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Structural Decomposition Trees (SDTs) have been proposed as a completely novel display approach to tackling
the research problem of visualizing high-dimensional data. SDTs merge the two distinct classes of relation and
value visualizations into a single integrated strategy. The method is promising; however, statements regarding
its meaningful application are still missing, constraining its broad adoption. This paper introduces solutions
for still-existing issues in the application of SDTs with regard to interpretation, interaction, and scalability.
SDTs provide a well-designed initial projection of the data to meaningfully represent its properties, but not
much is known about how to interpret this projection. We are able to derive the data’s properties from their
initial representation. The provided methods are valid not only for SDTs, but also for projections based on
principal components analysis, addressing a frequent problem when applying this technology. We further show
how interactive exploration based on SDTs can be applied to visual cluster analysis as one of its application
domains. To address the urgent need to analyze vast and complex amounts of data, we also introduce means for
scalable processing and representation. Given the importance and broader relevance of the discussed problem
domains, this paper justifies and further motivates the usefulness and wide applicability of SDTs as a novel
visualization approach for high-dimensional data.

1 INTRODUCTION

The visualization of high-dimensional data sources is
a common but still unsolved problem. Structural de-
composition trees (SDTs) (Engel et al., 2011) rep-
resent a novel approach to this challenge. SDTs
combine value and relation visualizations into one
approach and thus provide a variety of benefits not
available in existing visualization technology. Means
for interaction based on the novel representation add
unique options for data exploration. Research con-
cerning SDTs, however, is constrained to the intro-
duction and description of the construction and fun-
damental aspects of this novel displaying approach.
Statements concerned with its utilization and appli-
cation to concrete problems have not yet been pub-
lished. This results in long learning efforts and may
also lead to misinterpretations and failure when the
technique is applied.

This paper aims to provide guidance for differ-
ent aspects important for the successful application of
SDTs in data visualization. After reviewing related
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work in the area of high-dimensional data visualiza-
tion (Section 2), the first part of this paper (Section 3)
is particularly concerned with the interpretation of
an SDT. Thereby, we focus on alignment and length
of the different dimensional anchors and derive their
meaning and mathematical properties for gaining first
insight quickly. Practical implications of these state-
ments provide the users with an understanding of
the capabilities of SDTs. Introducing guidelines for
visual cluster analysis, the second part (Section 4)
is concerned with appropriate interactive data explo-
ration. Based on a common data browsing approach,
strategies for gaining further insight into the data are
provided. Addressing the need for visualization tech-
nology able to deal with large and high-dimensional
data sets, the third part (Section 5) of the paper dis-
cusses different means to reduce the complexity of the
data and representation. Empirical results show that
much time can be saved when methods to introduce
scalability with regard to the number of data points
and dimensions are applied. We show that ambigui-
ties in the association of data points to data clusters
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can be significantly reduced by a scalable visual rep-
resentation.

The main contributions of this paper to the current
state of research are the following

We provide statements and practical implications
to the geometric interpretation of SDTs and re-
lated projections.

We introduce means for an interactive exploration
of a high-dimensional data set in the context of
visual cluster analysis.

We introduce and justify means for a scalable pro-
cessing and representation of large and complex
data sets.

We conclude (Section 6) that SDTs are a valid
means for the visualization of high-dimensional data,
but must be understood and applied in the right way
in order to gain insight quickly and without misinter-
pretation and wrong conclusions. This paper aims to
provide the necessary information to accomplish this
objective successfully.

2 RELATED WORK

2.1 Visualization of High-dimensional
Data

As a result of most data acquisition tasks today, high-
dimensional data has always been of strong interest
to the visualization community. Many different ap-
proaches and techniques have been proposed. Ac-
cording to (Engel et al., 2011) they can be categorized
into value or relation visualizations.

By focussing on the conveyance of data coordi-
nate values for every data point, value visualizations
allow for a detailed analysis of the data. The paral-
lel coordinates plot (see Figure 1, top/left) is a typical
representative of this category. Due to their focus on
value representation for each data point, a common
problem with all associated techniques is that they
are often not scalable with regard to the amount and
dimensionality of the data. As a result this usually
leads to clutter and long processing times as the num-
ber of dimensions and amount of data points increase.
In order to overcome these issues, cluster-based ap-
proaches (Johansson et al., 2005; Zhou et al., 2008;
Artero et al., 2004), appropriate means for interaction
(Elmaqvist et al., 2008; Hauser et al., 2002), and bet-
ter utilization of the available screen space (McDon-
nell and Mueller, 2008) have been proposed. Clut-
ter reduction is also achieved by dimension ordering

arranging the dimensions within the visual represen-
tation based on correlations within the data. The re-
search conducted by ANKERST ET AL.(Ankerst et al.,
1998) was the first to formally state this problem and
has later been successfully expanded in (Yang et al.,
2003a) and (Peng et al., 2004). Although these meth-
ods are great improvements to reduce clutter, the dis-
played information is often too detailed and a mean-
ingful representation can generally not be obtained for
large data sets.

Instead of aiming at communicating individual
values, relation visualizations are designed to con-
vey relationships within the data. They are mostly
point mappings projecting the m-dimensional (m-D)
data into the low-dimensional presentation space. As
relations within the data may be too complex to be
completely conveyed in presentation space, projec-
tions are usually ambiguous. A prominent and widely
applied point projection approach is principal compo-
nents analysis (PCA) conveying distance relations in
m-D space by projecting into a plane that is aligned
to capture the greatest variance data space without
distorting the data (see Figure 1, top/right). Con-
trary, multi-dimensional scaling (MDS) commonly
uses general similarity measures to represent the data,
but leads to distortion and a visualization that may
be difficult to interpret. Interpretation of the rep-
resentation is a general issue with point projections
as long as no means to comprehend the parameters
used for the projection are available. One such option
are dimensional anchor (DA) visualizations (Hoffman
et al., 1999) projecting and displaying the basis vec-
tors along the data points (see Figure 1, top/right).
These DAs are also an appropriate means to adjust the
projection interactively (Kandogan, 2001). Relation
visualizations usually lead to a meaningful overview
of the data. Their effectiveness, however, strongly de-
pends on the quality of the initial projection and the
means provided to interpret and interact with it. Cur-
rent research mainly focuses on improved representa-
tion of specific data structures, e.g., scientific point
cloud data (Oesterling et al., 2010), a better incor-
poration of domain-appropriate analysis techniques,
e.g., brushing and filtering (Janicke et al., 2008), or
computational speed gains (Ingram et al., 2009).

Due to the rather diverse properties of value and
relation visualizations, they each have distinct appli-
cation domains. Thus, they are often used simultane-
ously in exploratory multi-view systems, such as in
(Paulovich et al., 2007). Few publications exist that
tackle the problem of combining both classes into a
single approach. Most of them have been proposed
for value visualizations, such as the technology de-
scribed in (Yang et al., 2003a; Yang et al., 2003b;
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Figure 1: The two classes of visualizations for high-
dimensional data (value (top/left) and relation (top/right)
visualizations) are brought together by SDTs (bottom). All
visualizations represent the well-known “cars” data set. The
SDT highlights the five distinct clusters by its branch struc-
ture also conveying the respective differences in the data
values.

Yang et al., 2004), (Johansson and Johansson, 2009),
or (Yuan et al., 2009). SDTs represent a completely
different approach that promises to bridge the existing
gap between both classes.

2.2 Structural Decomposition Trees

SDTs are founded on a sophisticated data projection,
but provide additional means to represent the dimen-
sion contributions for each data point (see Figure 1,
bottom). This is mainly achieved by introducing a
tree structure showing the projection path for each
displayed data point and thus its individual dimen-
sion values. The projection paths also allow for an
unambiguous identification and interpretation of data
points that reside at different locations in m-D space,
but have been projected in close proximity in the pro-
jection space.

A main problem in showing the different pro-
jection paths is the introduced clutter. SDTs over-
come this issue by introducing a multi-stage process-
ing pipeline. Hierarchical clustering is used to iden-
tify, aggregate, and bundle common line segments of
m-D data points. The resulting tree has minimal over-

638

all branch length reducing the redundancies consid-
erably. Appropriate representation of the individual
dimension contributions is accomplished by a well-
designed drawing order. The tree itself is represented
by colored lines whereby the number of elements
within this subtree is encoded by branch thickness
(see Figure 1, bottom). The initial SDT projection
thereby maximizes the space between tree paths and
thus allows for a better interpretation of the visualiza-
tion (Engel et al., 2011).

Different means for interaction either on individ-
ual or groups of data points or the whole representa-
tion make possible for further exploration of the data
(see Figure 2). The projection can be significantly
changed by a re-arrangement of the end points of the
DAs. These dimension.vectors can be independently
modified in their lengths and angles relative to each
other. Thereby, so-called variance points are placed
along the unit circle in order to indicate angles that
lead to other promising projections. Means for high-
lighting dimensions and projection paths allow one to
emphasize all line segments corresponding to the co-
ordinates of a dimension or to investigate the struc-
tural decomposition of the data. Data filtering can be
achieved by collapsing and hiding subtrees. After col-
lapsing, the main value contributions of all associated
data points are still visible and can be used and inter-
preted, e.g., for comparison with other subtrees.

Published research concerned with SDTs mainly
focusses on the technical foundations of the approach.
Semantic aspects, interpretation, and the use of SDTs
to visualize large data sets are not provided.

Figure 2: The main interactions provided by SDTs: Repo-
sitioning of DAs (green arrow) allows for an intuitive ad-
justment of the projection. Dimension highlighting (yellow
DA\) conveys the individual contributions of a dimension in
the data (yellow tree segments). Path highlighting (pur-
ple tree branch) is intended to emphasize interesting tree
branches and substructures.
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3 INTERPRETATION OF THE
INITIAL LAYOUT

Projections are a powerful means to convey relations
in high-dimensional data. Due to the characteristics
of dimension reduction, however, they are often diffi-
cult to interpret. In previous work it was shown that
SDTs are specifically suited to depict data coordinates
in a way that aims at intuitive interpretation. Experi-
mental studies of PCA-based projections showed that
the projection conveys properties of the data by the
length and relation of the DAs to each other. This,
however, has never been explicitly quantified.

In this section, we investigate in full detail how the
initial arrangement of DAs in SDTSs relates to the cor-
responding variables in the data and how the user can
interpret this arrangement to infer knowledge about
the data. Due to the use of a PCA-related projec-
tion method for SDTs, the given statements apply to
all PCA-based projections. We shortly recall dimen-
sional anchors and their arrangement, after which
we are linking the properties of DAs to those of the
data. We first outline why DAs are used to reflect
a PCA projection and how their initial arrangement
is defined. This is expressed by latent features in
the data, i.e., the eigenvectors and eigenvalues of the
data’s covariance matrix indicating the information
content within the different data dimensions. In order
to understand which data properties are visually en-
coded in a projection, we investigate how the projec-
tion is defined by these features and what information
is thereby depicted. This is expressed by a deriva-
tion of the spectral decomposition of the covariance
matrix. After these steps, we show that the specific
DA arrangement allows one to derive conclusions and
data properties that are of keen interest to the user
but not depicted by the common plotting of princi-
pal components. Finally, statements to implications
of these properties aim for a better understanding of
an arbitrary PCA-based projection avoiding its misin-
terpretation.

DAs and their Arrangement. Since SDTs can
be computed and visualized both in 2D or 3D
space, the following considerations are made for an
arbitrary display dimensionality p. We assume that
n m-dimensional data points are stored row-wise
in X 2 R M By the projection, X is mapped to
display point coordinates 2 2 R(" P,

The linear mapping of an m-D data point X; in p-
D display coordinates %; is computed by the linear
combination of DAs a; 2 RP, 1 j m, with the

corresponding coordinate of X;:

i = ani;jZ (1)
1 jm

This technique, the mapping in star coordinates
(Kandogan, 2001), can be understood as a general-
ization of drawing 3D objects on paper to arbitrary
dimensions. In the original work, however, the DAs
are initially arranged in a uniform distribution along a
unit circle. In general, this leads to a hon-orthogonal
projection. This can be misleading because the dis-
tance in display space does not reflect distance in R™.
To avoid this, a projection is designed to minimize
this mapping error. This error is commonly expressed
as the sum of squared pairwise distance differences
arising from the mapping from m to p dimensions,
1 i n(D(Xi; X))  d2(%is%)))?; where d; is the Eu-
clidean distance metric and D is an appropriate dis-
tance metric of the application domain. This error
can be minimized, for example, by PCA in the case
D = dj. Instead of expressing the data by the orig-
inal unit vectors, PCA computes new orthogonal di-
rections (principal components) in which the data has
maximal variance and re-expresses all data points in
coordinates of these principal components. The pro-
jection is then defined by the p principal components
that capture the highest variance in the data. Although
distance relations between data points are captured
well in this projection, the interpretation of principal
components is not intuitive. Inalmost all applications,
the link to the original data is essential for analysis.
Therefore, the depiction of the original data coordi-
nates and relations between the original data dimen-

sions is an important aspect for a projection.

Linking Properties of DAs to those of the Data.
In previous work (Engel et al., 2011), both approaches
have been combined and the initial arrangement of
DAs has been defined to reflect a (weighted) PCA
projection into p-dimensional display coordinates.
We utilize DAs to make possible a better inter-
pretation and more intuitive understanding of the
underlying projection without losing any of the
underlying projection’s benefit. In this research, we
investigate the properties of this DA projection in
more detail and deduct which properties of the DAs
link to which properties in the data. The following
considerations are based on the data’s covariance
matrix. Without loss of generality, we assume X to
be centered and, since the used weighting scheme in
previous work changes the covariance matrix (to be
weighted) a priori, we can neglect the weighting in
the following. We also neglect the global scaling by
n ! that does not influence relations in the data.

639



IVAPP 2012 - International Conference on Information Visualization Theory and Applications

The underlying PCA projection X of X is defined
as R = X B, with
B = (g®;:::;:gM) 2 RM P) heing the matrix storing
column-wise the eigenvectors of the corresponding p
largest eigenvalues of the covariance matrix S of X.
Equation (1) implies that the linear mapping of DAs
A= (a;;:am)’ 2 RM P s defined as % = X A.
In order to initially arrange the DAs such that their
mapping is equivalent to that of the PCA, we define
each DA as a row vector of B:

T
a= gYung® @
This step is equivalent to the projection of the orig-
inal unit vectors 1; 2 R™ to RP subject to the same
rotation, i.e., a] =17 8.

It is important to note that PCA projects X by re-
ducing its dimensionality to p in an optimal variance-
preserving way. Thus, the information that is actually
displayed by this projection is that of the inherently
defined best rank-p approximation R of X.

Spectral Decomposition of the Covariance Matrix.
The process of dimensionality reduction by maxi-
mizing variance becomes clear when considering the
spectral decomposition of S. That is the decomposi-
tion of the combined variances of all elements in X
into successive contributions of decreasing variance:
S = 1,gOgD" + 4+ 1,g0gO"; with 1 being the
k highest eigenvalue of S and g the corresponding
eigenvector for1 k r=rank(X).

Each contribution S® = 1,g®g®" thereby in-
creases the rank of the matrix summation by one.
I holds the variance of the contribution, whereas
g®g®" defines the mixing of this variance, i.e., how
this contributes to S. Consequently, the covariance
matrix of the PCA’s p-dimensional best rank-p ap-
proximation R of X equals the sum over the first p
contributions, where usually p  rank(X). The co-
variance between dimensions i and j of the projected
data R is therefore

b= 1 ®

1k p
Similarly, R can be defined by ® = X BBT. For the
dimensions (columns) in R the following equation
holds: R = 1 j X j(BBT)i;j. R ;i is built from
X by the linear combination of all X :; with coef-

ficients (BBT)ij = 1 « IDgi(k)ggk). Consequently,
these coefficients define the orthogonal projection
of the data and account for the similarities between

columns in R, i.e., for rank(R).

640

Conclusions. With the above considerations in

mind, we show in the following that the length of each

DA and the angles between them reflect specific prop-

erties of the projection and of the projected data R.

The mixing matrix 887 holds normalized contribu-

tions to  and relates to the DA’s arrangement in the

sense that (BBT)ij = 1 pSi(;kj):lk = oK, whereas

Sﬁ- = cos \(a;; a;) jjaijj2 jjajjj>. We can draw the fol-

lowing conclusions:

1. The length of DAs equals the standard deviation
of the respective dimension in R, normalized for
each contribution X by its variance I.

s
jiaifi 2 (CRo%
1 kp

q_
@ §|;i = §

2. The cosine of the angle between two DAs equals
the correlation of the respective dimensions in
R, where both covariance and standard deviation
are normalized for each contribution 8% by its
variance Iy.

To.
cos\(ai;aj) = . L
JlaijjJ2llajll2
K) (K
@ 1k pgﬁ )gi()
§i §
K
3 g’i(;j) s
= — = rl]
Si Sj

Figure 3 shows an SDT as an example for DA vi-
sualization highlighting these means for visualization.

Implications. It is important to emphasize that ®
does not represent the whole data X but only its best
rank-p approximation. That is, R is the approxima-
tion of X that can be optimally depicted in p dimen-
sions with regard to its variance. Therefore, R is
the orthogonally projected data on the subspace RP
which is spanned in a way that the projection re-
flects the dominant trends in X. However, RP can
only cover the most important information in the data.
While other subspaces that are left out globally ac-
count for less variance in the data, relations therein
may still be of importance for the user. Unfortunately,
this information cannot be captured in a single projec-
tion and, consequently, parts of the relations between
the original data dimensions in R™ are lost. The user
has to be aware of this dilemma because it may lead to
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Figure 3: A 13-dimensional air quality data set visualized
by the SDT approach: Dimensions exhibiting a large vari-
ance are represented by long DAs. Correlations within the
data are indicated by DAs that are placed close to each other
(colored axes). The variance points-associated to these di-
mensions indicate that these correlations hold for the whole
high-dimensional data space (parallel coordinates plot pro-
vided for illustration purposes only).

possible misinterpretations stemming from the visual
assessment of the DAS’ properties.

Because principal components are mutually or-
thogonal, it is possible that the depicted standard devi-
ation of certain dimensions is lower in the initial pro-
jection than in other projections (globally less op-
timal” combinations of principal components). This
depends on the overall information content of this di-
mension in the subspaces collapsed by dimensionality
reduction. Thus, the knowledge derived from the DAs
can only be a subset of the hidden information and
usually represents a high-level view only. To avoid
misinterpretation, they must be further evaluated.

Indicators for that information loss, e.g., the prin-
cipal components, are often not part of the projection.
The quality of the approximation R, with regard to
one dimension, is directly reflected by the amount of
lost variance in this dimension. A single projection
cannot convey this information. To overcome this
drawback, an SDT display provides variance points
for each dimension. The number of variance points
associated to a DA is equal to the dimensionality of
the data set. Each variance point consists of two cir-
cles. The outer circle’s radius equals s;, the dimen-
sion’s standard variation. The inner circle equals &,
the part of the dimension’s standard variation that is
shown in the projection. The ratio between both cir-
cles reflects the actual variance of this dimension in
the projection (f@) in relation to the dimensions’ total

variance, i.e., (iq:si)z. and thus, allows one to infer
knowledge about the importance of the data dimen-
sion. Variance points also provide guidance for inter-
active exploration. As their positions along the unit
circle hold the position of this DA in other orthogonal
projections, they can be found and explored quickly.
The position of the i’th variance point thereby reflects
the position of the corresponding DA in the orthogo-
nal projection defined by 8 = (g®;g®), the combi-
nation of the first and i’th principal component. As
shown in Figure 3 and 4, a wide range of the vari-
ance is usually captured by a few large variance points
strongly reducing the data space that must be ex-
plored.

Figure 4: Variance points help to find other orthogonal pro-
jections of the data. Large variance points (left) indicate
projections most suited to convey the variance in the data.
Opposite variance points (right), even if not accounting for
much variance, often lead to strongly different projections
helping to identify unexpected data properties.

Commonly, the user is aware of the fact that pro-
jections have an inherent information loss. Projec-
tions that map different points in R™ to the same loca-
tion in RP make this fact clear. This ambiguity is of-
ten a severe problem and also stems from the principal
illustration of “lost” subspaces. These points differ in
those subspaces that are disregarded by dimension-
ality reduction and are therefore projected onto the
same location. By visualizing the projection path of
each data point, SDTs prevent possible misinterpre-
tations by assuring the user that data points are only
equal when they share the same path. The display
of an SDT, however, requires additional processing
power and introduces further graphical primitives into
the data representation. This leads to occlusion prob-
lems, clutter, and long processing times when large
data sets are to be displayed. How to solve these is-
sues by proper interactive exploration and means for
a scalable processing and representation is discussed
in the following sections.
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Figure 5: Moving a DA in circles activates the motion paral-
lax effect of the human visual system letting the tree and the
data points appear more “plastic”. By providing many dif-
ferent coordinated projections, potential point clusters can
be identified or verified. Best results are obtained by using
a DA corresponding to a dimension with high variance.

4 INTERACTION FOR VISUAL
CLUSTER ANALYSIS

Unconsidered subspaces, visual ambiguities, and oc-
clusion issues within the initial representation can
be addressed via interactive data exploration. This
section introduces an exploration strategy for inter-
active visual cluster analysis as a common repre-
sentative for the various goals in high-dimensional
data visualization. The strategy was developed to
cope with the large and complex data sets resulting
from mass spectrography in air quality research (Bein
etal., 2009). We follow the information visualization
mantra (Shneiderman, 1996) starting with providing
an overview to the data, then filtering data that are of
minor interest, and eventually applying a drill-down
step to uncover interesting details. As this involves
many common exploration tasks, the given statements
are broadly applicable to a variety of use cases.

A first overview about the data and its properties
is provided by the initial projection of the data as de-
scribed in the previous section. Subspaces hidden by
dimension reduction, however, can contain further in-
formation important for the analyst. They are made
available by a successive exploration of individual
dimensions via their respective variance points. To
achieve this, DAs are moved to other associated vari-
ance points leading to a different but still orthogonal
projection of the data. To explore most important in-
formation first, it is meaningful to use large variance
points indicating a strong inherent information con-
tent. We also propose to use variance points placed at
opposite positions on the unit circle. Although posi-
tion has no meaning regarding the amount of informa-
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tion content, this leads to strong changes in the pro-
jection and may reveal unexpected and important in-
sight (see Figure 4). Switching between close points
does not significantly change the projection and can
usually be skipped even for large variance points.

/

Figure 6: Cluster identification and verification by a stretch-
ing of a DA: While clutter hinders the detection of point
clusters in the initial projection (left), this interaction re-
veals individual clusters and even sub-clusters in the data
(right). Modification of a DA also allows the users to reveal
the contribution and influence of the associated dimension
to an examined cluster. The two clusters at the bottom of
the representations are not affected by the interaction.

Even when subspace exploration is facilitated by
variance points, usually there are still visual ambigu-
ities resulting from dimension reduction and an over-
plotting of the points and the SDT. To overcome this,
we introduce a novel exploration technique based on
the motion parallax effect of the human visual sys-
tem. By selecting and moving an appropriate DA,
this effect creates a pseudo three-dimensional impres-
sion of the two-dimensional representation (see Fig-
ure 5) letting the points and the tree appear more
“plastic”. During this interaction, point clusters can
be identified by their constant grouping. In our ex-
periments, we revealed that continuously moving the
DA in circles with varying diameter was particularly
helpful to emphasize point clustering. By moving in
circles, projections revealing point relations are dis-
played multiple times helping the human visual sys-
tem to memorize this insight. Continuously chang-
ing diameter stretches or compresses potential clus-
ters allowing for improved identification or verifica-
tion. Not every dimension is equally suited to achieve
this. We propose to select a dimension that does
strongly contribute to higher tree branches, e.g., one
that has a high variance in data values. As the move-
ment strongly affects the top of the SDT leaving its
stem nearly unchanged, it can increase motion paral-
lax. Appropriate dimensions can easily be found by



INTERPRETATION, INTERACTION, AND SCALABILITY FOR STRUCTURAL DECOMPOSITION TREES

Figure 7: The orthogonal placement of two DAs (red and
yellow color) in the presentation can simplify the evalua-
tion of correlations between two-dimensions. Small con-
tributions of points near the origin and large contributions
at the top/right corner for both dimensions indicate a linear
correlation for this pair of dimensions.

dimension highlighting emphasizing all line segments
corresponding to the coordinates of a dimension and
thus conveying their distribution. Sometimes only the
orientation of the tree or of large branches is to be
changed, e.g., to overcome visibility and occlusion is-
sues. To support this, we propose to find and relocate
a dimension with strong contribution to the stem of
the SDT, e.g., a dimension with low variance. This
leaves the initial crone structure of the SDT widely
unaltered for further analysis.

Besides the described circle movement, further in-
sight into the structure of the data can be gained by
modifying the lengths of DAs only. Dimensions caus-
ing a visual separation of data points are most likely to
contribute to clustering. Enlarging the respective DA
separates data points and can help identifying clusters
or verifying assumptions (see Figure 6). All points
of a potential cluster show a similar behavior during
length changes. Path highlighting can be used for fur-
ther verification. In case of a valid m-D cluster, all as-
sociated points must share the same projection path.
Length modification is also particularly useful to visu-
ally emphasize value contributions in the tree. Large
contributions can easily be identified by their strong
response to length changes.

Potential correlations in the initial projection are
indicated by DAs that are placed close together. As
shown in the previous section, this is only true for the
current rank-p approximation and must not hold for

the whole data space. Correlations can be verified by
an individual examination of the variance points for
each involved dimension. If a dimension has only a
single large and many small variance points, it can be
concluded that most of its information is encoded in
the current position of the associated DA. When true
for all involved dimensions, they are correlated not
only in the current presentation but also in the data
space. In the contrary, when all variance points of
a dimension are of same size, the variance is scat-
tered and the current anchor position represents just
a subset of this information. In this case, it cannot be
concluded that the depicted correlation holds in data
space and further examination is required. One means
to achieve thisiis to limit further exploration to the in-
volved dimensions using filtering.

In case correlation has to be evaluated for two di-
mensions only, they may also be placed orthogonally
to each other. Their visual emphasis by dimension
highlighting could then reveal typical patterns in the
corresponding SDT branches (see Figure 7).

S

Figure 8: Interactive complexity and clutter reduction tak-
ing advantage of the capabilities of SDTs: dimension filter-
ing (left) reduces the number of branch segments in the tree,
node collapsing (right) the number of displayed subtrees.

Once an overview and first insights have been ob-
tained, it is meaningful to filter out less interesting di-
mensions or subtrees to reduce clutter. Due to the fact
that the visual contribution of a dimension is deter-
mined by the length of the corresponding DA, dimen-
sions can be fully removed by placing their anchors
at the center of the projection (see Figure 8, left).
Appropriate candidates are dimensions that are cor-
related or show similar characteristics. They can be
substituted by a single super-DA, whereby its angle is
determined by the average and the length by the sum
of all associated DAs. This changes the point projec-
tions only slightly. We further propose to remove di-
mensions having (1) very small variance points or (2)
many, very small branches of similar length at high
tree levels indicating little structure in the data. Less
interesting subtrees can be removed from the visual-
ization by node collapsing. The subtree is then repre-
sented by a single point (see Figure 8, right).

Once the data representation has been “cleaned”
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Figure 9: Means for zoom and pan interactions allow the
users to drill-down into the presentation and data to obtain
momentary detail.

be removing less interesting dimensions and data
points, there is space for analysis on a more granu-
lar level. Details to identified clusters, such as their
properties and potential sub-clusters, can be obtained
by panning and zooming into the representation (see
Figure 9).

For meaningful interaction, data display in real-
time is mandatory. How to speed-up data processing
and to improve the representation in case of many data
points and dimensions is discussed in the next section.

5 SCALABLE PROCESSING AND
REPRESENTATION

Large data sets with a high level of complexity lead
to long processing times and visual clutter. This
decreases the usability and general applicability and
usefulness of a technology. These issues can be over-
come by scalable processing and representation of
the data discussed in this section.

5.1 Scalable Processing
5.1.1 Complexity

The processes required to compute an initial SDT rep-
resentation are: hierarchy-building, configuring axes,
and rendering. Complexity mainly depends on the
number of data points, N, and dimensions, D.

Most of the processing power required to calcu-
late and provide SDTs is used to establish the data
hierarchy and the initial axis layout. Common hierar-
chical clustering techniques are quadratic in complex-
ity with respect to the number of data points, because
they require comparing ';' , or O(N?) point pairs;
naive methods can be as complex as O(N®) because
they perform each set of O(N?) comparisons every
time two clusters are aggregated. Performing these
comparisons usually involves computing a difference
along each dimension, adding a complexity of O(D).

The processing power needed to provide an appro-
priate initial data projection strongly depends on the
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applied approach. The PCA-based method used for
SDTs has a complexity of O(N?2) (Engel et al., 2011).

Rendering the SDT is the least expensive compu-
tation. Given the fact that the tree hierarchy consists
of 2N or O(N) nodes and rendering each node is lin-
ear in the number of dimensions, or O(D), the render-
ing takes O(ND) time.

Summarizing, the complexity of the processes re-
quired to compute an initial SDT representation is

O(N?D) + O(N?) + O(ND) = O(N?D) (4)
5.1.2 Computation

In order to reduce the computation time of the ini-
tial SDT and axis layout, we propose N as well as D.
Based on equation (4), reduction of N has the greatest
impact on the complexity of the corresponding pro-
cesses. This especially applies to the initial hierarchi-
cal clustering and the calculation of the projection.

Many different methods to meaningfully reduce
the number of data points have been proposed (El-
lis and Dix, 2007). A simple and often used strat-
egy that can also be applied to SDTs is uniform sub-
sampling (see Figure 10). More sophisticated meth-
ods can be used depending on known characteristics
of the data, the purpose of the visualization, or cur-
rent user demands. SDTs do not have any special re-
quirements for the selection of an appropriate point
reduction strategy.

While point reduction should have the greatest im-
pact on initial computation times, data sets of high di-
mensionality can require significant computation and
be difficult to visualize effectively. Similar to point re-
duction, numerous methods to meaningfully decrease
D have been proposed. They range from simple meth-
ods, such as PCA, to more sophisticated strategies,
such as the use of an importance hierarchy based on
the dimensions (Yang et al., 2003c), to manual meth-
ods in case automated technology fails. In any case,

Figure 10: Example of an SDT for all data (left, 1000 data
points) and a uniformly sub-sampled subset (right, 100 data
points). Emphasized properties of the data are well con-
veyed in both representations. The large colored dots indi-
cate end points of DAs.
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such approaches reduce computation time proportion-
ally to the fraction of dimensions eliminated. As long
as the applied method does not remove or cover data
properties the analyst might be interested in, SDTs
do not demand any special dimension reduction strat-
egy. The initial SDT layout before and after reduc-
tion, however, is usually different.

Point and dimension filtering also reduce the com-
putation power needed to render and interact with the
visualization in real time. Since rendering the SDT is
linear with respect to both N and D, point reduction
is not as superior a method with respect to reducing
computation time as it is with respect to the initial
computations. However, the fact that users can ex-
pect to have far more data points than dimensions un-
derpins the significance of prioritizing point over di-
mension reduction. In order to justify the theoretical
assumptions stated we conducted a number of exper-
iments to assess the complexity of SDTs with regard
to a changing number of N and D.

In the experiments we used a prototypical imple-
mentation of SDTs as described in (Engel etal., 2011)
and a 255-dimensional air quality data set consist-
ing of 70,000 points provided from our collaborators
from the UC Davis Air Quality Research Center. For
complexity reduction we applied uniform point sub-
sampling and PCA. Figure 11 shows the initial SDT
computation time for various subsets of the data with
either 13, 50, and all 255 dimensions. As shown, the
computation time is a non-linear polynomial function
of N, and a linear function of D. The differences
between the original and reduced data sets are sig-
nificant. Specifically, computing the SDT for 1,000
points takes approximately 80% less time for a 50-
dimensional subset of the data than for all 255 dimen-
sions. Computations involving all 255 dimensions
were 100 times faster for 200 points instead of 1,000
points, showing the tremendous growth in complexity
as a function of N. This demonstrates the significance
of point reduction. Clustering and initial projection,
however, are computed in a pre-processing step and
may be stored for multiple uses in cases where point
reduction is not applicable or meaningful.

5.2 Scalable Representation

A major problem of all projection-based visualization
techniques is the low-dimensionality of the presenta-
tion space. With too many dimensions, projection-
based visualizations can become difficult to under-
stand; SDTs in particular can become cluttered and
busy, especially by rendering DAs. However, since
SDTs aggregate common dimensional components of
clusters into single branches, they are visually orga-
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Figure 11: Initial SDT computation time as a function of N
and D. The gold points represent 255-dimensional subsets
of the data, the bisque points the 50-dimensional subsets,
and the dark points the 13-dimensional subsets. When N
is small, the computation time is almost identical for all ex-
amined subsets. The timing results reflect well the predicted
theoretical behavior.

nized and can be easily interpretable for data sets with
upwards of twenty dimensions. Depending on various
properties of the data, such as the presence of distinct
clusters, even higher-dimensional data sets containing
thirty or even forty dimensions can be clearly inter-
pretable. Beyond fifty dimensions, however, the sole
presence of the shown DAs makes the display over-
crowded and difficult to understand.

Another common issue of projection-based vi-
sualization techniques is that projecting data into a
space with fewer dimensions can lead to a close po-
sitioning of data points that are much more distant in
high-dimensional space. SDT’s attempt to overcome
this problem by means of a tree structure, but illustrat-
ing this structure might not remove all ambiguities in
the representation for very large data sets. In order
to overcome this, we propose to highlight and differ-
entiate data points below certain tree levels. In order
to achieve this, we enclose the data points and tree
branches below a certain level in uniquely colored iso-
surfaces covering the associated points; the SDT itself
remains unchanged. Any isosurface-rendering algo-
rithm, such as the well-known Marching Cubes (MC)
algorithm (Lorensen and Cline, 1987), is suitable for
this task. As shown in Figure 12, this highlights the
association and distribution of points belonging to the
same cluster even when points associated with differ-
ent clusters are located nearby or even at identical po-
sitions in presentation space.

When data sets are dense and many points occlude
one another, the relative densities of clusters are am-
biguous to the user. Isosurfaces can also be used
to overcome this problem by conveying cluster den-
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(b) Closeup of ambiguous clusters.

Figure 12: Disambiguating point positions in SDTs: The
green and purple isosurfaces correspond to two distinct
subtrees of data. Their intersection indicates that these
branches represent data points that reside at different loca-
tions in the high-dimensional data space but are positioned
near each other in the presentation space.

sity. To achieve this, isosurfaces are rendered around
sub-trees of the SDT in regions of high point density,
quickly highlighting sub-trees that might require fur-
ther analysis. Some isosurface rendering algorithms,
including the MC algorithm, can directly or indirectly
rely on point density in display space as a form of in-
put and only draw isosurfaces where relevant. Isosur-
faces can also be color- or opacity-coded to provide
the users with more specific information on cluster
density in a given region (see Figure 13).

Isosurfaces are also a valid means to represent
data points that have been filtered by one of the ap-
proaches described above or by interactive folding.
Instead of the associated data points, only correspond-
ing isosurface are shown. To visually de-emphasize
such sub-clusters, however, they should be uniquely
colored and highly transparent.
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Figure 13: Disambiguating cluster density in SDTs: The
front-most clusterin this visualization is significantly
denser than the other clusters shown. This is conveyed by
the green isosurface.

6 CONCLUSIONS

SDTsare a valid means to visualize and explore high-
dimensional data. However, several questions im-
portant for a broad adoption still remain to be an-
swered. Our paper addressed several of these ques-
tions. We were particularly interested in the insight
that can be gained from an interpretation of the ini-
tial projection of the data. We delivered proof that the
length and relation of DAs allow one to draw mean-
ingful conclusions about the information content of a
single and correlations between multiple dimensions
of the data. We also provided means and guidelines
for their interactive exploration in visual cluster anal-
ysis. In order to deal with large data sets, we pro-
posed and empirically justified options for scalable
processing and representation. All addressed prob-
lems and the introduced solutions showed that SDTs
can be successfully used in a variety of application
domains to cope with the challenging problem of
high-dimensional data analysis, visualization, and in-
teractive exploration.

The general abilities of SDTs have not yet been
evaluated empirically. Future work can be directed at
the design and implementation of a user study com-
paring SDTSs to value visualizations, such as the paral-
lel coordinates plot, and relation visualizations, such
as PCA. When based on common real-world scenar-
io0s, this evaluation can also justify the usefulness of
SDTs for a broad variety of application domains. The
results we already obtained from our experiments and
user feedback are promising and provide evidence for
the true value of the novel approaches presented here.
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