݕ)௠ಿܭ ௜ܻ)	 (5) 

The 2D L2-Probabilistic Dependence Measure 
(2D L2-PDM) estimate can be expressed as: 

=መ௉ܫ 	 1(∑ ௞ܰ௄௞ୀଵ )ଶ 	෍ቌ෍ൣܭ෩௠ೖ൫ ௜ܸ௞, ௝ܸ௞൯൧ேೖ
௜,௝ୀଵ

௄
௞ୀଵ+	 ෍ ෍෍ൣܭ෩௠ೖ൫ ௜ܸ௥, ௝ܸ௟൯൧ே೗

௝ୀଵ
ேೖ
௜ୀଵ

௄
௥,௟ୀଵ 		
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ேೖ
௜ୀଵ

௄
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(6) 

3 EXPERIMENTAL RESULTS 

Data sets used for tests were taken from the UCI 
Repository of machine learning databases (Murphy 
and Aha, 2004). We have chosen 10 real-world data 
sets that come from a variety of applications. These 
data sets, labeled (a) to (j), have a various numbers 
of classes and attributes and various sample sizes 
(Table 1). Instances with missing values were taken 
out of the data sets prior to the experiments. The 
number of test instances is given in table 1 as they 
were designated by their donors. For all other data 
sets, a k-fold Cross-Validation (CV) was used. The 
justification of the choice of k will be given later. 

Table 1: The 10 data sets used in the experiments. 
Information is provided on initial dimensionality D, 
dimensionality after principal component analysis PC, 
number of classes K, number of total instances N and 
validation type. 

Data set Label D PC K N Validation 
Breast cancer (a) 9 9 2 683 20-fold 
liver disorders (b) 6 6 2 345 20-fold 
Diabetes (c) 8 8 2 768 20-fold 
diagnostic breast 
cancer (d) 30 7 2 569 20-fold 

Heart disease (e) 13 13 5 298 10-fold 
Iris  (f) 4 4 3 150 10-fold 
Thyroid  (g) 21 21 3 7200 3428 
Karhunen-Love (h) 64 64 10 2000 200 
Glass 
identification (i) 10 8 7 214 10-fold 

Breast Tissue (j) 9 5 6 106 10-fold 

3.1 The Experimental Setup 

In order to determine properly all three 
transformations, problems related to near singular 
covariance matrices should be avoided. Such a 
problem can be solved by performing a PCA on the 
train set of every of the 10 data sets, where only the 
principal components with an eigenvalue bigger than 
one millionth of the total variance are kept. 

For data sets (g) and (h), the transformation 
matrices W were estimated from the training data, 
which was then transformed to a subspace of 
appropriate dimension. 
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Table 2: Observed MCE for the 10 data sets (a) to (j) for the reduced dimensions d=1, Using the three mentioned classifiers 
Linear classifier (L), Quadratic classifier (Q) and Nearest Mean classifier (NM) and the three different reduction techniques 
indicated by LDA, ACC and PF/L2-PDM. The estimated MCE using no reduction is below “FULL”. 

 FULL LDA ACC PF/L2-PDM 
L Q NM L Q NM L Q NM L Q NM

(a) 0.0513 0.0513 0.0339 0.0369 0.0369 0.0367 0.0018 0.0018 0.1709 0.0039 0.0039 0.0340 
(b) 0.3913 0.3913 0.4253 0.3865 0.3865 0.3672 0.0193 0.0193 0.4023 0.0236 0.0236 0.4234 
(c) 0.2599 0.2599 0.3644 0.2571 0.2571 0.2415 0.0128 0.0128 0.3054 0.0161 0.0161 0.5792 
(d) 0.0560 0.0560 0.1119 0.1027 0.1027 0.0557 0.0051 0.0051 0.1395 0.0060 0.0060 0.0559 
(e) 0.6654 0.6654 0.5999 0.4274 0.4274 0.6532 0.0427 0.0427 0.7404 0.0451 0.0451 0.4198 
(f) 0.0187 0.0187 0.0633 0.1312 0.131 0.0383 0.0131 0.0131 0.0312 0.0428 0.0428 0.0187 
(g) 0.9851 0.9851 0.5717 0.0697 0.0697 0. 1307 0.9798 0.9798 0.9766 0.0749 0.0749 0.1759 
(h) 0.79 0.7950 0.765 0.73 0.73 0.71 0.7 0.7 0.77 0.555 0.555 0.580 
(i) 0.5569 0.5569 0.1666 0.2600 0.2600 0.3028 0.0260 0.0260 0.5405 0.0151 0.0151 0.1707 
(j) 0.2816 0.2816 0.4984 0.4135 0.4135 0.5363 0.0413 0.0413 0.4075 0.0517 0.0517 0.5653 

Table 3: Observed MCE for the 10 data sets (a) to (j) for the reduced dimensions d=2, Using the three mentioned classifiers 
Linear classifier (L), Quadratic classifier (Q) and Nearest Mean classifier (NM) and the three different reduction techniques 
indicated by LDA, ACC and PF/L2-PDM. The estimated MCE using no reduction is below “FULL”. 

 FULL LDA ACC PF/L2-PDM 
L Q NM L Q NM L Q NM L Q NM

(a) 0.0513 0.0513 0.0339 0.0369 0.0369 0.0368 0.0369 0.0018 0.1709 0.0029 0.0029 0.0383 
(b) 0.3913 0.3913 0.4253 0.3865 0.3865 0.3672 0.3865 0.0193 0.4024 0.0204 0.0204 0.5032 
(c) 0.2599 0.2599 0.3644 0.2571 0.2571 0.2416 0.2571 0.0128 0.3055 0.0149 0.0149 0.3914 
(d) 0.0560 0.0560 0.1119 0.1027 0.1027 0.0557 0.1027 0.0051 0.1396 0.0048 0.0048 0.1047 
(e) 0.6654 0.6654 0.5999 0.4274 0.4274 0.6532 0.4274 0.0427 0.7404 0.0445 0.0445 0.4880 
(f) 0.0187 0.0187 0.0633 0.1312 0.1312 0.0383 0.1312 0.0131 0.0312 0.0031 0.0031 0.0437 
(g) 0.9851 0.9851 0.5717 0.0685 0.0685 0.263 0.0685 0.9787 0.9766 0.0749 0.0749 0.1759 
(h) 0.79 0.7950 0.765 0.545 0.545 0.525 0.545 0.615 0.61 0.335 0.335 0.43 
(i) 0.5569 0.5569 0.1666 0.2600 0.2600 0.3028 0.2600 0.0260 0.5405 0.0076 0.0076 0.1597 
(j) 0.2816 0.2816 0.4984 0.4135 0.4135 0.5363 0.4135 0.0413 0.4075 0.0344 0.0344 0.6583 

 

For all other datasets, the evaluation consists of 
randomly divide the data set into K non overlapping 
folds of equal size and for k times , each time choose 
one fold to be designated as a test data and the others 
will be combined to compose the training data. The 
choice of the number of folds k is dictated by the 
bias-variance trade-off. 10 to 20-fold CV is widely 
accepted that it offers a good bias-variance 
compromise, and these values are often used as 
default. Stratification will give further improvements 
in terms of both bias and variance, where the relative 
class frequencies over folds roughly match those of 
the original data set. Therefore, for large data sets 
(Ni > 500), a stratified 20-fold CV was used (see 
Table 1). Other data sets were tested using a 
stratified 10-fold CV. 

In the d-dimensional reduced feature space, the 
classification error is estimated empirically based on 
three different classifiers (Devijver and Kittler, 
1982, Fukunaga, 1990): 

-The linear classifier assuming all classes to be 
normally  distributed  with  equal  covariance matrix 

-The quadratic classifier assuming the underlying 
distributions to be normal with covariance matrices 
that are not necessarily equal. 

-Nearest mean classifier that is based on 
Euclidean distance to the nearest mean. 

These classifiers are chosen because they stay 
close to the assumption that most of the relevant 
information is in the first and second order central 
moments, i.e., the means and the co-variances. 

3.2 Analysis of Results 

The per-data set-performances of these three 
reduction techniques are compared. Therefore, for 
each data set, per classifier, the mean estimated 
classification error over the multiple runs is 
determined for dimension d=1 and d=2 (see Table 2 
and 3). This gives a final estimate of the 
classification error for the respective settings. The 
overall optimal error rate, per classifier, over all 
transforms is typeset in bold. To compare the results, 
we have used a signed rank test where the desired 
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level of significance is set to 0.01 (Rice, 1995). 
Tables 2 and 3 give the Mean Classification Error 
(MCE) obtained when not performing any 
dimension reduction. 

We start with two general observations: First, the 
quadratic classifier, in general, gives better results 
for most of the data sets. This may indicate that in 
most data sets, there is indeed information 
separation present in the second order moments of 
the class distributions. Second, the average error 
rates after reduction to d=1 or d=2 remain, in 
general, smaller than those in the full space, thus 
confirming that a gain in performance can be 
achieved by reducing the dimensionality of the 
problem. 

Also, note that the average error rates of the PF 
method compare favorably to those of other 
techniques for the 1d and 2d subspace dimensions. 
This advantage seems to correlate with the difficulty 
of the classification problem. In particular, for linear 
and quadratic classifier, PF is uniformly superior to 
other methods. 

We begin with the analysis of the two-class 
problem (data sets a, b, c and d).In case of using the 
nearest mean classifier; we can see that the Patrick-
Fisher criteria as well as the LDA ranked better 
result than ACC. For the quadratic and linear 
classifiers, the optimal results were provided by PF 
and ACC, with the best overall performance 
significantly different from the best performances of 
the LDA technique. Note that the performance of 
LDA is seriously limited by the constraint d < K 
(number of classes). 

We now turn to the analysis of the multi-classes 
case were the K-fold CV was used (data sets e, f, i 
and j). Clearly, a similar analysis of the two class 
case is observed: where the advantage of PF persists 
and it is much better than LDA. Note that the PF and 
ACC error rates are in order of 10-2 whereas those of 
the LDA are in the order of 10-1.  

For data sets (g and h) where validation is based 
on a test set, the best error rates are those given by 
PF and LDA, these methods provide much better 
separability in data set than the ACC criteria or all 
classifiers results. 

4 CONCLUSIONS 

In this paper, 2D dimensionality reduction method is 
proposed. Its novelty lies on the study of a new L2 
probabilistic dependence measure estimate obtained 
by the orthogonal Fourier series expansion. 

The real dataset experiments show that the 
suggested method increases the separability measure 
between the projected classes onto the reduced space 
consistently better than the well-known LDA 
method. 

Since results given by the proposed method are 
promising and could be used as a step before a 
classification process. We will concentrate our 
future work on the evaluation of the effectiveness of 
this method by studying the classification accuracy 
in term of the probability error. 
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