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Abstract: This paper proposes a melanosome tracking method using Bayes theorem and estimation of movable region 
of melanosome candidates. Melanosomes in intracellular images are tracked manually now to investigate 
the cause of disease, and automatic tracking method is desired. Since there are little automatic recognition 
methods for intracellular images, we can not know which features and classifiers are effective for them. 
Thus, we try to develop the melanosome tracking using Bayes theorem of melanosome candidates detected 
by Scale-Invariant Feature Transform (SIFT). However, SIFT can not detect the center of melanosome 
because melanosome is too small in images. Therefore, SIFT detector is adopted after image size is enlarged 
by Lanczos resampling. However, there are still many melanosome candidates. Thus, we estimate the 
movable region of the target melanosome in next frame and eliminate melanosome candidates. After the 
posterior probability of each candidate is computed by Bayes theorem, and the melanosome with the 
maximum probability is tracked. Experimental results using the melanosome images of normal and Griscelli 
syndrome show the effectiveness of our method. 

1 INTRODUCTION 

Live cell imaging is advanced rapidly in recent years 
because of the progress of microscope techniques 
(Sakaushi et al., 2007; Sugimoto and Tone, 2010; 
Sakaushi, et al., 2008). Especially, elucidation of 
transportation path in cells is very important for 
understanding of clinical state. However, there are 
little automatic recognition methods for live cell 
imaging, and human counts and tracks the particles 
in cells manually now. This work is hard physically 
and mentally for humans, and human can not treat a 
lot of data. Since many objective data are required 
for the investigation into the cause of disease, 
automatic recognition methods for intracellular 
images are desired. Therefore, we try to develop a 
tracking method for intracellular images. This is new 
application of computer vision and very contributes 
to medical development. 

In this paper, the tracking target is the 
melanosome in the melanocytes (Kuroda, et al., 
2003) (Kuroda, et al., 2004). The melanocyte 
combines the melanin pigment and stores in cell 
membrane which is called melanosome ． The 
melanosome is transported into cells. It is known 

that transport disorder causes abnormal pigmentation. 
Thus, the melanosome tracking is important for the 
investigation into the cause of disease. Figure 1 
shows the examples of melanosome images in which 
melanosome is the particle with black color. We 
must track a particle which is not different from 
neighboring particles. If we can realize an automatic 
melanosome tracking method, it will be applicable 
to particle tracking in various kinds of cells． 

There is a software which is usually used in cell 
biology. That is called SpotTracker2D which is 
plugin of imageJ. We try to track melanosome by 
using the SpotTracker2D but it can not track 
melanosome well. There are not any conventional 
studies about automatic melanosome tracking by 
computer. we can not know which features and 
classifiers and effective for melanosome tracking. 
Since we do not have any clues, we divide the 
melanosome tracking into 2 tasks. The first task is 
the candidate detection. The second task is the 
posterior probability estimation of the candidates.  

In the first task, we try to detect the melanosome 
candidates by SIFT (Lowe, 2004). However, SIFT 
can not detect the center of melanosome because 
melanosome is too small in the original microscope 
images. Therefore, SIFT is adopted after original 
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microscope images are enlarged by Lanczos 
resampling (Duchon, 1979) (Turkowski and Gabriel, 
1990). However, SIFT also detects the characteristic 
points on non-melanosome by image enlargement. 
This may induce tracking failures. Thus, we must 
eliminate the casdidates. Thus, the movable region 
of a tracking target in the next frame is estimated 
under the assumption that the target melanosome 
does not pass through other melanosomes.  

In the second task, the posterior probability of 
every candidate which is selected by upper steps is 
computed by Bayes theorem, and the candidate with 
maximum probability is tracked. However, SIFT 
detects some features on the same position. 
Therefore, the posterior probabilities of all features 
on the same position are computed independently, 
and the posterior probabilities on the same position 
are integrated by sum or product. 

The melanosome images of normal and Griscelli 
syndrome are used in experiments. The accuracy 
achieves 94.4% when the position of melanosome at 
time t+1 is predicted from that at time t. The image 
enlargement by Lanczos resampling, the estimation 
of movable region and sum of the posterior 
probability are effective for this task．Although the 
accuracy decreases in the task that the correct 
position of melanosome in only the first frame is 
given and the positions in the remaining frames are 
predicted, the possibility of our method is 
demonstrated by experiments. 

This paper is constructed as follows. In section 2, 
the details of the proposed method are explained. 
Experimental results are shown in section 3. Finally, 
conclusions and future works are described in 
section 4. 

2 PROPOSED METHOD 

Figure 2 shows the flowchart of the proposed 
method. Candidates detection and feature of 
candidates are required for melanosome tracking. 
However, recognition techniques for intracellular 
images are not established and conventional 
methods do not exist! Thus, in this paper, we use 
characteristic feature point detection and descriptor 
by SIFT. However, feature points are not detected at 
the center of melanosome because the melanosome 
is too small in the original microscope images. 
Therefore, the image size is enlarged by Lanczos 
resampling, and SIFT is applied to the image 
enlarged 9 times (Okabe and Hotta, 2011). However, 
SIFT also detects the feature points on non-
melanosomes. Thus,  

 
Figure 1: (a) Intracellular image of normal melanocyte (b) 
Intracellular image of Griscelli syndrome melanocyte. 

 
Figure 2: Flowchart proposed method. 

melanosome candidates are eliminated by 
binarization of intensity because the color of 
melanosome is black. In addition, we estimate the 
movable region of target melanosome in the next 
frame under the assumption that the target 
melanosome does not pass through other 
melanosomes. The posterior probability of 
remaining candidates are computed by Bayes 
theorem, and the position ܠ୲  with maximum 
posterior probability is tracked (Okabe and Hotta, 
2010). Each element in the proposed method is 
explained in the following sections. 

2.1 Scale-Invariant Feature Transform  

SIFT is an algorithm for detecting characteristic 
feature points and for describing the detect points. 
The characteristic feature points are robust to 
rotation, scaling and brightness change. Melanosome 
candidates are detected by SIFT, and SIFT 

Image enlargement by Lanczos resampling

Posterior probability by Bayes theorem 

Location estimation of melanosome 

Candidates elimination by intensity binarization 

Melanosome candidate detection by SIFT 

Estimation of movable region  
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descriptor is used as the feature for computing the 
probability. 

2.2 Image Enlargement by Lanczos 
Resampling 

Since, melanosomes in images are very small, SIFT 
can not detect correct position. Therefore, image 
enlargement by Lanczos resampling used to detect 
correct position of melanosomes. 

Lanczos kernel is constructed by the product of 2 
sinc functions． 

Lሺxሻ ൌ ቐsincሺxሻsinc ቀxaቁ െ a ൏ x ൏ ܽ, ݔ ് 01													 													x ൌ 0					0													 						otherwise			  (1) 

Sinc function is defined as ୱ୧୬	ሺπ࢞	ሻ
π௫ . The value of "a" 

is usually set to 2 or 3. When "a" is bigger than the 
absolute value, Lሺxሻ ൌ 0. When x=0, L(x)=1 [15]. 
Equation (1) can be redefined as  

sincሺxሻsinc ቀxaቁ ൌ a	sin ሺ	πx	ሻsin	ሺ	πxa 	ሻπଶxଶ 	. (2) 

The 2 dimensional Lanczos kernel can be made by 
the product of 1 dimensional kernel. The enlarged 
image Iመሺx଴, y଴ሻ is computed as 

Iመሺx଴, y଴ሻ ൌ ෍ ෍ Iሺi, jሻLሺx଴ െ iሻLሺy଴ െ jሻ .୷బାୟ
୨ୀ୷బିୟ

୶బାୟ
୧ୀ୶బିୟ  (3) 

Since Lanczos kernel of a=3 gives clear image 
enlargement, we use a = 3 in experiments. 

2.3 Candidates Elimination by 
Intensity Binarization 

SIFT can detect the center of melanosome by image 
enlargement. However, SIFT also detects non-
melanosome regions as shown in Figure 3 (c). Since 
the color of melanosome is black, non- melanosome 
candidates with white color are eliminated by 
intensity binarization. The elimination of candidates 
will improve tracking accuracy. 

When threshold is θ, binarization result gሺx, yሻ is 
defined as 

gሺx, yሻ＝ ൜1					 fሺx, yሻ ൒ θ0					 fሺx, yሻ ൑ θ	. (4) 

This threshold value affects tracking accuracy. 
Therefore, we determine the threshold value 
experimentally. We evaluate the tracking accuracy 
for 12 melanosomes for parameter estimation by 
change   the   threshold   value.   Note   that  these 12  

 

 
Figure 3: (a) Intracellular image (b) Result of intensity 
binarization (c) Feature poins detected by SIFT are shown 
as diamond shape (d) SIFT feature poins after intensity 
binarization. 

melanosome are not used in test. We found that 
θ = 100 gives the best accuracy, and θ is set to 100 
in the following experiments. Figure 3 (b) is the 
example of binarization result. Figure 3 (c) is the 
result of SIFT detector in terms of the image before 
candidates elimination. On the other hand, Figure 3 
(d) shows the result of SIFT detector after 
candidates elimination. We understand that non-
melanosome candidates with white color are 
eliminated in Figure 3 (d). 

2.4 Location Prediction by Bayes 
Theorem 

Next we explain there to compute the posterior 
probability of each candidates. SIFT descriptor with 
128 dimensions obtained at the characteristic point ܠ୲  is used as the feature ܡ୲  for computing the 
posterior probability of ୲ܠ . Since we treat the 
tracking problem, the posterior probability in terms 
of ܇୲ ൌ …,ଵܡ , ୲ሻ܇|୲ܠ୲ሻ is computed as Pሺ܇|୲ܠ୲ is considered. Posterior probability Pሺܡ ൌ pሺܡ୲|ܠ୲, ୲ିଵሻ܇|୲ܡ୲ିଵሻpሺ܇|୲ܠ୲ିଵሻpሺ܇ 		. (5) 

We assume that ܜܡ is independent of ܡଵ, … ,  .୲ିଶܡ
Thus, pሺܡ୲|ܠ୲, ,୲ܠ|୲ܡ୲ିଵሻ can be written as pሺ܇ ୲ିଵሻ܇|୲ܠ୲ିଵሻ pሺܡ  can be written by using the posterior 
probability at time t-1 and transition probability as pሺܠ୲|܇୲ିଵሻ ൌ නpሺܠ୲|ܠ୲ିଵሻ pሺܠ୲ିଵ|܇୲ିଵሻdܠ୲ିଵ	. (6) 

Then,  the  posterior  probability Pሺܠ୲|܇୲ሻ  can be 

(c)

(a) (b) 

(d) 
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written as Pሺܠ୲|܇୲ሻൌ pሺܡ୲|ܠ୲, ୲ିଵሻܡ ׬ pሺܠ୲|ܠ୲ିଵሻ pሺܠ୲ିଵ|܇୲ିଵሻdܠ୲ିଵpሺܡ୲|܇୲ିଵሻ .  (7) 

We compute the posterior probability of all 
candidates and track the location with maximum 
probability. We do not need to compute 	pሺܡ୲|܇୲ିଵሻ 
because it is normalization coefficient. 

Conditional probability and transition probability 
are explained in the following sections. 

2.4.1 Conditional Probability 

The features of the same melanosome between time 
t and t-1 are not so changed. Thus, conditional 
probability is modelled as normal distribution using 
the SIFT features at time t and t-1 as pሺܡ୲|ܠ୲, ୲ିଵሻܡ ൌ 1√2πσ exp ቊെ‖ܡ୲ െ ୲ିଵ‖ଶ2σଶܡ ቋ, (8) 

Where ܡ୲  is 128 dimensional SIFT descriptor on 
location ܠ୲ at time t and 	ܡ୲ିଵ is SIFT descriptor at 
time t-1. 

2.4.2 Transition Probability 

The location of tracking target at time t and t-1 is 
denoted as ܠ୲ ൌ ሺw୲, h୲ሻ୘ and ܠ୲ିଵ = (w୲ିଵ, h୲ିଵ). If 
we assume that the melanosome does not move so 
far from time t-1 to t, transition probability is also 
modelled by the normal distribution as pሺܠ|ܜܠ୲ିଵሻൌ 1√2πσ exp ൝െඥሺw୲ െ w୲ିଵሻଶ൅ሺh୲ െ h୲ିଵሻଶ2σଶ ൡ, (9) 

Equation (9) limits the movable region because 
transition probability becomes small for far points 
from ܠ୲ିଵ. 

2.5 Estimation of Movable Region 

Figure 3(a) shows that there are many melanosomes 
with similar appearance in a local region. This  

 
Figure 4: (a) Intracellular image after intensity 
binarization (b) Movable region of tracking target shown 
as the red circle in Figure 4(a). 

induces tracking failure. The similarity measure by 
SIFT may not be sufficient. Thus, we estimate the 
movable region of a tracking melanosome in next 
frame to improve the accuracy. If we assume that 
other melanosomes except for the tracking target do 
not move, we can estimate the movable region of the 
target. First, we binarize the image as shown in 
Figure 4(a). Melanosome is represented as black 
color and the non-melanosome region is represented 
as white color. The target melanosome is shown as 
red circle. If target melanosome does not pass 
through other melanosomes and other melanosomes 
do not move, we can estimate the movable region as 
shown in Figure 4(b). The white regions are the 
movable region in the next frame. Experimental 
results show that the estimation of movable region 
decreases the tracking failure. 

3 EXPERIMENTS 

We use the melanosome images obtained from 
Technical Committee on Industrial Application of 
Image Processing (http://www.tc-iaip.org/algorithm. 
html). The correct positions of melanosomes in these 
images are also included. The 44 melanosomes (31 
normal and 13 Griscelli syndrome) are used in 
evaluation. Note that these melanosomes are 
different from the melanosome used for parameter 
selection. We evaluate our method in 2 kinds of 
tasks. The first task evaluates whether the true 
position of melanosome at time t is estimated from 
the supervised position at time t-1. The second task 
evaluates whether the position of melanosome at 
time t is estimated when the supervised position in 
only the first frame is given. In the second task, we 
use the simplest case of our method in which only 
the posterior probability of tracked position at time 
t-1 is 1 and that of other positions is 0 because the 
computational cost and memory requirement are 
large when the posterior probabilities of all 
candidates are saved. This corresponds to the case 
that the method used in the first task is adopted 
continuously without the supervised position in the 
previous frame. 

In this experiment, we our method is compared 
with SpotTracker2D which is usually used in cell 
biology and our proposed method without estimation 
movable region. SpotTracker2D is a robust tracker 
for microscope images (Sage et al., 2005). In 
SpotTracker, LoG filter is used to enhance the target 
and to reduce noises. After that, target particle is 
tracked by using dynamic programming. Table 1 
shows the accuracy in the first task. Tracking 

(a) (b) 
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accuracy of our method is much better than 
SpotTracker2D. We found that conventional 
SpotTracker2D is not useful for the melanosome 
tracking and our method using Bayes theorem and 
SIFT is effective. Table 2 shows the result of our 
method with estimation of movable region. Tracking 
accuracy is improved by estimation of movable 
region. This shows the effectiveness of the 
estimation of movable region. Tables also show that 
sum of probability is better than product. It is known 
that the integration by sum is effective for several 
tasks (Kittler et al., 1998) (Hotta, 2009). The best 
accuracy our method achieves 94.4%. Though 
SpotTracker2D achieves 73.7%. 

In the second task, we do not evaluate 
SpotTracker2D because it was much lower than the 
proposed method in the first task. Table 3 and 4 
show the result of the second task of our method. 
Table 3 and 4 show that tracking accuracy for 
Griscelli syndrome decreases by using our movable 
region. This is because we assume that another 
melanosomes except for the tracking target do not 
move and melanosomes in Griscelli syndrome move 
actively. Thus, tracking accuracy of Griscelli 
syndrome decreased slightly. However, the tracking 
accuracy of Normal melanosome with estimation of 
movable region is better than that without estimation 
of movable region. The average of tracking accuracy 
is improved.  

The accuracy in the second task decreased in 
comparison with the first task. This is because one 
tracking failure induces the failures in the following 
frames. We can consider two reasons for inducing 
one tracking failure. The first reason is SIFT 
detector. There were some cases that SIFT failed to 
detect the target melanosome. The proposed method 
can not track the target when the target melanosome 
is not detected as the melanosome candidates. In the 
first task, this failure decreases the accuracy slightly.  
However, this failure decreases accuracy much more 
in the second task because the proposed method 
does not have the obvious function for recovering 
from the error.  
The second reason is the candidate elimination by 
intensity binarization. In this paper, threshold value 
is determined as 100 which gives maximum tracking  

Table 1: Result in the first task without estimation of 
movable region. 

 Product Sum Spot 
Tracker2D 

Griscelli 
syndrome 91.4% 91.7% 54.6% 

Normal 94.6% 94.6% 81.7% 
Total average 93.7% 93.8% 73.7% 

Table 2: Result in the first task with estimation of movable 
region. 

 Product Sum 
Griscelli syndrome 92.2 92.9 

Normal 95.0 95.0 
Total average 94.2 94.4 

Table 3: Result in the second task without estimation of 
movable region. 

 Product Sum 
Griscelli syndrome 68.2 70.7 

Normal 73.4 73.4 
Total average 71.9 72.6 

Table 4: Result in the second task with estimation of 
movable region. 

 Product Sum 
Griscelli syndrome 66.3 66.5 

Normal 78.4 78.4 
Total average 74.8 74.9 

accuracy in terms of the image set for parameter 
estimation. However, this threshold may not be 
appropriate for the test set. Some correct 
melanosomes were eliminated by intensity 
binarization. Thus, one failure induced by 
elimination of candidate decreases the accuracy in 
the second task. The addition of recovering function 
from one failure is the future subject. Although the 
accuracy decreases in the second task, the accuracy 
achieves 74.9% from only correct position in the 
first frame. As you understand from Figure 1, our 
there are many similar objects in local region, and 
the melanosome is not easy task. The accuracy 
demonstrates the effectiveness of the proposed 
method. 

4 CONCLUSIONS 

We proposed a melanosome tracking method using 
Bayes theorem and estimation of movable region. 
Since SIFT did not work well for the original images, 
characteristic feature points are detected after image 
enlargement. To improve the accuracy, candidates 
are eliminated by intensity binarization and 
estimation of movable region. In the first task in 
which the position at time t is predicted from the 
supervised position at time t-1, the accuracy 
achieved 94.9%. This is much better than 
SpotTracker2D which is usually used in cell biology. 
This shows the effectiveness of our method. 
However, in the second task in which melanosome is 
tracked in remaining frames from the supervised 
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position in only the first frame, one failure induced 
the error in remaining frames, and the accuracy 
decreased. However, the accuracy achieved 74.9% 
for the difficult task in which there are many similar 
objects around the tracking target. This demonstrates 
the effectiveness of our method for new and 
important problem in which conventional methods 
are little. This paper will be a giant step for 
intracellular image processing. 

The future work is to add a recovering function 
from tracking failures. We will try the validation 
from t to t-1 as well as the position prediction from 
t-1 to t. 
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