# IMPROVING RAY TRAVERSAL BY USING SEVERAL SPECIALIZED KD-TREES

Roberto Torres, Pedro J. Martín, Antonio Gavilanes and Luis F. Ayuso Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Madrid, Spain

Keywords: Ray Tracing, Surface Area Heuristics, KD-tree, GPU, CUDA.

Abstract: In this paper, we present several variants of the Surface Area Heuristics (SAH) to build kd-trees for specific sets of rays' directions. In order to cover the whole space of directions, several sets of directions are considered and each of them leads to a different specialized kd-tree. We call *Multi-kd-tree* to the set of these kd-trees. During rendering, each ray will traverse the kd-tree associated with the set containing its direction. In order to evaluate the efficiency of our proposal, we have implemented a *Path Tracing* and an *Ambient Occlusion* renderer on GPU with CUDA. A SAH-based kd-tree has been compared to a Multi-kd-tree and we show that all the new heuristics exhibit a better performance than SAH over usual scenes.

## **1 INTRODUCTION**

*Ray tracing* algorithms cover a family of algorithms devoted to the generation of 2D images from a 3D representation of the scene. In these algorithms, rendering is carried out by shooting rays throughout the scene. The final results usually exceed in realism those obtained with the graphics pipeline algorithm. This is the reason why ray tracing is the favourite choice in the generation of photo-realistic images (Pharr and Humphreys, 2010).

A common task of every ray tracer, which is usually the most time-consuming step, is to find the nearest intersection per ray (*traversal* step). In order to accelerate this task, several data structures have been developed to organize the scene. Their advantage is that their traversal algorithms can quickly reject whole regions, avoiding many intersection tests. Examples of these structures are *uniform grids*, *kd-trees*, *octrees* and *bounding volume hierarchies* (*BVHs*).

The most efficient hierarchical structures for ray tracing are built with SAH (Goldsmith and Salmon, 1987) using the greedy top-down algorithm by (Mac-Donald and Booth, 1990), originally presented for kd-trees, and later adapted to BVHs by (Wald, 2007). However, SAH involves assumptions about rays than can be replaced by more realistic ones to build structures with better performance during rendering (Havran and Bittner, 1999; Hunt and Mark, 2008; Fabianowski et al., 2009; Bittner and Havran, 2009).

On the other hand, GPUs are massively-parallel

devices that have been used to implement ray tracers, typically binding each thread to a ray during traversal. However, a thread can stall others in the underlying SIMT architecture, mainly due to global memory readings and runtime divergences. This fact has led the design of effective GPU-based ray traversal. The first proposals (Günther et al., 2007; Popov et al., 2007), which were based on ray packets as traversal units, were discarded by (Aila and Laine, 2009) because many rays were forced to traverse regions of the scene they did not intersect. Nevertheless, an appropriate arrangement of rays in the device can exploit coalesced readings and cache hits of modern hardware. Therefore, recent trends use data-parallel primitives to rearrange rays in the device either at the beginning (Garanzha and Loop, 2010) or repeatedly during the traversal (Torres et al., 2011). The aim is to get a trade-off between the overload due to the rearrangement of rays and the increase of performance.

The main contribution of this paper is the development of new heuristics from a mathematical formulation of the original SAH. These heuristics specialize SAH for different sets of ray directions by restricting their domain or by assuming non-uniform probabilities. In order to cover the whole space of directions, several sets are used and a kd-tree is built for each of them. The set of these kd-trees is called a *Multi-kd-tree*. We have tested our heuristics using two ray tracing algorithms implemented with CUDA: *Path Tracing* and *Ambient Occlusion*. Before traversing, secondary rays are classified and arranged on the

DOI: 10.5220/0003844702150226 In Proceedings of the International Conference on Computer Graphics Theory and Applications (GRAPP-2012), pages 215-226 ISBN: 978-989-8565-02-0

Torres R., J. Martín P., Gavilanes A. and F. Ayuso L.

IMPROVING RAY TRAVERSAL BY USING SEVERAL SPECIALIZED KD-TREES.

device according to the Multi-kd-tree components. In both renderers, Multi-kd-trees exhibit better behaviour than a single SAH-based kd-tree over usual scenes, concerning traversal steps and runtime performance.

## 2 RELATED WORK

There is an extensive literature about acceleration structures for ray tracing. (Havran, 2000) proved that SAH-based kd-trees were very efficient concerning static scenes on CPU. Thus, subsequent work tried to move these structures from CPU to GPU. (Foley and Sugerman, 2005) presented two techniques to traverse kd-trees without a stack: *kd-tree restart* and *kd-tree backtrack*. Nevertheless, the amount of traversed nodes was greater than the one involved in the classic traversal, due to the fact that many nodes were visited several times. (Horn et al., 2007) improved kd-tree restart by using a small fixed-size stack taking advantage of the new GPU characteristics. In addition, (Popov et al., 2007) implemented a kd-tree traversal without stack on GPU by using ropes and ray packets.

As far as BVHs are concerned, (Thrane et al., 2005) was the first proposal in implementing a BVH on GPU. Afterwards, (Günther et al., 2007) designed a packet-based BVH traversal on CUDA by means of a stack that was implemented on shared memory. (Torres et al., 2009) implemented a stackless traversal on a roped BVH using packets. After that, (Aila and Laine, 2009) proved that a single-ray traversal on BVH is faster than a packet-based one due to the high memory bandwidth of GPUs. (Garanzha and Loop, 2010) developed a faster traversal by sorting the rays and breath-first traversing the BVH.

Regarding SAH, several papers have focused on improving it for specific sets of rays. (Havran and Bittner, 1999) presented several heuristics where probabilities are approximated as ratios of areas by using either orthogonal, perspective or spherical projection. Recently, (Hunt and Mark, 2008) developed a new heuristics adapted to rays in perspective space to build kd-trees by using oblique projections. (Fabianowski et al., 2009) designed a variant of SAH supposing that rays' origins are inside the scene, which is suitable for secondary and shadow rays. (Bittner and Havran, 2009) used a representative ray set to approximate the probability as the ratio of the number of intersected rays.

## **3 KD-TREE BASED ON SAH**

A kd-tree is a binary tree responsible for organizing the objects in the scene. The volume associated with the root is the AABB (*Axis-Aligned Bounding Box*) of the whole scene and each inner node contains a plane aligned with the axes that subdivides this volume into two voxels. Thus, the volume associated with each node is the AABB that results from reducing the root's voxel with its ancestor planes. In addition, each leaf contains a list of triangles overlapping its AABB.

In order to build good kd-trees, it is essential to measure their quality. This is usually formalized by the following recursive cost function (MacDonald and Booth, 1990):

$$Cost(l) = Cost_{tri} \cdot N_{tri}(l)$$
$$Cost(i) = Cost_{plane} + P(L|i) \cdot Cost(L)$$
$$+ P(R|i) \cdot Cost(R)$$

where *l* is a leaf node, *i* is an inner node, *L* and *R* respectively denote the left and right children of *i*,  $Cost_{tri}$  is the cost of intersecting a ray with a triangle,  $N_{tri}(l)$  is the number of triangles of *l*, and  $Cost_{plane}$  is the cost of intersecting a ray with a plane. P(A|B) is the probability for any ray to intersect the AABB of node *A*, provided that it already intersects the AABB of node *B*.

The aim of the construction is to find a kd-tree with minimum cost. However, there are two values in the previous equations that have to be estimated: the probability  $P(\cdot|\cdot)$  and the costs related to the children *L* and *R*.

With respect to the children's costs, trying to build all possible trees and choosing the one minimizing the cost is unfeasible in general. Therefore, children are assumed to be leaves and so, their costs are quickly computed according to the cost function. In consequence, the construction behaves as a greedy topdown algorithm that looks for the best division of an inner node into two new leaves with the lowest local cost. We follow the O(NlogN) algorithm by (Wald and Havran, 2006) for the kd-tree construction.

The probability P(A) can be evaluated by using geometric probability as a ratio of measures

$$P(A) = \frac{\mu(A)}{\mu(Scene)}$$

where *A* is the AABB of a node and *Scene* is the AABB of the whole scene —for the sake of clarity, we will identify a node with its AABB along this paper. Notice that, if *A* and *B* are AABBs inside *Scene* and  $A \subseteq B$ , then

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} = \frac{\mu(A)}{\mu(B)}$$

In order to specify  $\mu$ , three facts are usually assumed about rays' directions (Wald and Havran, 2006):

- 1. All directions are equally likely, i.e. they have constant probability.
- 2. The origin of each ray is out of the scene.
- 3. The rays do not get blocked during the traversal, i.e. they finish out of the scene.

Notice that these assumptions consider directions as lines, i.e. directions  $\omega$  and  $-\omega$  result in the same line. So, one half of the vectors on the unit sphere are enough to cover all rays.

A particular measure  $\mu_1$  leads to the original SAH formulation as follows. Consider the function  $hit_r(A)$ that returns 1 when a ray r hits the AABB A, and 0 otherwise. Under the previous assumptions,  $hit_r(A)$ can be estimated as the projected area of A on any plane whose normal is the direction  $\omega$  of the ray r. Thus, if we consider a set of rays, the measure is the integral over the domain of directions. As explained above, a hemisphere  $\mathcal{H}$  on the unit sphere is enough to cover all directions. Mathematically, the measure  $\mu_1$  is then expressed as

$$\mu_1(A) = \int_{\omega \in \mathcal{H}} \operatorname{proj}_{-} \operatorname{orth}(A, \omega) \, d\sigma(\omega)$$

where  $\omega$  is a unit ray direction,  $d\sigma$  is the differential solid angle and proj\_orth( $A, \omega$ ) is the area of the orthogonal projection of A on any plane whose normal is  $\omega$ .

Since we work with AABBs, the latter measure can be evaluated as follows, using the hemisphere with  $\omega_Z \ge 0$ :

$$\mu_1(A) = \int_{\boldsymbol{\omega}\in\mathcal{H}} \sum_{i\in\{X,Y,Z\}} |N_i\cdot\boldsymbol{\omega}| A_i \, d\boldsymbol{\sigma}(\boldsymbol{\omega})$$

$$= \int_0^{\frac{\pi}{2}} \int_0^{2\pi} (|\omega_X| \cdot A_X + |\omega_Y| \cdot A_Y + |\omega_Z| \cdot A_Z) \sin \theta \, d\phi d\theta$$
$$= 2\pi (A_X + A_Y + A_Z)$$

where  $A_X$ ,  $A_Y$  and  $A_Z$  are the areas of one face of each pair of parallel faces, and  $N_X = (1,0,0)$ ,  $N_Y = (0,1,0)$ and  $N_Z = (0,0,1)$  are their normals. If SA(A) denotes the surface area of the AABB A, the probability P(A|B) can be computed as

$$P(A|B) = \frac{\mu_1(A)}{\mu_1(B)} = \frac{2\pi(A_X + A_Y + A_Z)}{2\pi(B_X + B_Y + B_Z)} = \frac{SA(A)}{SA(B)}$$

which corresponds to the SAH formulation.



Figure 1: Distribution of the spherical patches (left) and cubic patches (right). For the sake of clarity, the six patches are shown in both figures, however, only three are considered.

# **4** SPECIALIZED HEURISTICS

The original SAH assumes three facts about rays (Section 3). We will define variants of SAH by changing the original assumptions about rays' directions:

- 1. Considering different sets of directions rather than the whole hemisphere. This leads to specialized kd-trees that result in better performance for rays whose directions belong to these sets.
- 2. Considering a non-uniform distribution for rays. Given a direction N, we will suppose that rays are more probable as their directions are closer to N. This results in a kd-tree specialized in the surroundings of N.

In addition, we generalize the way  $hit_r(A)$  is estimated using oblique projections. Actually, we will consider orthogonal and oblique projections under the two new assumptions.

#### 4.1 Spherical Heuristics

We relax the assumption that every ray is possible by restricting the directions to a fixed set. Nevertheless, we keep on assuming that the probability of all rays is uniform. Specifically, we split half of the direction space into three pairwise disjoint spherical patches as Figure 1 on the left shows. In that sense, the three spherical patches can be expressed as

 $SP_i = \{(\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta) \mid \theta \in \Theta_i, \phi \in \Phi_i\}$ 

where  $i \in \{X, Y, Z\}$ , and  $\Theta_i$  and  $\Phi_i$  are the intervals in Table 1. The value  $\theta_0 = acos(\frac{2}{3})$  has been chosen for the patches to have the same area and, therefore, the sets of directions have the same size.

As mentioned, we have two possibilities for choosing the projection. Thereby, SPHERE-ORTH and SPHERE-OBLI will respectively denote the heuristics for the orthogonal and oblique projection.

| Patch                                       | Bounds                                              | (spheric                                          | SPH                                         | ERE-O                      | RTH                                | SPHERE-OBLI             |             |             |             |
|---------------------------------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------------------------|----------------------------|------------------------------------|-------------------------|-------------|-------------|-------------|
|                                             | Θ                                                   |                                                   | Φ                                           | $w_X$                      | WY                                 | WZ                      | WX          | WY          | WZ          |
| $SP_X$                                      | $[	heta_0, \pi - 	heta_0]$                          |                                                   | $[\frac{-\pi}{4}, \frac{\pi}{4}]$           | 55.04                      | 22.80                              | 22.15                   | 53.47       | 23.59       | 22.92       |
| $SP_Y$                                      | $[\theta_0, \pi - \theta_0]$                        |                                                   | $\left[\frac{\pi}{4},\frac{3\pi}{4}\right]$ | 22.80                      | 55.04                              | 22.15                   | 23.59       | 53.47       | 22.92       |
| SPZ                                         | $[0, \theta_0]$                                     |                                                   | $[0, 2\pi]$                                 | 22.04                      | 22.04                              | 55.90                   | 22.66       | 22.66       | 54.67       |
| Patch                                       | Bounds (cartesian coord.)                           |                                                   |                                             | CUBE-ORTH                  |                                    |                         | CUBE-OBLI   |             |             |
|                                             |                                                     |                                                   |                                             |                            |                                    |                         |             |             |             |
|                                             | x                                                   | У                                                 | z                                           | $w_X$                      | WY                                 | WΖ                      | WX          | WY          | WΖ          |
| CP <sub>X</sub>                             | $\begin{array}{c} x \\ \{1\} \end{array}$           | $\begin{array}{c} y \\ \hline [-1,1] \end{array}$ | $\frac{z}{[-1,1]}$                          | <i>w<sub>X</sub></i> 51.29 | <i>w</i> <sub><i>Y</i></sub> 24.35 | w <sub>Z</sub><br>24.35 | $w_X$ 50.00 | $w_Y$ 25.00 | $w_Z$ 25.00 |
| $\begin{array}{c} CP_X \\ CP_Y \end{array}$ | $\begin{array}{c} x \\ \{1\} \\ [-1,1] \end{array}$ | $y = [-1,1] = \{1\}$                              | -                                           | 21                         | -                                  | ~                       | 71          | 1           |             |

Table 1: Bounds and normalized weights for spherical and cubic heuristics. The values  $w_X$ ,  $w_Y$  and  $w_Z$  are the normalized weights in percentage for the face areas  $A_X$ ,  $A_Y$  and  $A_Z$ , respectively.

In that way, each spherical patch represents a set of directions and leads to one different measure per projection type. The three measures for SPHERE-ORTH are

$$\mu_2^{(i)}(A) = \int_{\omega \in SP_i} \operatorname{proj}_o \operatorname{orth}(A, \omega) \, d\sigma(\omega)$$

for the patches  $SP_i$ ,  $i \in \{X, Y, Z\}$ . For example, the probability P(A|B) for patch  $SP_X$  in SPHERE-ORTH is

$$P(A|B) = \frac{\mu_2^{(X)}(A)}{\mu_2^{(X)}(B)} = \frac{w_X \cdot A_X + w_Y \cdot A_Y + w_Z \cdot A_Z}{w_X \cdot B_X + w_Y \cdot B_Y + w_Z \cdot B_Z}$$
$$= \frac{0.5504 \cdot A_X + 0.2280 \cdot A_Y + 0.2215 \cdot A_Z}{0.5504 \cdot B_X + 0.2280 \cdot B_Y + 0.2215 \cdot B_Z}$$

In general, when the integrals are solved, we obtain a weighted addition of the areas  $A_X$ ,  $A_Y$  and  $A_Z$ . After that, we normalize these values by extracting their sum as a common factor. We call these normalized weights  $w_X$ ,  $w_Y$  and  $w_Z$ , whose values have been included for the three spherical patches in Table 1. Notice how the area  $A_X$  has a bigger weight when considering rays with directions on the spherical patch  $SP_X$ . The use of SPHERE-ORTH leads to three different kd-trees, one for each spherical patch, i.e. the measure  $\mu_2^{(i)}$  is used during the construction of the kd-tree related to  $SP_i$ .

In SPHERE-OBLI, the planes for the oblique projection must be chosen. We have tested the planes YZ for  $SP_X$ , XZ for  $SP_Y$  and XY for  $SP_Z$ . E.g., the measure for  $SP_Z$  is

$$\mu_3^{(Z)}(A) = \int_{\omega \in SP_Z} \operatorname{proj-obli}_{XY}(A, \omega) \, d\sigma(\omega)$$
$$= \int_{\omega \in SP_Z} \left| \frac{\omega_X}{\omega_Z} \right| A_X + \left| \frac{\omega_Y}{\omega_Z} \right| A_Y + A_Z \, d\sigma(\omega)$$

By solving the integrals and normalizing the weights, we obtain

$$P(A|B) = \frac{0.2266 \cdot A_X + 0.2266 \cdot A_Y + 0.5467 \cdot A_Z}{0.2266 \cdot B_X + 0.2266 \cdot B_Y + 0.5467 \cdot B_Z}$$

for  $SP_Z$ . See Table 1 for the normalized weights related to  $SP_X$  and  $SP_Y$ .

## 4.2 Cubic Heuristics

Other sets of directions can be obtained if they are taken on the surface of a cube. Similar to (Hunt and Mark, 2008), we have chosen the cube  $[-1, 1]^3$  as Figure 1 shows on the right. As before, directions are considered as lines, so we use three faces on the cube. They are pairwise disjoint and called cubic patches  $CP_X$ ,  $CP_Y$  and  $CP_Z$ . We call CUBE-ORTH to the heuristics when the orthogonal projection is used, and CUBE-OBLI if the oblique projection is applied.

The new three measures in CUBE-ORTH are

$$\mu_4^{(i)}(A) = \int_{\omega \in CP_i} \operatorname{proj}_{-} \operatorname{orth}\left(A, \frac{\omega}{|\omega|}\right) \, dA(\omega)$$

for  $i \in \{X, Y, Z\}$ . Notice the normalization of the vector  $\omega$  unlike the spherical heuristics. For example, the measure for  $CP_Z$  is

$$\mu_4^{(Z)}(A) = \int_{-1}^1 \int_{-1}^1 \operatorname{proj}_0 \operatorname{orth}\left(A, \frac{(x, y, 1)}{\sqrt{x^2 + y^2 + 1}}\right) dx dy$$

By solving and normalizing, the probability for  $CP_Z$  is

$$P(A|B) = \frac{0.2435 \cdot A_X + 0.2435 \cdot A_Y + 0.5129 \cdot A_Z}{0.2435 \cdot B_X + 0.2435 \cdot B_Y + 0.5129 \cdot B_Z}$$

In CUBE-OBLI, the oblique projection is taken into account. Using the same projection planes used for SPHERE-OBLI, we obtain the measure for  $CP_Z$  as follows

$$\mu_5^{(Z)}(A) = \int_{\omega \in CP_Z} \operatorname{proj-obli}_{XY} \left( A, \frac{\omega}{|\omega|} \right) \, dA(\omega)$$
$$= \int_{-1}^1 \int_{-1}^1 |x| \cdot A_X + |y| \cdot A_Y + A_Z \, dxdy$$
$$= 4 \int_0^1 \int_0^1 x \cdot A_X + y \cdot A_Y + A_Z \, dxdy$$

Table 2: Normalized weights in percentage for cosine heuristics, taking different values of  $\beta$ . We only present the case for  $N_X$ . The other cases can be obtained by suitably swapping columns.

|    | C     | OS-ORT | Ή     | C     | OS-OBI | I     |
|----|-------|--------|-------|-------|--------|-------|
| β  | WX    | WY     | WZ    | WX    | WY     | WZ    |
| 1  | 43.99 | 28.00  | 28.00 | 33.33 | 33.33  | 33.33 |
| 2  | 50.00 | 25.00  | 25.00 | 43.99 | 28.00  | 28.00 |
| 3  | 54.08 | 22.95  | 22.95 | 50.00 | 25.00  | 25.00 |
| 4  | 57.14 | 21.42  | 21.42 | 54.08 | 22.95  | 22.95 |
| 5  | 59.55 | 20.22  | 20.22 | 57.14 | 21.42  | 21.42 |
| 10 | 67.01 | 16.49  | 16.49 | 65.90 | 17.04  | 17.04 |

Then

$$P(A|B) = \frac{0.25 \cdot A_X + 0.25 \cdot A_Y + 0.5 \cdot A_Z}{0.25 \cdot B_X + 0.25 \cdot B_Y + 0.5 \cdot B_Z}$$

for  $CP_Z$ . Similar expressions can be obtained for  $CP_X$  and  $CP_Y$ . Table 1 displays the values of the normalized weights for these heuristics.

-IN

# 4.3 Cosine Heuristics

In this heuristics, we assume that all directions are possible but all of them are not equally probable. We will suppose that directions near a given unit direction *N* are more likely than others. We accomplish it by multiplying the projected area related to a unit direction  $\omega$  by the factor  $(\omega \cdot N)^{\beta}$ , where  $\beta$  is a positive real number. Again, two types of projections can be considered, resulting in two heuristics, COS-ORTH for orthogonal projections and COS-OBLI for oblique projections.

We have tested three values for the direction N,  $N_X = (1,0,0)$ ,  $N_Y = (0,1,0)$  and  $N_Z = (0,0,1)$ . For each of them we have integrated over the hemisphere surrounding N, that is, we have used the hemispheres with  $\omega_X \ge 0$ ,  $\omega_Y \ge 0$  and  $\omega_Z \ge 0$ , denoted as  $\mathcal{H}_X$ ,  $\mathcal{H}_Y$  and  $\mathcal{H}_Z$ , respectively. Each hemisphere leads to a different measure and it produces a specific kd-tree. Notice that domains are not pairwise disjoint for the cosine heuristics.

The measures for COS-ORTH and COS-OBLI are respectively

$$\mu_{6}^{(i)}(A) = \int_{\omega \in \mathcal{H}_{i}} (\omega \cdot N_{i})^{\beta} \cdot \operatorname{proj\_orth}(A, \omega) \, d\sigma(\omega)$$
$$\mu_{7}^{(i)}(A) = \int_{\omega \in \mathcal{H}_{i}} (\omega \cdot N_{i})^{\beta} \cdot \operatorname{proj\_obli}(A, \omega) \, d\sigma(\omega)$$

for  $i = \{X, Y, Z\}$ . In Table 2, we present the normalized weights for  $N_X$ , taking different values of  $\beta$ . The weights for  $N_Y$  and  $N_Z$  result from permuting the weights for  $N_X$ , since one rotation of  $\pi/2$  radians is enough to transform  $\mathcal{H}_X$  into  $\mathcal{H}_Y$  or  $\mathcal{H}_Z$ .

### **5 KD-TREE SELECTION**

We apply the O(NlogN) top-down algorithm by (Wald and Havran, 2006) for the kd-tree construction. However, instead of using the surface area to calculate the conditional probability, we apply any of the measures above described. We call kd-tree<sub>n</sub><sup>(i)</sup> to the kd-tree built with  $\mu_n^{(i)}$  (the *n*-th measure and the set of directions  $SP_i$  or  $CP_i$ , or the normal  $N_i$ ). Since, the use of a single kd-tree for the whole scene would benefit some rays but would penalize others, we build three kd-trees (kd-tree<sub>n</sub><sup>(X)</sup>, kd-tree<sub>n</sub><sup>(Y)</sup> and kd-tree<sub>n</sub><sup>(Z)</sup>) in order to cover the whole direction space. We call *Multi-kd-tree* to the set of these kd-trees.

The process of traversing a Multi-kd-tree by a ray in the spherical and cubic heuristics can be summarized as follows. First of all, each ray selects the kd-tree to traverse. In the case of cubic patches, it is identical to the selection of a face in the *cube mapping* technique. In the case of spherical patches, if  $|\omega_Z| \ge \cos(\theta_0)$  then the ray chooses kd-tree<sub>n</sub><sup>(Z)</sup>, and otherwise  $max(|\omega_X|, |\omega_Y|)$  is used to choose kdtree<sub>n</sub><sup>(X)</sup> or kd-tree<sub>n</sub><sup>(Y)</sup>. Once a kd-tree of the Multi-kdtree is selected by the ray, it is subsequently traversed as usual.

For the cosine heuristics, we use the kd-trees related to normals  $N_X$ ,  $N_Y$  and  $N_Z$ . Each ray chooses the kd-tree to traverse by using the selection procedure of the spherical heuristics.

#### **6** IMPLEMENTATION DETAILS

We have implemented a Path Tracing (PT) and an Ambient Occlusion (AO) on CUDA to test the performance of a Multi-kd-tree according to the new heuristics. The scenes used in our tests are BUNNY, FAIRYFOREST, CONFROOM, SPONZA and SIBENIK (Tables 6 and 7). A roof has been added to FAIRYFOREST and a bounding box enclosing BUNNY to prevent the rays from getting away from the scene. The images generated have a resolution of  $1024 \times 1024$  and every surface is diffuse.

The construction of all kd-trees is made on CPU before rendering. The time spent in the construction of each kd-tree with the new heuristics is almost the same as with SAH.

Before rendering, all the kd-trees needed are allocated together on device memory. In the *node array*, all the nodes of these kd-trees are allocated, and the nodes corresponding to the same kd-tree are contiguous. In the *reference array*, the references to triangles of every leaf are stored. The indices to the root of

|          |           |           | SAH       |          | SP        | HERE-ORTH | H        |
|----------|-----------|-----------|-----------|----------|-----------|-----------|----------|
| Scene    | Triangles | Num.Nodes | Num.Ref.  | Memory   | Num.Nodes | Num.Ref.  | Memory   |
| BUNNY    | 69,475    | 536,639   | 343,082   | 9.49 MB  | 1,738,331 | 1,092,768 | 30.69 MB |
| F.Forest | 174,119   | 1,257,457 | 922,883   | 22.70 MB | 3,983,961 | 2,901,640 | 71.85 MB |
| CONFROOM | 282,761   | 1,570,225 | 1,433,336 | 29.42 MB | 5,253,325 | 4,723,711 | 98.17 MB |
| Sponza   | 67,464    | 436,899   | 367,534   | 8.06 MB  | 1,339,641 | 1,141,669 | 24.79 MB |
| SIBENIK  | 80,143    | 358,779   | 311,503   | 6.66 MB  | 1,100,537 | 965,394   | 20.47 MB |

Table 3: Number of triangles and memory footprint used by a SAH-based kd-tree and a Multi-kd-tree built with SPHERE-ORTH. *Num.Nodes* is the number of nodes (either inner or leaf) of the kd-trees. *Num.Ref.* is the total number of references to triangles inside the leaves. Each node requires 16 bytes and each reference 4 bytes.

each kd-tree are stored on another array, the *header array*. Table 3 shows the number of nodes (either inners or leaves) and the memory footprint used by a SAH-based kd-tree and a Multi-kd-tree built with SPHERE-ORTH. As it can be seen, the used memory of the Multi-kd-tree is about three times the space required by a SAH-based kd-tree. The remaining heuristics exhibit similar memory requirements.

**Path Tracing.** This renderer considers two levels of recursion: primary rays and secondary rays. It is composed of three kernels: *RayGeneration* (*RG*), *TraversalIntersection* (*TI*) and *Shading* (*SH*). The flowchart of the CUDA kernels can be seen in Figure 2 on the left. Notice that this algorithm is an *implicit* path tracer, i.e. no shadow ray is traced from the intersection points to lights. In order to complete the final image, several *iterations* of the kernels are used, being its number externally controlled.

Kernel *RG* is devoted to generating primary rays from the camera (a pinhole camera). In each iteration, four different random samples per pixel are generated, so the total amount of rays traced in parallel



Figure 2: Flowchart of the kernels of Path Tracing (on the left) and Ambient Occlusion (on the right).

is  $4MRays = 4 \times 1024^2$  rays per iteration. In this kernel, each ray chooses the kd-tree to traverse as already described (Section 5).

Kernel *T1* finds the nearest intersection point for each ray. This kernel is actually the algorithm *persistent while-while* by (Aila and Laine, 2009) adapted to kd-trees. At the beginning of this kernel, the header array is queried by each ray and the root of the kd-tree is retrieved to start traversing.

Kernel *SH* accumulates the color of the rays in the image buffer. If the rays are primary, then this kernel also generates the new secondary ray from each primary ray. These rays are generated on the hemisphere surface according to the cosine probability. In this kernel, and similar to RG, the new secondary rays choose the kd-tree to be traversed on the subsequent TI launching.

Ambient Occlusion. This renderer also considers two levels of recursion: primary rays and shadow rays. It is also composed of three kernels (Figure 2 on the right), which are very similar to the kernels of PT: *RayGeneration (RG), TraversalIntersection (TI)* and *Shading (SH)*. In order to complete the final image, multiple iterations of the shadow rays are executed, so primary rays are only traced once at the beginning of the render. In addition, *RG* only generates one sample per pixel, so  $1024^2 = 1MRays$  primary rays will be traversed in parallel. In this kernel, identically to PT, each ray selects the kd-tree to traverse.

TI has two configurations. In the first one, the kernel finds the nearest intersection point for each ray, which is suitable for primary rays. In the other, the traversal is finished as soon as an intersection point is found, which is suitable for shadow rays.

SH generates six shadow rays from each intersection point found by kernel TI. So  $6 \times 1024^2 = 6MRays$  shadow rays will be traversed in parallel in each iteration. Each shadow ray chooses the kd-tree to be traversed, similarly to primary rays.

**Ray Arrangement.** Primary rays are stored on an array following the Morton code of the image pixels. In this way, contiguous rays are very likely to choose the same kd-tree to traverse. However, secondary rays

|          |       | Pa           | th Tracing    |              |              |
|----------|-------|--------------|---------------|--------------|--------------|
|          |       | Pri          | mary Rays     |              |              |
| Scene    | SAH   | SPHERE-ORTH  | SPHERE-OBLI   | CUBE-ORTH    | CUBE-OBLI    |
| BUNNY    | 34.04 | 30.27(11.08) | 32.30(5.11)   | 32.38(4.90)  | 32.33(5.02)  |
| F.Forest | 48.82 | 45.38(7.04)  | 45.42(6.96)   | 45.70(6.38)  | 45.71(6.38)  |
| CONFROOM | 38.46 | 35.07(8.80)  | 34.78(9.56)   | 34.89(9.29)  | 35.01(8.96)  |
| Sponza   | 37.66 | 34.52(8.33)  | 34.74(7.75)   | 34.67(7.95)  | 34.97(7.13)  |
| Sibenik  | 45.03 | 39.39(12.51) | 39.01(13.35)  | 38.43(14.63) | 38.67(14.11) |
|          |       | Seco         | ondary Rays   |              |              |
| Scene    | SAH   | SPHERE-ORTH  | SPHERE-OBLI   | CUBE-ORTH    | CUBE-OBLI    |
| BUNNY    | 32.09 | 29.85(6.99)  | 30.88(3.78)   | 30.76(4.15)  | 30.75(4.18)  |
| F.Forest | 51.51 | 48.71(5.43)  | 48.76(5.32)   | 49.11(4.65)  | 49.11(4.64)  |
| CONFROOM | 39.83 | 38.79(2.60)  | 38.83(2.50)   | 38.81(2.55)  | 38.77(2.66)  |
| Sponza   | 41.17 | 39.60(3.81)  | 39.53(3.98)   | 39.51(4.02)  | 39.50(4.06)  |
| Sibenik  | 48.01 | 46.01(4.16)  | 45.97(4.23)   | 46.02(4.13)  | 45.78(4.63)  |
|          |       |              | ent Occlusion |              |              |
|          |       |              | mary Rays     |              | Ĭ            |
| Scene    | SAH   | SPHERE-ORTH  | SPHERE-OBLI   | CUBE-ORTH    | CUBE-OBLI    |
| BUNNY    | 34.23 | 30.46(10.99) | 32.50(5.04)   | 32.57(4.83)  | 32.53(4.96)  |
| F.Forest | 49.03 | 45.60(6.99)  | 45.64(6.90)   | 45.92(6.33)  | 45.92(6.33)  |
| CONFROOM | 38.55 | 35.17(8.76)  | 34.88(9.52)   | 34.98(9.26)  | 35.11(8.93)  |
| Sponza   | 37.73 | 34.59(8.31)  | 34.81(7.73)   | 34.74(7.93)  | 35.04(7.12)  |
| Sibenik  | 47.31 | 41.52(12.24) | 41.13(13.06)  | 40.56(14.26) | 40.80(13.75) |
|          |       | Sha          | adow Rays     |              |              |
| Scene    | SAH   | SPHERE-ORTH  | SPHERE-OBLI   | CUBE-ORTH    | CUBE-OBLI    |
| BUNNY    | 28.91 | 26.44(8.55)  | 28.07(2.90)   | 28.19(2.50)  | 28.19(2.49)  |
| F.Forest | 42.58 | 40.24(5.49)  | 40.29(5.36)   | 40.62(4.59)  | 40.65(4.52)  |
| CONFROOM | 31.28 | 30.84(1.41)  | 30.82(1.46)   | 30.77(1.63)  | 30.73(1.74)  |
| Sponza   | 34.35 | 33.02(3.86)  | 32.96(4.03)   | 32.96(4.03)  | 32.90(4.20)  |
| Sibenik  | 39.55 | 37.93(4.10)  | 37.89(4.20)   | 37.94(4.06)  | 37.82(4.36)  |

Table 4: Traversal Steps on average for Path Tracing and Ambient Occlusion. The number in parenthesis is the gain in percentage w.r.t. SAH. Bold numbers are the maximum of each row.

are randomly generated over a hemisphere, so contiguous rays are likely to choose different kd-trees. This fact results in texture caches misses even from the beginning of TI since the roots of the kd-trees are very far each other. This is experimentally checked as the fact that there is fewer traversal steps w.r.t. SAH but the performance is not higher. In order to solve it, a new kernel Sort is added before TI for secondary and shadow rays and these rays are rearranged on the array. Specifically, they are sorted w.r.t. the index (to the header array) of its kd-tree. This is done on GPU using the radix sort primitive included in CUDPP 1.1.1 (Harris et al., 2010). Since at most three values are required (either one for the SAH-based kd-tree or three for the Multi-kd-tree), the sorting is carried out on the two least significant bits.

## 7 RESULTS

Our implementations have been tested on a NVidia GeForce 285 GTX with 1GB of DRAM on the scenes previously mentioned. The constants of the kd-tree construction are  $Cost_{plane}=1$  and  $Cost_{tri}=1$ .

In Tables 4 and 5 we compare a single SAHbased kd-tree to a Multi-kd-tree built with our spherical and cubic heuristics. Only the kernels *TI* are measured, which are the most time-consuming according to our experiments. Specifically, traversal takes around 75%-83% of the whole rendering time. The comparison is given in traversal steps per ray on average (Table 4) and runtime performance (Table 5). A traversal step is either a plane-ray intersection or a triangle-ray intersection. The runtime performance is measured in MRays/s=1024<sup>2</sup> rays per second. Each scene is evaluated by positioning several cameras looking at different locations and executing

| Table 5: MRays/s for Path Tracing and Ambient Occlusion when the sorting is included (inc.) and not included (n.inc.). The |
|----------------------------------------------------------------------------------------------------------------------------|
| number in parenthesis is the gain in percentage w.r.t. SAH. Bold numbers are the maximum of each row. For secondary and    |
| shadow rays, only columns with the sorting included (inc.) are considered.                                                 |

|                                                                                              |                                                                                            |                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                       |                                                                                                                                       |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                              |                                                                                            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Path Trac                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                       |                                                                                                                                       |
| ã                                                                                            |                                                                                            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rimary F                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             | 0.00                                                                                                                                              |                                                                                                                                       | 0.0.0                                                                                                                                 |
| Scene                                                                                        | SAH                                                                                        |                                                                                                                                | E-ORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                     | E-OBLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                             | -ORTH                                                                                                                                             |                                                                                                                                       | E-OBLI                                                                                                                                |
| BUNNY                                                                                        | 141.12                                                                                     |                                                                                                                                | 5(4.29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 144.10(2.06)                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 144.44(2.29)                                                                                                                                |                                                                                                                                                   | 143.68(1.77)                                                                                                                          |                                                                                                                                       |
| F.Forest                                                                                     | 101.70                                                                                     |                                                                                                                                | 2(3.98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105.78(3.85)                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106.04(4.09)                                                                                                                                |                                                                                                                                                   | 105.54(3.64)                                                                                                                          |                                                                                                                                       |
| CONFROOM                                                                                     | 149.19                                                                                     |                                                                                                                                | 6(4.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 157.52(5.29)                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 155.91(4.31)                                                                                                                                |                                                                                                                                                   | 156.78(4.84)                                                                                                                          |                                                                                                                                       |
| Sponza                                                                                       | 171.75                                                                                     | 178.78(3.93)                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 177.90(3.45)                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178.41(3.73)                                                                                                                                |                                                                                                                                                   | 177.83(3.42)                                                                                                                          |                                                                                                                                       |
| Sibenik                                                                                      | 143.31                                                                                     | 155.0                                                                                                                          | 6(7.57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                     | 6(8.22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 156.6                                                                                                                                       | 6(8.52)                                                                                                                                           | 156.8.                                                                                                                                | 3(8.61)                                                                                                                               |
|                                                                                              |                                                                                            |                                                                                                                                | Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | condary                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                       |                                                                                                                                       |
| Scene                                                                                        | SAH                                                                                        | SPHER                                                                                                                          | E-ORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SPHER                                                                                                                                               | E-OBLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CUBE                                                                                                                                        | -ORTH                                                                                                                                             | CUBE                                                                                                                                  | E-OBLI                                                                                                                                |
|                                                                                              |                                                                                            | n.inc.                                                                                                                         | inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n.inc.                                                                                                                                              | inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n.inc.                                                                                                                                      | inc.                                                                                                                                              | n.inc.                                                                                                                                | inc.                                                                                                                                  |
| BUNNY                                                                                        | 36.29                                                                                      | 37.14                                                                                                                          | 36.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38.42                                                                                                                                               | 37.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37.72                                                                                                                                       | 36.67                                                                                                                                             | 37.33                                                                                                                                 | 36.30                                                                                                                                 |
|                                                                                              |                                                                                            | (2.27)                                                                                                                         | (-0.47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5.53)                                                                                                                                              | (2.78)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3.77)                                                                                                                                      | (1.02)                                                                                                                                            | (2.76)                                                                                                                                | (0.01)                                                                                                                                |
| F.FOREST                                                                                     | 19.36                                                                                      | 20.41                                                                                                                          | 20.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.62                                                                                                                                               | 20.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.54                                                                                                                                       | 20.22                                                                                                                                             | 20.66                                                                                                                                 | 20.33                                                                                                                                 |
|                                                                                              |                                                                                            | (5.11)                                                                                                                         | (3.61)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (6.08)                                                                                                                                              | (4.58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (5.73)                                                                                                                                      | (4.23)                                                                                                                                            | (6.25)                                                                                                                                | (4.75)                                                                                                                                |
| CONFROOM                                                                                     | 26.21                                                                                      | 27.96                                                                                                                          | 27.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.11                                                                                                                                               | 27.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28.16                                                                                                                                       | 27.57                                                                                                                                             | 27.79                                                                                                                                 | 27.21                                                                                                                                 |
|                                                                                              |                                                                                            | (6.26)                                                                                                                         | (4.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (6.76)                                                                                                                                              | (4.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (6.94)                                                                                                                                      | (4.93)                                                                                                                                            | (5.69)                                                                                                                                | (3.67)                                                                                                                                |
| Sponza                                                                                       | 26.14                                                                                      | 28.47                                                                                                                          | 27.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.52                                                                                                                                               | 27.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28.45                                                                                                                                       | 27.84                                                                                                                                             | 28.73                                                                                                                                 | 28.11                                                                                                                                 |
| 5CIENO                                                                                       |                                                                                            | (8.16)                                                                                                                         | (6.08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (8.35)                                                                                                                                              | (6.34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (8.11)                                                                                                                                      | (6.10)                                                                                                                                            | (9.01)                                                                                                                                | (7.00)                                                                                                                                |
| Sibenik                                                                                      | 19.66                                                                                      | 21.72                                                                                                                          | 21.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.76                                                                                                                                               | 21.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.71                                                                                                                                       | 21.35                                                                                                                                             | 21.76                                                                                                                                 | 21.41                                                                                                                                 |
|                                                                                              |                                                                                            | (9.46)                                                                                                                         | (7.95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (9.63)                                                                                                                                              | (8.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (9.40)                                                                                                                                      | (7.90)                                                                                                                                            | (9.64)                                                                                                                                | (8.14)                                                                                                                                |
|                                                                                              |                                                                                            |                                                                                                                                | Am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bient Oco                                                                                                                                           | clusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                       |                                                                                                                                       |
|                                                                                              |                                                                                            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                       |                                                                                                                                       |
|                                                                                              |                                                                                            |                                                                                                                                | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rimary F                                                                                                                                            | lavs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                       |                                                                                                                                       |
| Scene                                                                                        | SAH                                                                                        | SPHER                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rimary F<br>SPHER                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CUBE                                                                                                                                        | -ORTH                                                                                                                                             | CUBE                                                                                                                                  | -OBLI                                                                                                                                 |
| Scene<br>BUNNY                                                                               | SAH<br>78.72                                                                               |                                                                                                                                | E-ORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SPHER                                                                                                                                               | E-OBLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                             | -ORTH<br>(1.09)                                                                                                                                   |                                                                                                                                       | E-OBLI<br>(1.23)                                                                                                                      |
| BUNNY                                                                                        | 78.72                                                                                      | 81.29                                                                                                                          | E-ORTH<br><b>9(3.16</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SPHER<br>80.36                                                                                                                                      | E-OBLI<br>(2.03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79.59                                                                                                                                       | (1.09)                                                                                                                                            | 79.71                                                                                                                                 | (1.23)                                                                                                                                |
| Bunny<br>F.Forest                                                                            | 78.72<br>63.44                                                                             | 81.29<br>65.09                                                                                                                 | E-ORTH<br>9(3.16)<br>9(2.53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPHER<br>80.36<br>65.09                                                                                                                             | E-OBLI<br>(2.03)<br>(2.53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79.59<br>64.92                                                                                                                              | (1.09)<br>2(2.28)                                                                                                                                 | 79.71<br>64.85                                                                                                                        | (1.23)                                                                                                                                |
| Bunny<br>F.Forest<br>ConfRoom                                                                | 78.72<br>63.44<br>87.87                                                                    | <b>81.29</b><br><b>65.09</b><br>94.28                                                                                          | E-ORTH<br>9(3.16)<br>9(2.53)<br>8(6.79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPHER<br>80.36<br>65.09<br><b>94.45</b>                                                                                                             | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79.59<br>64.92<br>93.15                                                                                                                     | (1.09)<br>(2.28)<br>(5.66)                                                                                                                        | 79.71<br>64.85<br>94.29                                                                                                               | (1.23)<br>(2.18)<br>(6.80)                                                                                                            |
| BUNNY<br>F.Forest<br>ConfRoom<br>Sponza                                                      | 78.72<br>63.44<br>87.87<br>112.70                                                          | 81.29<br>65.09<br>94.28<br>117.3                                                                                               | E-ORTH<br>(3.16)<br>(2.53)<br>8(6.79)<br>3(3.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SPHER<br>80.36<br>65.09<br><b>94.45</b><br>116.8                                                                                                    | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>2(3.52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.59<br>64.92<br>93.15<br>117.1                                                                                                            | 9(1.09)<br>9(2.28)<br>9(5.66)<br>1(3.76)                                                                                                          | 79.71<br>64.85<br>94.29<br>116.32                                                                                                     | (1.23)<br>(2.18)<br>(6.80)<br>2(3.11)                                                                                                 |
| Bunny<br>F.Forest<br>ConfRoom                                                                | 78.72<br>63.44<br>87.87                                                                    | 81.29<br>65.09<br>94.28<br>117.3                                                                                               | E-ORTH<br>(3.16)<br>(2.53)<br>8(6.79)<br>3(3.94)<br>8(4.40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SPHER<br>80.36<br>65.09<br><b>94.45</b><br>116.82<br>84.02                                                                                          | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>2(3.52)<br>2(5.48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79.59<br>64.92<br>93.15<br>117.1                                                                                                            | (1.09)<br>(2.28)<br>(5.66)                                                                                                                        | 79.71<br>64.85<br>94.29<br>116.32                                                                                                     | (1.23)<br>(2.18)<br>(6.80)                                                                                                            |
| BUNNY<br>F.Forest<br>ConfRoom<br>Sponza<br>Sibenik                                           | 78.72<br>63.44<br>87.87<br>112.70<br>79.41                                                 | <b>81.29</b><br><b>65.09</b><br>94.28<br><b>117.3</b><br>83.08                                                                 | E-ORTH<br><b>9(3.16)</b><br><b>9(2.53)</b><br><b>3(6.79)</b><br><b>3(3.94)</b><br><b>3(4.40)</b><br><b>S</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPHER<br>80.36<br>65.09<br><b>94.45</b><br>116.8<br>84.02<br>hadow R                                                                                | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>(2(3.52)<br>(5.48)<br>(2.548)<br>(2.548)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79.59<br>64.92<br>93.15<br>117.1<br>83.93                                                                                                   | (1.09)<br>(2.28)<br>(5.66)<br>1(3.76)<br>(5.38)                                                                                                   | 79.71<br>64.85<br>94.29<br>116.32<br><b>84.55</b>                                                                                     | (1.23)<br>(2.18)<br>(6.80)<br>2(3.11)<br>(6.07)                                                                                       |
| BUNNY<br>F.Forest<br>ConfRoom<br>Sponza                                                      | 78.72<br>63.44<br>87.87<br>112.70                                                          | 81.29<br>65.09<br>94.28<br>117.3<br>83.08<br>SPHER                                                                             | E-ORTH<br><b>(3.16)</b><br><b>(2.53)</b><br><b>(6.79)</b><br><b>3(3.94)</b><br><b>3(4.40)</b><br><b>S</b><br>E-ORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SPHER<br>80.36<br>65.09<br><b>94.45</b><br>116.8<br>84.02<br>hadow R<br>SPHER                                                                       | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>2(3.52)<br>(5.48)<br>Rays<br>E-OBLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79.59<br>64.92<br>93.15<br>117.1<br>83.93<br>CUBE                                                                                           | (1.09)<br>(2.28)<br>(5.66)<br>1(3.76)<br>(5.38)<br>-ORTH                                                                                          | 79.71<br>64.85<br>94.29<br>116.32<br><b>84.55</b><br>CUBE                                                                             | (1.23)<br>(2.18)<br>(6.80)<br>2(3.11)<br>( <b>6.07</b> )<br>E-OBLI                                                                    |
| BUNNY<br>F.FOREST<br>CONFROOM<br>SPONZA<br>SIBENIK<br>Scene                                  | 78.72<br>63.44<br>87.87<br>112.70<br>79.41<br>SAH                                          | 81.29<br>65.09<br>94.28<br>117.3<br>83.08<br>SPHER<br>n.inc.                                                                   | E-ORTH<br><b>(3.16)</b><br><b>(2.53)</b><br><b>3(6.79)</b><br><b>3(3.94)</b><br><b>3(4.40)</b><br><b>S</b><br>E-ORTH<br>inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPHER<br>80.36<br>65.09<br>94.45<br>116.8<br>84.02<br>hadow R<br>SPHER<br>n.inc.                                                                    | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>(2(3.52)<br>(5.48)<br>(5.48)<br>(2.53)<br>(5.48)<br>(2.54)<br>(2.54)<br>(2.54)<br>(2.54)<br>(2.54)<br>(2.54)<br>(2.54)<br>(2.54)<br>(2.54)<br>(2.54)<br>(2.54)<br>(2.54)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55)<br>(2.55) | 79.59<br>64.92<br>93.15<br>117.1<br>83.93<br>CUBE<br>n.inc.                                                                                 | (1.09)<br>(2.28)<br>(5.66)<br>1(3.76)<br>(5.38)<br>-ORTH<br>inc.                                                                                  | 79.71<br>64.85<br>94.29<br>116.32<br><b>84.55</b><br>CUBE<br>n.inc.                                                                   | (1.23)<br>(2.18)<br>(6.80)<br>2(3.11)<br>(6.07)<br>E-OBLI<br>inc.                                                                     |
| BUNNY<br>F.Forest<br>ConfRoom<br>Sponza<br>Sibenik                                           | 78.72<br>63.44<br>87.87<br>112.70<br>79.41                                                 | 81.29<br>65.09<br>94.28<br>117.3<br>83.08<br>SPHER<br>n.inc.<br>48.00                                                          | E-ORTH<br><b>(3.16)</b><br><b>(2.53)</b><br><b>(3.679)</b><br><b>3(3.94)</b><br><b>3(4.40)</b><br><b>S</b><br>E-ORTH<br>inc.<br>46.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPHER<br>80.36<br>65.09<br><b>94.45</b><br>116.8<br>84.02<br>hadow R<br>SPHER<br>n.inc.<br>48.28                                                    | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>(2(3.52)<br>(5.48)<br>(2(5.48)<br>(2(5.48)<br>(2(5.48)<br>(2(5.48))<br>(2(5.48)<br>(2(5.48))<br>(2(5.48))<br>(2(5.48))<br>(2(5.48))<br>(2(5.48))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.5                                                                                                                                                                                                                                                               | 79.59<br>64.92<br>93.15<br>117.1<br>83.93<br>CUBE<br>n.inc.<br>47.04                                                                        | (1.09)<br>(2.28)<br>(5.66)<br>1(3.76)<br>(5.38)<br>-ORTH<br>inc.<br>45.44                                                                         | 79.71<br>64.85<br>94.29<br>116.32<br><b>84.55</b><br>CUBE<br>n.inc.<br>47.19                                                          | (1.23)<br>(2.18)<br>(6.80)<br>2(3.11)<br>(6.07)<br>C-OBLI<br>inc.<br>45.58                                                            |
| BUNNY<br>F.FOREST<br>CONFROOM<br>SPONZA<br>SIBENIK<br>Scene<br>BUNNY                         | 78.72<br>63.44<br>87.87<br>112.70<br>79.41<br>SAH<br>46.89                                 | 81.29<br>65.09<br>94.28<br>117.3<br>83.08<br>SPHER<br>n.inc.<br>48.00<br>(2.31)                                                | E-ORTH<br><b>(3.16)</b><br><b>(2.53)</b><br>8(6.79)<br><b>3(3.94)</b><br>8(4.40)<br><b>S</b><br>E-ORTH<br>inc.<br>46.33<br>(-1.19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPHER<br>80.36<br>65.09<br><b>94.45</b><br>116.8<br>84.02<br><b>hadow R</b><br>SPHER<br>n.inc.<br>48.28<br>(2.87)                                   | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>(2(3.52)<br>(5.48)<br>(2(3.52)<br>(5.48)<br>(2(3.52)<br>(5.48)<br>(2(3.52)<br>(2(5.48)<br>(2(3.52)<br>(2(5.48))<br>(2(3.52)<br>(2(5.48))<br>(2(3.52)<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.53))<br>(2(5.52))<br>(2(5.54))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.52))<br>(2(5.                                                                                                                                                                                                                                                            | 79.59<br>64.92<br>93.15<br>117.1<br>83.93<br>CUBE<br>n.inc.<br>47.04<br>(0.32)                                                              | (1.09)<br>(2.28)<br>(5.66)<br>1(3.76)<br>(5.38)<br>-ORTH<br>inc.<br>45.44<br>(-3.18)                                                              | 79.71<br>64.85<br>94.29<br>116.32<br><b>84.55</b><br>CUBE<br>n.inc.<br>47.19<br>(0.63)                                                | (1.23)<br>(2.18)<br>(6.80)<br>2(3.11)<br>(6.07)<br>C-OBLI<br>inc.<br>45.58<br>(-2.87)                                                 |
| BUNNY<br>F.FOREST<br>CONFROOM<br>SPONZA<br>SIBENIK<br>Scene                                  | 78.72<br>63.44<br>87.87<br>112.70<br>79.41<br>SAH                                          | 81.29<br>65.09<br>94.28<br>117.3<br>83.08<br>SPHER<br>n.inc.<br>48.00<br>(2.31)<br>32.02                                       | E-ORTH<br><b>(3.16)</b><br><b>(2.53)</b><br><b>(6.79)</b><br><b>3(3.94)</b><br><b>3(4.40)</b><br><b>S</b><br>E-ORTH<br>inc.<br>46.33<br>(-1.19)<br>31.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPHER<br>80.36<br>65.09<br>94.45<br>116.8<br>84.02<br>hadow R<br>SPHER<br>n.inc.<br>48.28<br>(2.87)<br>32.26                                        | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>2(3.52)<br>2(5.48)<br>2(5.48)<br>2(5.48)<br>2(5.48)<br>2(5.48)<br>2(5.48)<br>2(5.48)<br>2(6.59)<br>(-0.63)<br>31.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79.59<br>64.92<br>93.15<br>117.1<br>83.93<br>CUBE<br>n.inc.<br>47.04<br>(0.32)<br><b>32.27</b>                                              | (1.09)<br>(2.28)<br>(5.66)<br>(5.38)<br>-ORTH<br>inc.<br>45.44<br>(-3.18)<br><b>31.46</b>                                                         | 79.71<br>64.85<br>94.29<br>116.32<br><b>84.55</b><br>CUBE<br>n.inc.<br>47.19<br>(0.63)<br>32.23                                       | (1.23)<br>(2.18)<br>(6.80)<br>2(3.11)<br>(6.07)                                                                                       |
| BUNNY<br>F.FOREST<br>CONFROOM<br>SPONZA<br>SIBENIK<br>Scene<br>BUNNY<br>F.FOREST             | 78.72<br>63.44<br>87.87<br>112.70<br>79.41<br>SAH<br>46.89<br>30.80                        | 81.29<br>65.09<br>94.28<br>117.3<br>83.08<br>SPHER<br>n.inc.<br>48.00<br>(2.31)<br>32.02<br>(3.79)                             | E-ORTH<br><b>(3.16)</b><br><b>(2.53)</b><br><b>(3.6.79)</b><br><b>(3.3.94)</b><br><b>(3.4.40)</b><br><b>S</b><br>E-ORTH<br>inc.<br><b>46.33</b><br>(-1.19)<br><b>31.21</b><br>(1.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPHER<br>80.36<br>65.09<br><b>94.45</b><br>116.8<br>84.02<br>hadow R<br>SPHER<br>n.inc.<br>48.28<br>(2.87)<br>32.26<br>(4.51)                       | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>2(3.52)<br>2(5.48)<br>E-OBLI<br>inc.<br>46.59<br>(-0.63)<br>31.45<br>(2.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79.59<br>64.92<br>93.15<br>117.1<br>83.93<br>CUBE<br>n.inc.<br>47.04<br>(0.32)<br><b>32.27</b><br>( <b>4.54</b> )                           | (1.09)<br>(2.28)<br>(5.66)<br>(3.76)<br>(5.38)<br>-ORTH<br>inc.<br>45.44<br>(-3.18)<br><b>31.46</b><br>(2.10)                                     | 79.71<br>64.85<br>94.29<br>116.3<br><b>84.55</b><br>CUBE<br>n.inc.<br>47.19<br>(0.63)<br>32.23<br>(4.43)                              | (1.23)<br>(2.18)<br>(6.80)<br>2(3.11)<br>(6.07)<br>E-OBLI<br>inc.<br>45.58<br>(-2.87)<br>31.43<br>(1.99)                              |
| BUNNY<br>F.FOREST<br>CONFROOM<br>SPONZA<br>SIBENIK<br>Scene<br>BUNNY                         | 78.72<br>63.44<br>87.87<br>112.70<br>79.41<br>SAH<br>46.89                                 | 81.29<br>65.09<br>94.28<br>117.3<br>83.08<br>SPHER<br>n.inc.<br>48.00<br>(2.31)<br>32.02<br>(3.79)<br>54.88                    | E-ORTH<br><b>(3.16)</b><br><b>(2.53)</b><br><b>3(6.79)</b><br><b>3(3.94)</b><br><b>3(4.40)</b><br><b>S</b><br>E-ORTH<br>inc.<br>46.33<br>(-1.19)<br>31.21<br>(1.30)<br>52.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPHER<br>80.36<br>65.09<br><b>94.45</b><br>116.8<br>84.02<br>hadow R<br>SPHER<br>n.inc.<br>48.28<br>(2.87)<br>32.26<br>(4.51)<br>54.72              | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>2(3.52)<br>2(5.48)<br>E-OBLI<br>inc.<br>46.59<br>(-0.63)<br>31.45<br>(2.07)<br>52.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79.59<br>64.92<br>93.15<br>117.1<br>83.93<br>CUBE<br>n.inc.<br>47.04<br>(0.32)<br><b>32.27</b><br>( <b>4.54</b> )<br><b>55.32</b>           | (1.09)<br>(2.28)<br>(5.66)<br>1(3.76)<br>(5.38)<br>-ORTH<br>inc.<br>45.44<br>(-3.18)<br><b>31.46</b><br>( <b>2.10</b> )<br><b>52.98</b>           | 79.71<br>64.85<br>94.29<br>116.3:<br><b>84.55</b><br>CUBE<br>n.inc.<br>47.19<br>(0.63)<br>32.23<br>(4.43)<br>55.11                    | (1.23)<br>(2.18)<br>(6.80)<br>2(3.11)<br>(6.07)                                                                                       |
| BUNNY<br>F.FOREST<br>CONFROOM<br>SPONZA<br>SIBENIK<br>Scene<br>BUNNY<br>F.FOREST<br>CONFROOM | 78.72<br>63.44<br>87.87<br>112.70<br>79.41<br><b>SAH</b><br><b>46.89</b><br>30.80<br>52.80 | 81.29<br>65.09<br>94.28<br>117.3<br>83.08<br>SPHER<br>n.inc.<br>48.00<br>(2.31)<br>32.02<br>(3.79)<br>54.88<br>(3.77)          | E-ORTH<br><b>(3.16)</b><br><b>(2.53)</b><br><b>(36.79)</b><br><b>(3(3.94)</b><br><b>(4.40)</b><br><b>(4.40)</b><br><b>(4.40)</b><br><b>(1.19)</b><br><b>(1.19)</b><br><b>(1.19)</b><br><b>(1.30)</b><br><b>(52.57)</b><br><b>(-0.44)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPHER   80.36   65.09   94.45   116.8:   84.02   hadow R   SPHER   n.inc.   48.28   (2.87)   32.26   (4.51)   54.72   (3.49)                        | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>2(3.52)<br>(5.48)<br>E-OBLI<br>inc.<br>46.59<br>(-0.63)<br>31.45<br>(2.07)<br>52.43<br>(-0.72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.59<br>64.92<br>93.15<br>117.1<br>83.93<br>CUBE<br>n.inc.<br>47.04<br>(0.32)<br><b>32.27</b><br>(4.54)<br>55.32<br>(4.54)                 | (1.09)<br>(2.28)<br>(5.66)<br>1(3.76)<br>(5.38)<br>-ORTH<br>inc.<br>45.44<br>(-3.18)<br><b>31.46</b><br>(2.10)<br><b>52.98</b><br>(0.32)          | 79.71<br>64.85<br>94.29<br>116.32<br><b>84.55</b><br>CUBE<br>n.inc.<br>47.19<br>(0.63)<br>32.23<br>(4.43)<br>55.11<br>(4.18)          | (1.23)<br>(2.18)<br>(6.80)<br>2(3.11)<br>(6.07)<br>E-OBLI<br>inc.<br>45.58<br>(-2.87)<br>31.43<br>(1.99)<br>52.78<br>(-0.05)          |
| BUNNY<br>F.FOREST<br>CONFROOM<br>SPONZA<br>SIBENIK<br>Scene<br>BUNNY<br>F.FOREST             | 78.72<br>63.44<br>87.87<br>112.70<br>79.41<br>SAH<br>46.89<br>30.80                        | 81.29<br>65.09<br>94.28<br>117.3<br>83.08<br>SPHER<br>n.inc.<br>48.00<br>(2.31)<br>32.02<br>(3.79)<br>54.88<br>(3.77)<br>50.49 | E-ORTH<br><b>(3.16)</b><br><b>(2.53)</b><br><b>(36.79)</b><br><b>(3(3.94)</b><br><b>(4.40)</b><br><b>(4.40)</b><br><b>(46.33)</b><br>(-1.19)<br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b><br><b>(-1.19)</b> | SPHER<br>80.36<br>65.09<br>94.45<br>116.8:<br>84.02<br>hadow R<br>SPHER<br>n.inc.<br>48.28<br>(2.87)<br>32.26<br>(4.51)<br>54.72<br>(3.49)<br>50.90 | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>2(3.52)<br>(5.48)<br>E-OBLI<br>inc.<br>46.59<br>(-0.63)<br>31.45<br>(2.07)<br>52.43<br>(-0.72)<br><b>49.03</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.59<br>64.92<br>93.15<br>117.1<br>83.93<br>CUBE<br>n.inc.<br>47.04<br>(0.32)<br><b>32.27</b><br>(4.54)<br><b>55.32</b><br>(4.54)<br>50.65 | (1.09)<br>(2.28)<br>(5.66)<br>1(3.76)<br>(5.38)<br>-ORTH<br>inc.<br>45.44<br>(-3.18)<br><b>31.46</b><br>(2.10)<br><b>52.98</b><br>(0.32)<br>48.79 | 79.71<br>64.85<br>94.29<br>116.32<br><b>84.55</b><br>CUBE<br>n.inc.<br>47.19<br>(0.63)<br>32.23<br>(4.43)<br>55.11<br>(4.18)<br>50.87 | (1.23)<br>(2.18)<br>(6.80)<br>2(3.11)<br>(6.07)<br>C-OBLI<br>inc.<br>45.58<br>(-2.87)<br>31.43<br>(1.99)<br>52.78<br>(-0.05)<br>49.00 |
| BUNNY<br>F.FOREST<br>CONFROOM<br>SPONZA<br>SIBENIK<br>Scene<br>BUNNY<br>F.FOREST<br>CONFROOM | 78.72<br>63.44<br>87.87<br>112.70<br>79.41<br><b>SAH</b><br><b>46.89</b><br>30.80<br>52.80 | 81.29<br>65.09<br>94.28<br>117.3<br>83.08<br>SPHER<br>n.inc.<br>48.00<br>(2.31)<br>32.02<br>(3.79)<br>54.88<br>(3.77)          | E-ORTH<br><b>(3.16)</b><br><b>(2.53)</b><br><b>(36.79)</b><br><b>(3(3.94)</b><br><b>(4.40)</b><br><b>(4.40)</b><br><b>(4.40)</b><br><b>(1.19)</b><br><b>(1.19)</b><br><b>(1.19)</b><br><b>(1.30)</b><br><b>(52.57)</b><br><b>(-0.44)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPHER   80.36   65.09   94.45   116.8:   84.02   hadow R   SPHER   n.inc.   48.28   (2.87)   32.26   (4.51)   54.72   (3.49)                        | E-OBLI<br>(2.03)<br>(2.53)<br>(6.96)<br>2(3.52)<br>(5.48)<br>E-OBLI<br>inc.<br>46.59<br>(-0.63)<br>31.45<br>(2.07)<br>52.43<br>(-0.72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.59<br>64.92<br>93.15<br>117.1<br>83.93<br>CUBE<br>n.inc.<br>47.04<br>(0.32)<br><b>32.27</b><br>(4.54)<br>55.32<br>(4.54)                 | (1.09)<br>(2.28)<br>(5.66)<br>1(3.76)<br>(5.38)<br>-ORTH<br>inc.<br>45.44<br>(-3.18)<br><b>31.46</b><br>(2.10)<br><b>52.98</b><br>(0.32)          | 79.71<br>64.85<br>94.29<br>116.32<br><b>84.55</b><br>CUBE<br>n.inc.<br>47.19<br>(0.63)<br>32.23<br>(4.43)<br>55.11<br>(4.18)          | (1.23)<br>(2.18)<br>(6.80)<br>2(3.11)<br>(6.07)<br>E-OBLI<br>inc.<br>45.58<br>(-2.87)<br>31.43<br>(1.99)<br>52.78<br>(-0.05)          |

several iterations per camera position.

Kernel *Sort* is always launched before *TI* for secondary rays in PT and shadow rays in AO. In Table 5, the left columns of each heuristics (tagged with *n.inc.*) show the performance of kernel *TI*, not including the overload of *Sort*. On the right columns (tagged with *inc.*), the runtime of kernel *Sort* is taken into account and added to the runtime of kernel *TI*. Observe that this sorting does not affect the results in Table 4.

As it can be seen in Table 4, on average, the rays that traverse the Multi-kd-trees take less traversal steps to reach their nearest intersection points. We obtain a gain of up to 14.63% for primary rays and 6.99% for secondary ones in PT, and up to 14.26%

BUNNY FAIRYFOREST IONS CONFROOM MRavs/ SPONZA MRays/s SIBENIK ARavs/

Table 6: Analysis of the COS-ORTH heuristics for Path Tracing w.r.t. traversal steps (middle column) and runtime performance (right column).

Table 7: Analysis of the COS-ORTH heuristics for Ambient Occlusion w.r.t. traversal steps (middle column) and runtime performance (right column).



for primary and 8.55% for shadow rays in AO. Primary rays in PT and AO are almost identical, so their results are very similar. Shadow rays in AO take fewer traversal steps than secondary rays in PT. This makes sense because the average length of shadow rays in AO is shorter than that of secondary rays in PT.

Concerning the execution model of GPUs, the traversal of different rays is not totally independent from each other. Therefore, texture cache misses and divergences can make the runtime execution different than expected. Even primary rays suffer from these stalls since the decrease in traversal steps do not agree with the improve in performance. For instance, SPHERE-ORTH takes 11.08% less traversal steps than SAH for BUNNY in PT (Table 4), but it only reaches an improvement of 4.29% in performance (Table 5). On the contrary, this clear difference does not hold for secondary rays. It is true that the sorting can entail an increase of their coherence, but secondary rays are randomly spawned and sorting only considers the kd-tree selection. Thus, reports highly depend on how these rays are concretely built during rendering.

Regarding sorting, the performance of our heuristics exceeds that of SAH when the overload due to sorting is not considered (columns *n.inc*. in Table 5). When this overload is included (columns *inc*.) our heuristics keep overcoming in most cases. The overload is more relevant in AO since shadow rays traverse fewer steps on average. Notice that scenes BUNNY and CONFROOM have the lowest average traversal steps and their results show that the overload make their runtime performance mostly slower w.r.t. SAH.

We have also compared SAH with the cosine heuristics. The settings are the same than previous heuristics. We have measured the traversal steps and the runtime performance (including *Sort*) by ranging  $\beta$  from 0.5 to 20 in steps of 0.5. Tables 6 and 7 show the results for COS-ORTH (blue curves) for PT and AO, respectively. The results for COS-OBLI are not depicted because they have a similar behaviour. A dashed horizontal line is added to the charts to compare this heuristics with SAH.

With respect to traversal steps in PT, it can be seen a decrease of them as  $\beta$  increases until it reaches a value between 2 and 3.5, for primary and secondary rays. These values of  $\beta$  lead to similar weights regarding the spherical and cubic heuristics. After that, the behaviour of rays becomes scene-dependant. The charts of runtime performance have an inverse behaviour, since the fewer traversal steps the rays traverse, the higher the runtime performance is.

The charts of traversal steps for primary and

shadow rays have a similar shape in AO. Again, the steps traversed by shadow rays are fewer than those for secondary rays in PT due to their shorter length.

Comparing the performance charts between PT and AO, AO exhibits a better performance than PT, but the difference between COS-ORTH and SAH is larger for PT (Table 6) than for AO (Table 7). The explanation of this is the same as previous heuristics, i.e. the constant overload of sorting is more relevant for those rays with fewer traversal steps.

## 8 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented six new heuristics developed from a mathematical description of the original SAH. These heuristics specialize SAH for different sets of ray directions by restricting their domain or assuming different probabilities. In order to cover the whole space of directions, several sets have been proposed and a kd-tree has been built for each of them (*Multi-kd-tree*). The traversal of a Multi-kd-tree reports fewer traversal steps and better runtime performance than a single SAH-based kd-tree over usual scenes.

However, runtime performance does not agree with the number of traversal steps, due to the execution on SIMT hardware. This fact is even more relevant for secondary or shadow rays due to their random spawning. It is necessary further research about this issue to fill the gap between traversal steps and runtime performance on parallel hardware.

A tighter division of the direction space could be realized. However, two considerations must be taken into account. First, all the information needed for the traversal has to be stored in device memory. So, a bigger amount of divisions entails more memory requirements. Second, the selection of the kd-tree to traverse has to be quick. In this work, only few comparisons are needed, which makes the selection negligible with respect to the whole traversal.

Finally, the cosine heuristics have been developed independently to the spherical and cubic heuristics. It would be interesting to analyze the behaviour of spherical or cubic patches in which rays are distributed according to the cosine heuristics.

### ACKNOWLEDGEMENTS

This paper has been supported by the Spanish projects CCG10-UCM/TIC-5476 and GR35/10-A-921547.

Thanks to The Stanford 3D Scanning Repository for the BUNNY model, The Utah 3D Animation Repository for the FAIRYFOREST scene and Marko Dabrovic for the SIBENIK and SPONZA scenes.

## REFERENCES

- Aila, T. and Laine, S. (2009). Understanding the Efficiency of Ray Traversal on GPUs. In *High-Performance Graphics* 2009, pages 145–149.
- Bittner, J. and Havran, V. (2009). RDH: Ray Distribution Heuristics for Construction of Spatial Data Structures. In SCCG 2009, pages 61–67, Budmerice, Slovakia.
- Fabianowski, B., Flower, C., and Dingliana, J. (2009). A Cost Metric for Scene-Interior Ray Origins. In *Eurographics 2009 Short Papers*, pages 49–52.
- Foley, T. and Sugerman, J. (2005). KD-Tree Acceleration Structures for a GPU Raytracer. In *Graphics Hard-ware 2005*, pages 15–22.
- Garanzha, K. and Loop, C. (2010). Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing. In *Eurographics 2010*.
- Goldsmith, J. and Salmon, J. (1987). Automatic Creation of Object Hierarchies for Ray Tracing. *IEEE Computer Graphics and Application*, 7(5):14–20.
- Günther, J., Popov, S., Seidel, H.-P., and Slusallek, P. (2007). Realtime Ray Tracing on GPU with BVHbased Packet Traversal. In *Eurographics Symposium on Interactive Ray Tracing 2007*, pages 113–118.
- Harris, M., Owens, J. D., Sengupta, S., Tseng, S., Zhang, Y., Davidson, A., and Satish, N. (2010). CUDA Data Parallel Primitives Library (CUDPP 1.1.1). http://code.google.com/p/cudpp/.
- Havran, V. (2000). Heuristic Ray Shooting Algorithms. Ph.d. thesis, Faculty of Electrical Engineering, Czech Technical University in Prague.
- Havran, V. and Bittner, J. (1999). Rectilinear Trees for Preferred Ray Sets. In SCCG 1999, pages 171–178, Budmerice, Slovakia.
- Horn, D. R., Sugerman, J., Mike, H., and Hanrahan, P. (2007). Interactive KD-Tree GPU Raytracing. In *I3D* 2007, pages 167–174.
- Hunt, W. and Mark, W. R. (2008). Adaptive Acceleration Structures in Perspective Space. In *IEEE Symposium* on Interactive Ray Tracing, pages 11–17.
- MacDonald, D. J. and Booth, K. S. (1990). Heuristics for ray tracing using space subdivision. *Visual Computer*, 6(3):153–166.
- Pharr, M. and Humphreys, G. (2010). *Physically Based Rendering: From Theory to Implementation (second edition)*. Morgan Kaufmann.
- Popov, S., Günther, J., Seidel, H.-P., and Slusallek, P. (2007). Stackless KD-Tree Traversal for High Performance GPU Ray Tracing. *Computer Graphics Forum* (*Proceedings of Eurographics*), 26(3):415–424.
- Thrane, N., Simonsen, L. O., and Orbaek, A. P. (2005). A Comparison of Acceleration Structures for GPU As-

sisted Ray Tracing. Technical report, University of Aarhus.

- Torres, R., Martin, P. J., and Gavilanes, A. (2011). Traversing a BVH Cut to Exploit Ray Coherence. In *GRAPP* 2011, pages 140–150.
- Torres, R., Martín, P. J., and Gavilanes, A. (2009). Ray casting using a roped BVH with CUDA. In Proc. Spring Conference on Computer Graphics, pages 107 – 114.
- Wald, I. (2007). On Fast Construction of SAH-Based Bounding Volume Hierarchies. In Symposium on Interactive Ray Tracing 2007, pages 33–40.
- Wald, I. and Havran, V. (2006). On Building Fast KD-Trees for Ray Tracing, and on Doing That in O(NlogN). In Symposium on Interactive Ray Tracing, pages 61–69.