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Abstract: Investigation of urban environment includes a wide range of applications that require 3-D information. New 
approaches are needed for near-real-time analysis of the urban environment with natural 3-D visualization 
of extensive coverage. The remote sensing technology is a promising and powerful tool to assess 
quantitative information of urban materials and structures. This technique provides ability for easy, rapid 
and accurate in situ assessment of corrosion, deformations and ageing processes in the spatial (2-D) and the 
spectral domain within near-real-time and with high temporal resolution. LiDAR technology offers precise 
information about the geometrical properties of the surfaces and can reflect the different shapes and 
formations in the complex urban environment. Generating a monitoring system that is based on integrative 
fusion of hyperspectral, thermal and LiDAR data may enlarge the application envelope of each individual 
technology and contribute valuable information on the built urban environment. A fusion process defined by 
a data-registration algorithm and including spectral/thermal/spatial and 3-D information has been 
developed. The proposed practical 3-D urban environment application may provide urban planners, civil 
engineers and decision-makers with tools to consider temporal, quantitative and thermal spectral 
information in the 3-D urban space. 

1 INTRODUCTION 

The most common approach to characterizing urban 
environments from remote sensing imagery is land-
use classification. In contrast, mapping the urban 
environment in terms of its physical components 
preserves the heterogeneity of urban land cover 
better than traditional land-use classification 
methods (Jensen and Cowen, 1999), characterizes 
urban land cover independent of analyst-imposed 
definitions and captures more accurately changes 
with time. 

The spectral (reflective and thermal) properties 
of the urban surfaces are known to be rather 
complex as they are composed of many materials. 
Thematic categories are determined by the principles 
of urban mapping, which primarily distinguishes 
main   types   of   urban   land   uses (Roessner et al., 

2001). 
The ultimate aim in photogrammetry in 

generating an urban landscape model is to show the 
objects in an urban area in 3-D (Juan et al., 2007). 
As the most permanent features in the urban 
environment, an accurate extraction of buildings and 
roads is significant for urban planning and 
cartographic mapping. Traditionally, the extraction 
of buildings relies mainly on manual interpretation, 
which remains an expensive and time-consuming 
process (Ameri, 2000).  

Given the high degree of spatial and spectral 
heterogeneity within various artificial and natural 
land cover categories, the application of remote 
sensing technology to mapping built urban 
environments requires specific attention to both 3-D 
and spectral domains (Segl et al., 2003). Segl 
confirms that profiling hyperspectral TIR can 
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successfully identify and discriminate a variety of 
silicates and carbonates, as well as variations in the 
chemistry of some silicates. The integration of 
VNIR-SWIR and TIR results can provide useful 
information to remove possible ambiguous 
interpretations in unmixed sub-pixel surfaces and 
materials.   

Hyperspectral thermal infrared (TIR) remote 
sensing has rapidly advanced with the development 
of airborne systems and follows years of laboratory 
studies (Hunt and Vincent, 1968; Conel, 1969, 
Salisbury et al., 1987). The radiance emitted from a 
surface in thermal infrared (4-13μm) is a function of 
its temperature and emissivity. Emittance and 
reflectance are complex processes that depend not 
only on the absorption coefficient of materials but 
also on their reflective index, physical state and 
temperature. Most urban built environment studies 
are taking into account both temperature and 
emissivity variations, since these relate to the targets 
identification, mapping and monitoring and provide 
a mean for practical applications.    

The hyperspectral thermal imagery provides the 
ability for mapping and monitoring temperatures 
related to the man-made materials. The urban heat 
island (UHI) has been one of the most studied and 
best-known phenomena of urban climate 
investigated by thermal imagery (Carlson et al., 
1981; Vukovich, 1983; Kidder and Wu, 1987; Roth 
et al., 1989; Nichol, 1996). The preliminary studies 
have reported similarities between spatial patterns of 
air temperature and remotely sensed surface 
temperature (Nichol, 1994), whereas progress 
studies suggest significant differences, including the 
time of day and season of maximum UHI 
development and the relationship between land use 
and UHI intensity (Roth et al., 1989). The recent 
high-resolution airborne systems determine the 
thermal performance of the building that can be used 
to identify heating and cooling loss due to poor 
construction, missing or inadequate insulation and 
moisture intrusion. 

Over the last few years, LiDAR (LIght Detection 
And Ranging) has been widely applied in the field of 
photogrammetry and urban 3-D analysis (Tao, 2001, 
Zhou, 2004). Airborne LiDAR techniques provide 
geo-referenced 3-D dense points (“cloud”) measured 
roughly perpendicular to the direction of flight over 
a reflective surface on the ground. This system 
integrates three basic data-collection tools: a laser 
scanner, a global positioning system (GPS) and an 
inertial measuring unit (IMU). The position and 
altitude of the system being determined by 
GPS/INS,  the  raw  data  are  collected  in  the  GPS 

reference system WGS 84. 
The main objectives of many studies are linked 

to, and rely on a historical set of remotely sensed 
imagery for quantitative assessment and spatial 
evolution of an urban environment (Jensen and 
Cowen, 1999, Donnay et al., 2001, Herold et al., 
2003, 2005).   

This paper presents a 3-D urban environment 
application. The ability to include an accurate and 
realistic 3-D position, quantitative spectral 
information, thermal properties and temporal 
changes is provided by a near-real-time monitoring 
system for photogrammetric and urban planning 
purposes. The task for a fully controlled and realistic 
monitoring system led us first to combine the image-
processing and map-matching procedures, and then 
to incorporate remote sensing and GIS tools into an 
integrative method for data fusion.  

2 MATERIALS AND METHODS 

2.1 Study Area 

Two separate datasets were utilized in this study.  
The first dataset was acquired over the suburban 
area of Ma'alot Tarshiha (33°00'52''N/35°17'E), an 
urban settlement in the north of Israel, on 10 Oct 
2006 at 03h37 UTC and at 11h20 UTC. This area 
combines natural and engineered terrains (average 
elevation of 560m above sea level), a hill in the 
north of the studied polygon area and a valley in the 
center. The entire scene consists of rows of terraced 
houses located at the center of the image. The 
neighborhood consists of cottage houses (two and 
three floors) with tile roofs, flat white-colored 
concrete roofs and balconies, asphalt roads and 
parking lots, planted and natural vegetation, gravel 
paths and bare brown forest soil. The height of large 
buildings ranges from 8 to 16 m. A group of tall pine 
trees with various heights and shapes are located on 
the streets and the Mediterranean forest can be found 
in the corner of the scene.  

The second dataset was acquired over the area of 
Qalansawe (32°01'40''N/35°30'E), an urban 
settlement in the center of Israel, on 15 Aug 2007 at 
02h54 UTC and at 12h30 UTC. This area combines 
natural, agriculture and engineered terrains (average 
elevation of 30m above sea level). The urban 
settlement consists of houses (two and three floors) 
and public buildings (schools and municipalities 
buildings) with flat concrete, asphalt or whitewash 
roofing, asphalt roads and parking lots, planted and 
natural vegetation, gravel paths, bare brown reddish 
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Mediterranean and agriculture soils, greenhouses 
and whitewash henhouse roofing. The height of 
large buildings ranges from 3 to 21 m. 

2.2 Data-acquisition Systems 

The research combines airborne and ground data 
collected from different platforms and different 
operated systems. The collected imagery data were 
validated and compared to the ground truth in situ 
measurements collected during the campaigns.  

The first airborne platform combines two 
hyperspectral systems: AISA-Dual and TIR system. 
The airborne imaging spectrometer AISA-Dual 
(Specim Ltd.) is a dual hyperspectral pushbroom 
system, which combines the Aisa EAGLE (VNIR - 
Visible and Near Infrared region) and Aisa HAWK 
(SWIR - Short Wave Infrared region) sensors. For 
the selected campaigns, the sensor simultaneously 
acquired images in 198 contiguous spectral bands, 
covering the 0.4 to 2.5 µm spectral region with 
bandwidths of ~10 nm for Aisa EAGLE and ~5 nm 
for Aisa HAWK. The sensor altitude was 10,000 ft, 
providing a 1.6 m spatial resolution for 286 pixels in 
the cross-track direction. A standard AISA-Dual 
dataset is a 3-D data cube in a non-earth coordinate 
system (raw matrix geometry).  

The airborne hyperspectral TIR system, installed 
next to the AISA-Dual sensor on the same platform, 
is a line-scanner with 28 spectral bands in the 
thermal ranges 3-5 μm and 8-13 μm. It has 328 
pixels in the cross-track direction and hundreds of 
pixels in the along-track direction with a spatial 
resolution of 1.4m.  

The second airborne platform carries the LiDAR 
system. This system operates at 1500 nm 
wavelength with a 165 kHz laser repetition rate and 
100 Hz scanning rate and provides a spatial/footprint 
resolution of 0.5 m and an accuracy of 0.1 m. The 
scanner has a multi-pulse system that could record 
up to five different returns, but in this study, only the 
first return was recorded and analyzed.  

The ground spectral camera HS (Specim Ltd.) is 
a pushbroom scan camera that integrates ImSpector 
imaging spectrograph and an area monochrome 
camera. The camera's sensitive high speed interlaced 
CCD (Charge-Coupled Device) detector 
simultaneously acquires images in 850 contiguous 
spectral bands and covers the 0.4 to 1 µm spectral 
region with bandwidths of 2.8 nm. The spatial 
resolution is 1600 pixels in the cross-track direction, 
and the frame rate is 33 fps with adjustable spectral 
sampling.   

The ground truth reflectance data were measured 
for  the  calibration/validation  targets  by  the   ASD 

"FieldSpec Pro" (ASD.Inc, Boulder, CO) VNIR-
SWIR spectrometer. Internally averaged scans were 
100 ms each. The wavelength-dependent signal-to-
noise ratio (S/N) is estimated by taking repeat 
measurements of a Spectralon white-reference panel 
over a 10-min interval and analyzing the spectral 
variation across this period. For each sample, three 
spectral replicates were acquired and the average 
was used as the representative spectrum. The ground 
truth thermal data were collected by a thermometer 
and thermocouples installed within 
calibration/validation targets (water bodies) and a 
FLIR thermal infrared camera (FLIR Systems, Inc.).    

2.3 Data Processing 

This research integrates multi-sensor (airborne 
sensor, ground camera and field devices) and multi-
temporal information into a fully operational 
monitoring application. The aim of this sub-
paragraph is to present several techniques for 
imagery and LiDAR data processing.  

2.3.1 Hyperspectral Imagery  

Accurate spectral reflectance information is a key 
factor in retrieving correct thematic results. The 
AISA-Dual images were subjected to the full-chain 
SVC (Supervised Vicarious Calibration) calibration 
method (Brook and Ben-Dor, 2011a) via 
deshadowing algorithm using the shadow map 
provided by the boresight ratio band (Brook and 
Ben-Dor, 2011b). Operation of the full procedural 
sequence extracts recalibration factors from the 
master SVC site image and then later applied to the 
study areas (imagery acquired during the same 
airborne campaign).   As  for the  HS ground camera 
the    nets     were     stretched       on     transportable 

 
Figure 1: Flow chart scheme of the classification approach 
for the hyperspectral airborne and ground data. 
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whitewashed wood board, which has been scanned 
simultaneously with the study area (building facade). 

The proposed classification method (Brook et al., 
2011) is in four steps (Figure 1): SVM's (Support 
Vector Machine) probabilistic map; data reduction; 
unmixing; classification. 

In a first step a general (coarse) classification is 
performed. Each “pure” pixel is assigned to a class 
according to a predefined threshold of a probabilistic 
output of a support vector machine (SVM) 
algorithm, or is labeled as unclassified (Villa et al., 
2011). The unclassified pixels might be associated 
with mixed spectra pixels, thus their classification is 
addressed to unmixing methods in order to obtain 
the abundance fraction of each endmember class. 
Prior to this step, a second step is applied, where the 
spectral data is reduced by several selected 
algorithms. This step is proven to enhance overall 
performance of the forthcoming spectral models. 
Finally, in the fourth stage the spectral model for 
quantitative mapping is applied on the unclassified 
pixels of airborne hyperspectral imagery by 
considering the preliminary results.   

In the first stage, a simple scheme one-class 
SVM “weighted centroid” (Schölkopf, 2001) was 
applied. For a supervised learning system, each data 
instance in the training set consists of a class and 
several features. The goal of SVM is to produce a 
model that can predict the target value. The 
classification procedure is carried out by SVM’s 
supervised learning algorithms (Vapnik, 1998). 
Given a set of training vectors SVM learns a linear 
decision boundary to discriminate between classes. 
The results are using SVM’s probability values as a 
classification procedure (Villa et al., 2011). 
According to this method pixels with a probability 
higher than a predefined threshold are related to a 
single class. However, pixels with lower probability 
are considered to represent mixed pixels, which are 
temporary unclassified. We suggest using a kernel in 
conjunction with an SVM, as well. The input spectra 
are mapped into a high-dimensional vector space 
where the coordinates are given by spectral features. 

The SVM produces a linear decision boundary in 
this high-dimensional feature space, and test 
sequences are classified based on whether they map 
to the positive or negative side of the boundary.  

This approach combines SVM with spectral 
Kernel supported and supervised by general prior 
knowledge of the endmembers and the ground site. 
The method enables direct computation of Kernel 
values without calculating feature vectors, which 
saves and minimizes computation time. The features 
used by Kernel are assumed to be the set of all 

possible pure endmembers of a fixed k-length. In the 
linearly separable case, the hard margin SVM 
determines the hyper-plane that separates the data 
and maximizes the distance to the nearest training 
points. In the real-world case, training sets are 
usually not linearly separable, and we must modify 
the SVM optimization process. We suppose that the 
training set could be formulated as a sequential 
vector space called feature space. The output of the 
SVM is a set of weights that solve the dual 
optimization problem. It is not a trivial task to 
determine the threshold for classification decision of 
pure or mixed pixels. The test set classification is 
done by moving a k-length sliding window across 
input vectors, searching for the current k-length in 
the look-up table, and increasing the classifier 
threshold by the associated coefficient.  

The input variables in terms of absorption 
features were reduced through a sequential forward 
selection (SFS) algorithm (Whitney, 1971) in the 
second stage of the suggested classification method. 
This SFS starts with the inclusion of feature sets one 
by one to minimize the prediction error of a linear 
regression model. This stage focuses on conditional 
exclusion based on feature significance (Pudil et al., 
1994). The tuning of decision thresholds is very 
difficult during the processing and verification 
stages. This type of uncertainty is a well-known fact 
in the domain. Therefore, an additional orthogonal 
forward selection algorithm incorporates the Gram–
Schmidt transform (Chen et al., 1989) is proposed.  

The orthogonal Gram–Schmidt transform space 
can be associated with the same number of input 
variables of the measurement space (Chen et al., 
1989). The first step of this algorithm considers all 
wavelengths as variables and calculates the 
Mahalanobis distance. The variable that yields 
maximum class separation is added to the feature 
subset. The next step is to continue classifying all 
remaining variables by calculating the Mahalanobis 
distance and adding the maximum separated classes 
to the feature subset. Thus, the algorithm reduces 
redundancy. The main drawback of SFS is that 
feature selection is permanent and it might lead to 
redundant features. The main disadvantage of 
Gram–Schmidt transform is the demand for more 
computations due to the orthogonal decomposition. 
Nevertheless, in the present study, the joined subset 
selection algorithm reduced the original data from 
198 to 7-24 significant features (wavelength).  

The nonnegative matrix factorization (NMF) was 
applied on the data provided by the SFS feature-
selection model as an unmixing method suggested in 
the third stage (Lee and Seung, 2001). This 
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algorithm search for the pure endmembers and the 
unmixing by factorizing a matrix subject to positive 
constraints based on gradient optimization and 
Euclidean norm designation (Robila and Maciak, 
2006).  

In the present study, the algorithm was generated 
to start with a random linear transform on the 
nonnegative data. The algorithm is continuously 
computing scalar factors that are chosen to produce 
the “best” intermediate pure endmembers and the 
unmixing. At each step of the algorithm the pure 
endmembers and the unmixing remains positive. In 
the proposed scheme the scalar factors were 
computed by the derivative of the objective function 
on the nonnegative source. The main drawbacks of 
this method are computational complexity and 
significant computation times; it is because each 
iteration needs a new nonnegative source and a new 
linear transform. Overall, to compute the new 
updated nonnegative source, the algorithm requires a 
number of scalar factors that are inspected for the 
current iteration. The computation of linear 
transform considered in the same manner. The 
complexity factors are averaged by numbers of 
internal iterations. Lin (Lin, 2007) suggests 
computing scalar factors independent of each other 
at each iteration, which should be based on the 
values obtained in the previous iteration. Rabila and 
Lukasz (Rabila and Maciak, 2009) show that the 
initial choices of factors (0.0001, 0.001, 0.01, 0.1, 1) 
and average number of iterations does not have a 
significant impact on the running times and does not 
affect the convergence. 

The final stage is a method for image 
segmentation/classification combined with a Markov 
random field (MRF) model under Bayesian 
framework. The most common way of incorporating 
spatial correlations into a classification process is to 
use MRF (Yang & Jiang, 2003) as a priori models. 
The MRF is a conditional probability model, where 
the probability of a voxel depends on its 
neighbourhood. Generally, MRF is a stochastic 
process that specifies the local characteristics of an 
image and is combined with the given data to 
reconstruct the true image. Moreover, MRF is 
usually used to obtain the prior distribution for the 
Bayesian estimation and formulate the labelling 
problem. The prior contextual information of MRF 
is a powerful method for classifying spatial 
continuity as well as specific patterns and features 
providing useful and unique information for the final 
thematic map. 

The here presented MRF is based on 8-
neighbourhood isotropic model, which does not 

favour a particular orientation with equal potential 
function for cliques 1-4 and 5-8. The final solution is 
obtained by minimizing an energy function, where 
deterministic relaxation (Chou and Brown, 1990) is 
used.  

The potential function for a clique is the 
weighted sum of the candidate functions: Gaussian 
model and Huber model (Bouman and Sauer, 1993). 
This function stabilizes the solution of the problem 
by suggesting an efficient optimization method. The 
functions are compared by training the parameters of 
each model separately on the data.    

Since different simultaneously propagating 
regions are considered, an extension of the level-set 
global to local approach is suggested, while allowing 
the propagation speed to depend on the respective 
region label. Thus, the performance strongly 
depends on the description of the label content. For 
that purpose, a statistical approach, where the 
number of labels is assumed to be known, is 
adopted. Pattern analysis techniques for the 
identification of the corresponding models are 
further used. 

The global map of labels is obtained using 
statistical tests. These tests classify points with high 
confidence. The probability of classification error is 
set to a small value. At first, all pixels are classified 
according to their distance from the different labels. 
The distribution of the data in a window centered at 
each site is approximated. Then the Euclidian 
distances from this distribution to the features of 
each label are computed and assigned to the local 
region. 

The validation of the thematic maps is performed 
by comparing ground truth and image reflectance 
data of the selected targets. The ten well-known 
targets (areas of approximately 30-40 pixels) were 
spectrally measured (using ASD SpecPro) and 
documented. The overall accuracy for the Ma'alot 
Tarshiha images (Figure 2) is 96.8 and for the 
Qalansawe images (Figure 3) is 97.4. 

The suggested pattern analysis is based on the 
Graph-theoretic algorithm, which integrates the 
thematic information to the reconstructed patterns of 
buildings and roads. At first, the constrained 
Delaunay triangulation (CDT) is performed. The 
CDT is refined by two objects, which are connected 
by edges of the triangles; the proximity relationship 
between buildings and between buildings and roads 
are explicitly modelled by this structure. Based on 
the proximity relationship between buildings, an 
initial graph is generated from which the pattern 
recognition  based  on  Minimum Spanning  Tree 
(MST) is automatically derived (Steele, 2002).  Here 
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Figure 2: (a) Thematic map (b) Spectral library of Ma’alot Tarshiha endmembers. 

 
Figure 3: (a) Thematic map (b) Spectral library of Qalansawe endmembers. 

all the edges are actually weighted based on the 
proximity between building outlines. This means 
that the weights stored in the edges are calculated by 
the nearest distances between building outlines. 
Next, the wall statistical weighting method 
(Duchesne and Bernatchez, 2002) to compute 
building orientation is implemented. Second, the 
normal direction of a portion of a road is computed 
based on the average of all the segments weighted 
by lengths. The last calculation is for the shape 
index (Duchesne and Bernatchez, 2002).  

In the Graph-theoretic algorithm, a spanning tree 
of an undirected graph is a tree that contains all 
vertices. The weight of a tree is defined as the sum 
of the weights of all its constituent shapes (building 
features). A MST tree is then a spanning tree whose 
weight is the minimum among all spanning trees. 
Since a graph may not be connected it has a union of 
minimum spanning trees for its connected 
components. In this work, Prim’s algorithm is 
implemented to derive MST from initial graph. 

The basic idea of the detection is align-along-
road patterns that are traced on a path from the 
pruned MST and the buildings, yet the path should 
be close enough to a nearby road. Aligned road is 
firstly checked using the information stored as a 
result of constructing refined CDT. If buildings are 
connected by the same road, then the tracing 
proceeds. The characterization of align-along-road 
building patterns is executed by applying MST to 
spectral  class,  spacing,  size, shape, and distance to 

the aligned road. 

2.3.2 Thermal Imagery  

Atmospheric correction is a key processing step for 
extracting information from thermal infrared 
imagery. The ground-leaving radiance combined 
with the temperature emissivity separation (TES) 
algorithm are generated and supplied to in-scene 
atmospheric compensation ISAC (Young et al., 
2002). The temperature of three prior selected 
ground truth targets (water, sand and soil) was 
continuously measured by installed thermocouples.  
The generated atmospheric data cube is used as an 
input to a temperature emissivity separation 
algorithm (normalized emissivity method). The pre-
processing methodology is presented in Figure 4. 

The proposed thermal classification method 
follows the same four stages of data processing 
(SVM's probabilistic map; data reduction; umnixing; 
classification). The validation of the thematic maps 
(Figure  5A  and  6A)  is  performed  by   comparing 

 

Figure 4: Flow chart scheme of the thermal data pre-
processing. 
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ground truth and image emissivity data. The four 
targets (concrete, bare soil, bitumen and tile roof) 
were measured and documented. The resulting 
emissivity signatures are in good agreement with 
ground-truth data (two examples in Figure 5). The 
results presented here confirm the robustness and 
stability of the suggested method.  

 
Figure 5: Emissivity calculated from the thermal radiance. 
A is a tile roof signature in Ma'alot Tarshicha campaign 
and B is a bitumen (asphalt road) in Qalansawe campaign. 

Figure 6 shows three images for Qalansawe 
campaign: a. is the airborne radiance image (3.8µm), 
b. is the emissivity image and c. is the thematic map 
of concrete. 

2.3.3 LiDAR Data 

LiDAR data provide precise information about the 
geometrical properties of the surfaces and can reflect 
the different shapes and formations in the complex 
urban environment. The point cloud (irregularly 
spaced points) was interpolated into the digital 
surface model (DSM) by applying the Kriging 
technique (Sacks et al., 1989).  

The surface analysis (Figure 7) is first 
represented  as  a  DEM (digital elevation model)  of 

 
Figure 6: Qalansawe campaign: A. is the airborne radiance 
image, B. is the emissivity image and C. is the thematic 
map of concrete (4 detected classes). 

the scanned scene, where data are separated into on-
terrain and off-terrain points (Masaharu and 
Ohtsubo, 2002).  

 

Figure 7: Flow chart scheme of the LiDAR data 
processing. 
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The DTM (digital terrain model) was created by 
a morphological scale-opening filter; using square 
structural elements (Rottensteiner et al., 2003) for 
the on-terrain data. At this stage the roads and 
buildings were extracted from the off-terrain data 
(Brook et al., 2011).  

In relatively flat urban areas, the roads, which 
have the same elevation (height) as a bare surface, 
can be extracted by arrangement examination. The 
simple geometric and topological relations between 
streets might be used to improve the consistency of 
road extraction. First, the DEM data are used to 
obtain candidate roads, sidewalks and parking lots. 
Then the road model is established, based on the 
continuous network of points which are used to 
extract information such as centerline, edge and 
width of the road. 

The accuracy and correctness of the road 
extraction can be evaluated by the completeness of 
the detected road network (Cloude et al., 2004). The 
comparison between ground truth and detected road 
network models is categorized as follows: true 
positive (TP), false negative (FN) and false positive 
(FP). The accuracy of the extracted road network in 
Ma’alot Tarshiha (Figure 8) is 96.2, when TP is 100 
(320 m), FN is 0(0 m), and FP is 4 (12.8 m). 

 
Figure 8: The extracted road network in Ma’alot Tarshiha: 
A is the LiDAR segmentation, B is the LiDAR 
classification, C is the ground truth map. 

The building boundary is determined by a 
modified convex hull algorithm (Jarvis, 1973) which 
classifies the cluster data into boundary 
(contour/edge) and non-boundary (inter-shape) 
points (Jarvis, 1977). This algorithm can quickly 
provide a rough idea of the shape or extent of a point 
data set with relatively low computing cost (Wang 
and Shan, 2009). Separating points located on 
buildings from those on trees and bushes, is a 
difficult task (Wang and Shan, 2009). The common 
assumption is that the building outlines are separated 
from the trees in terms of size and shape. Since laser 
beams penetrate the canopy, the data include mixed 
information of the surface and under the trees. The 
dimensionality learning method, proposed by Wang 
and    Shan  (2009),  is  estimated  by  measuring  the 

slope of the extracted planar surfaces (Figure 9).  

 
Figure 9: The DEM examples: A is a building, B is a tree. 

The extracted features are simplified and formed 
as a basic framework of the polygon. Yet, the 
determined framework is not regular. For that 
purpose, the regularization clustering and adjustment 
algorithm is executed. This algorithm produces 
optimized outlines of convex polygons. At the end 
of this procedure two datasets are extracted and 
stored: the original feature shapes and the simplified 
and regulated feature shapes.     

2.3.4 Data Registration - Automatic 
Approach  

A fully controlled, near-real-time, natural and 
realistic monitoring system for an urban 
environment is the main objective of this research. 
The suggested registration algorithm to achieve this, 
is an adapted version of the AIRTop (Figure 10) 
algorithm (Brook and Ben-Dor, 2011c).  

First, the significant regulated features are 
extracted from all input data sets and converted to a 
vector format. Since the studied scene has a large 
area, regions of interest (ROI) with relatively large 
variations are selected. The idea of addressing the 
registration problem by applying a global-to-local 
level strategy (the whole image is now divided into 
regions of interest which are treated as an image) 
proves to be an elegant way of speeding up the 
whole process, while enhancing the accuracy of the 
registration procedure (Chantous et al., 2009). Thus, 
we expect this method to greatly reduce false alarms 
in the subsequent feature extraction and CP 
identification steps (Brook et al., 2011). To select 
the distinct areas in the vector data sets, a map of 
extracted features is divided into adjacent small 
blocks (10% × 10% of original image pixels with no 
overlap between blocks). Then, the significant CPs 
extraction has been performed by applying the 
SURF algorithm (Brown & Lowe, 2002).  

First the fast-Hessian corners Detector 
(Lindeberg, 2004), which is based on an integral 
image, was performed. The Hessian matrix is 
responsible   for    primary    image   rotation   using 
principal       points,       whichare       identified     as 
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Figure 10: Flow chart of the AIRTop registration 
algorithm. 

"interesting" potential CPs in the block. The local 
feature representing vector is made by a combination 
of Haar wavelet coefficients. The values of 
dominant directions are defined in relation to the 
principal point. As the number of interesting points 
tracked within the block is more than the predefined 
threshold, the block is selected and considered a 
suitable candidate for CPs detection. 

The significant features are extracted from all 
input data sets. The spatial distribution and 
relationship of these features are expressed by 
topology rules (one-to-one) and they are converted 
to potential CPs by determining a transformation 
model between sensed and reference data sets. The 
defined rules for a weight-based topological map-
matching (tMM) algorithm manage (Velaga et al., 
2009), transform and resample features of the sensed 
georeferenced LiDAR data according to a non-
georeferenced imagery in order to reserve original 
raw geometry, dimensionality and imagery matrices 
(imagery pixels size and location).  

3 URBAN ENVIRONMENT 
MODEL 

The data fusion application must provide fully 
integrated information, both of the classification 
products and the context within the scene. In the 
proposed model, a complete classification and 
identification task consists of subtasks, which have 
to operate on material and object characteristic shape 

levels provided by an accurately registered database. 
Moreover, the final fused and integrated application 
should be operated on objects of different sizes and 
scales, such as a single building detected within an 
urban area or a selected region on a building facade.  

The multi-scale and multi-sensor data fusion is 
possible with the eCognition procedure (user guide 
eCognition, 2003), when the substructures are 
archived by a hierarchical network. Thus, each 
object is not only identified by its spectral, thermal, 
textural, morphological, topological and shape 
properties, but also by its unique information linkage 
with its actual neighbours (Graph-theoretic 
algorithm and topology).  

The data are fused by mutual dependencies 
within and between objects that create a semantic 
network of the scene. To assure high level accuracy 
and operational efficiency the input products are 
inspected by the basic topological rule, which 
obligates that object borders overlay borders of 
objects on the next layer. Therefore, the multi-scale 
information, which is represented concurrently, can 
be related to each other.  

One of the most important aspects of 
understanding fused data is information about 
context, which describes the relationships between 
multi-source layers. In human perception, processing 
of context information is consciously or sub-
consciously executed. The conceptual information is 
integrated into the suggested expert system.   

 
Figure 11: Hierarchical rule-based structure in eCognition. 

The expert system is applied on the semantic 
network of fuzzy logic (Benz et al., 2004) to 
quantify uncertainties and variations of the input 
data. This logic establishes the membership function 
that defines the relationship between object and its 
characteristics (Figure11). 

In order to receive meaningful information, the 
semantic context has to be determined. For example, 
the classification task to identify a roof can be 
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solved by the following approach: A roof is always a 
shaped polygon, above the ground level, and with 
certain properties (volume, area and diameter). The 
different materials and scales distinguish cadastral 
categories of a building.  

4 3-D URBAN APPLICATION 

The interface of the 3-D urban application is based 
on a realistic illustration that can be regularly 
updated with attribute details and sensor-based 
information. The spatial data model is a hierarchical 
structure, consisting of elements, which make up 
geometries, which in turn compose layers. A 
fundamental demand in non-traditional, multi-
sensors and multi-type applications is spatial 
indexing. A spatial index, which is a logical index, 
provides a mechanism to limit searches based on 
spatial criteria (R-tree index).   

CityGML is an application based on OGC’s 
(open geospatial consortium) GML 3.1. This 
application not only represents the graphical 
appearance but in particular, it takes care of the 
semantic properties (Kolbe et al., 2005), such as the 
spectral/thematic properties, and model evaluations.   

The 3-D urban application is based on an 
integrated data set: spectral models, ground camera 
and airborne images, and LiDAR data. This 
application offers an advanced methodology by 
integrating information into a 5-D data set. The 
ability to include an accurate and realistic 3-D 
position, quantitative information, thermal properties 
and temporal changes is provided by a near-real-
time monitoring system for photogrammetric and 
urban planning purposes. 

The system requirements are defined to include 
geo-spatial planning information and one-to-one 
topology. As the requirements consist of 
visualization and interactivity with maps and 3-D 
scenes, the interface includes 3-D interaction, 2-D 
vertical and horizontal interactions and browsers that 
contain spectral-temporal information.  

The application provides services such as 
thematic mapping, and a complete quantitative 
review of the building and it's surrounding with 
respect to temporal monitoring. The design of the 
application shows the possibilities of delivering 
integrated information and thus holistic views of 
complete urban environments in freeze-frame view 
of the spatio-temporal domain. 

The self-sufficient levels contribute information 
to this integrated application. The first level mainly 
supplies integrated airborne data, termed “City 3-D”. 

This level introduces the ability for 3-D and 2-D 
thematic mapping and spatial quantitative analysis 
of urban surface materials. Users are able to analyze 
temporal changes in the selected freeze-frame views, 
which are equivalent to number of airborne 
campaigns and number of available images uploaded 
to the database. To reach the next level, the user 
must zoom in and focus on the building level.  

The second level adjusts on a single building and 
is termed “Building Model”. This level contributes 
integrated ground and airborne data. The selected 
building is isolated from the global building model 
replicated by LiDAR and displayed in relative 3-D 
scale (matching this particular building). The level 
provides two main products: thematic maps and 
quantitative evaluation implemented by spectral 
models. Both of these products are 3-D freeze-frame 
views, which supply an extensive database for 
temporal analysis.  

The most specific and localized level is the third 
level termed “Spectral Model”. To reach this level, 
the user is required to select the area of interest 
which is a particular position (a patch) such as an 
area on a wall. The spatial investigation at this level 
is a continuation of the previous level; however, the 
data source is a set of spectral models that are 
evaluated for spectral in-situ measurements. This 
level does not provide any integrated information, 
but georeferences the results of spectral models on a 
realistic 3-D scale.       

5 DISCUSSION 

The 3-D urban application satisfies a fundamental 
demand for non-traditional, multi-sensor and multi-
type data. The frequent updating and extension 
requirement is replaced by integrating the variation 
in data formats and types for developing an urban 
environment. The main benefit of 3-D modeling and 
simulation over traditional 2-D mapping and 
analysis is a realistic illustration that can be 
regularly updated with attribute details and sensor-
based quantitative information and models.  

The proposed application offers a novel 
advanced methodology by integrating both imagery 
and LiDAR information into a 5-D data set. The 
ability to include an accurate and realistic 3-D 
position, quantitative spectral information and 
temporal changes provides a near-real-time 
monitoring system for photogrammetric and urban 
planning purposes.  

The proposed algorithm for data fusion proved to 
be able to integrate several different types of multi-
sensor   data,    which   are  additionally dissimilar in 
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rotation, translation, and possible scaling. 
The multi-dimensionality (5-D) of the developed 

urban environment application provides services 
such as thematic mapping, and a complete 
quantitative review of the building and its 
surroundings. These services are completed by 
providing the ability for accurate temporal 
monitoring and dynamic changes (changed 
detection) observations.  

6 CONCLUSIONS 

In conclusion, the suggested application may 
provide the urban planners, civil engineers and 
decision makers with tools to consider quantitative 
spectral information and temporal investigation in 
the 3-D urban space. It is seamlessly integrating the 
multi-sensor, multi-dimensional, multi-scaling and 
multi-temporal data into a 5-D operated system. The 
application provides a general overview of thematic 
maps, and the complete quantitative assessment for 
any building and its surroundings in the 3-D natural 
environment, as well as, the holistic view of the 
urban environment. 
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