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Abstract: In this paper we analyze some common simplifications present in the traditional AI / RL problems. We 
argue that only facing particular conditions, often avoided in the classic statements, will allow the 
overcoming of the actual limits of the science, and the achievement of new advances in respect to realistic 
scenarios. This paper does not propose any paradigmatic revolution, but it presents a compilation of several 
different elements proposed more or less separately in recent AI research, unifying them by some theoretical 
reflections, experiments and computational solutions. Broadly, we are talking about scenarios where AI 
needs to deal with true situatedness agency, providing some kind of anticipatory learning mechanism to the 
agent in order to allow it to adapt itself to the environment.  

1 INTRODUCTION 

Every scientific discipline starts by addressing 
specific cases or simplified problems, and by 
introducing basic models, necessary to initiate the 
process of understanding into a new domain of 
knowledge; these basic models eventually evolve to a 
more complete theory, and little by little, the research 
attains important scientific achievements and applied 
solutions. Artificial Intelligence (AI) is a quite recent 
discipline, and this fact can be easily noticed by 
regarding its history in the course of the years. If in 
the 1950s and 1960s AI was the stage for optimistic 
discourses about the realization of intelligence in 
machine, the 1970s and 1980s reveal an evident 
reality: true AI is a feat very hard to accomplish. This 
movement led AI to plunge into a more pragmatic and 
less dreamy period, when visionary ideas have been 
replaced by a (necessary) search for concrete 
outcomes. Not by chance, several interesting results 
have been achieved in these recent years, and it is 
changing the skepticism by a (yet timid) revival of the 
general AI field.  

If on one hand the AI discourse mood has changed 
like a sin wave, on the other hand the academic 
practice of AI shows a progressive increment of 
complexity with respect to the standard problems. 
When the solutions designed to some established 
problem become stable, known, and accepted, new 

problems and new models are proposed in order to 
push forward the frontier of the science, moving AI 
from toy problems to more realistic scenarios. Make a 
problem more realistic is not just increasing the 
number of variables involved (even if limiting the 
number of considered characteristics is one of the 
most recurrent simplifications). When trying to escape 
from AI classic maze problems toward more 
sophisticated (and therefore more complex) agent-
based universes, we are led to consider several 
complicating conditions, like (a) the situatedness of 
the agent, which is immersed into an unknown 
universe, interacting with it through limited sensors 
and effectors, without any holistic perspective of the 
complete environment state, and (b) without any a 
priori model of the world dynamics, which forces it to 
incrementally discover the effect of its actions on the 
system in an on-line experimental way; to make 
matters worse, the universe where the agent is 
immersed can be populated by different kinds of 
objects and entities, including (c) other complex 
agents, which can have their own internal models, and 
in this case the task of learning a predictive model 
becomes considerably harder. 

In this paper, we use the Constructivist 
Anticipatory Learning Mechanism (CALM), defined 
in (Perotto, 2010), to support our assumption. In other 
words, we shows that the strategies used by this 
method can represent a changing of directions in 
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relation to classic and yet dominant ways. CALM is 
able to build a descriptive model of the system where 
the agent is immersed, inducting, from the experience, 
the structure of a factored and partially observable 
Markov decision process (FPOMDP). Some positive 
results (Perotto, 2010), (Perotto et al. 2007), (Perotto; 
Alvares, 2007), (Perotto, 2011), have been achieved 
due to the use of 4 integrated strategies: (a) the 
mechanism takes advantage of the situated condition 
presented by the agent, constructing a description of 
the system regularities relatively to its own point of 
view, which allows to set a good behavior policy 
without the necessity of “mapping” the entire 
environment; (b) the learning process is anchored on 
the construction of an anticipatory model of the 
world, which could be more efficient and more 
powerful than traditional “model free” reinforcement 
learning methods, that directly learn a policy; (c) the 
mechanism uses some heuristics designed to well 
structured universes, where conditional dependencies 
between variables exist in a limited scale, and where 
most of the phenomena can be described in a 
deterministic way, even if the system as a whole is not 
(a partially deterministic environment); which seems 
to be widely common in real world problems; (d) the 
mechanism is prepared to discover the existence of 
hidden or non-observable properties of the universe, 
which enables it to explain a larger portion of the 
observed phenomena. Following the paper, section 2 
overviews the MDP framework and the RL tradition, 
section 3 describes the CALM learning mechanism, 
section 4 shows some experiments and acquired 
results, and section 5 concludes the paper. 

2 MDP+RL FRAMEWORK 

The typical RL problem is inspired on the classic rat 
maze experiment; in this behaviorist test, a rat is 
placed in a kind of labyrinth, and it needs to find a 
piece of cheese (the reward) that is placed somewhere 
far from it, sometimes avoiding electric traps along 
the way (the punishment). The rat is forced to run the 
maze several times, and the experimental results show 
that it gradually discovers how to solve it. The 
computational version of this experiment corresponds 
to an artificial agent placed in a bi-dimensional grid, 
moving over it, and eventually receiving positive or 
negative reward signals. Exactly as in the rat maze, 
the agent must learn to coordinate its actions by trial 
and error, in order to avoid the negative and quickly 
achieve the positive rewards. This computational 
experiment is formally represented by a geographical 
MDP, where each position in the grid corresponds to 

a state of the process; the process starts in the initial 
state, equivalent to the agent start position in the 
maze, and it evolves until the agent reaches some 
final reward state; then the process is reset, and a new 
episode take place; the episodes are repeated, and the 
algorithm is expected to learn a policy to maximize 
the estimated discounted cumulative reward that will 
be received by the agent in subsequent episodes. 

These classic RM maze configurations present at 
least two positive points, when comparing to realistic 
scenarios: the agent needs to learn actively and on-
line, it means, there is no previous separated time to 
learn before the time of the life; the agent must 
perform and improve its behavior at the same time, 
without supervision, by “trial-and-error”. However, 
this kind of experiment cannot be taken as a general 
scheme for learning: on the one hand, the 
simplifications adopted (in order to eliminate some 
uncomfortable elements) cannot be ignored when 
dealing with more complex or realistic problems; on 
the other hand, there are important features lacking on 
the classic RL maze, what makes difficult comparing 
it to other natural learning situations. Some of these 
simplifications and lacks are listed below: 

Non-situativity: in the classic RL maze 
configuration, the agent is not really situated in the 
environment; in fact, the little object moving on the 
screen (which is generally called agent) is dissociated 
from the “agent as the learner”; the information 
available to the algorithm comes from above, from an 
external point of view, in which this moving agent 
appears as a controllable object of the environment, 
among the others. In contrast, realistic scenarios 
impose the agent sensory function as an imprecise, 
local, and incomplete window of the underlying 
situation stated by the real situation. 

Geographic Discrete Flat Representation: in 
classic mazes, the corresponding MDP is created by 
associating each grid cell to a process state; so, the 
problem stays confined in the same two dimensions of 
the grid space, and the system states represent nothing 
more than the agent geographic positions. In contrast, 
realistic problems introduce several new and different 
dimensions to the problem. The basic MDP model 
itself is conceived to represent a system by exhaustive 
enumeration of states (a flat representation), and it is 
not appropriated to represent multi-dimensional 
structured problems; the size of the state space grows 
exponentially up with the number of considered 
attributes (curse of dimensionality), which makes the 
use of this formalism only viable for simple or small 
scenarios. 

Disembodiment: in the classic configuration, the 
agent does not present any internal property, it is like 
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a loose mind directly living in the environment; in 
consequence, it can be only extrinsically motivated, 
i.e. the agent acts in order to attain (or to avoid) some 
determined positions into the space,  given from the 
exterior. In natural scenarios, the agent has a “body” 
playing the role of an intermediary between mind and 
external world; the body also represents an “internal 
environment”, and the goals the agent needs to reach 
are given from this embodied perspective (in relation 
to the dynamics of some internal properties). 

Complete Observation: the basic MDP design the 
agent as an omniscient entity; the learning algorithm 
observes the system in its totality, it knows all the 
possible states, and it can precisely perceive in what 
state the system is at every moment, it also knows the 
effect of its actions on the system, because in general 
it is the only source of perturbation in the world 
dynamics. These conditions are far from common in 
real-world problems. 

Episodic Life and Behaviorist Solution: in the 
classic enunciation, the system presents initial and 
final states, and the agent lives by episodes; when it 
reaches a final state, the system restarts. Generally 
this is not the case in real-life problems, where agents 
live a unique continuous uninterrupted experience. 
Also, solving a MDP is often synonymous of finding 
an optimal (or near-optimal) policy, and in this way 
most of the algorithms proposed in the literature are 
model-free. However, in complex environments, the 
only way to define a good policy is “understanding” 
what is going on, and creating an explicative or 
predictive model of the world, which can then be used 
to establish the policy. 

2.1 The Basic MDP 

Markov Decision Process (MDP) and its extensions 
constitute a quite popular framework, largely used for 
modeling decision-making and planning problems 
(Feinberg, Shwartz, 2002). An MDP is typically 
represented as a discrete stochastic state machine; at 
each time cycle the machine is in some state s; the 
agent interacts with the process by choosing some 
action a to carry out; then, the machine changes into a 
new state s', and gives the agent a corresponding 
reward r; a given transition function δ defines the way 
the machine changes according to s and a. The flow 
of an MDP (the transition between states) depends 
only on the system current state and on the action 
taken by the agent at the time. After acting, the agent 
receives a reward signal, which can be positive or 
negative if certain particular transitions occur. 

Solving an MDP is finding the optimal (or near-
optimal) policy of actions in order to maximize the 

rewards received by the agent over time. When the 
MDP parameters are completely known, including the 
reward and the transition functions, it can be 
mathematically solved by dynamic programming 
(DP) methods. When these functions are unknown, 
the MDP can be solved by reinforcement learning 
(RL) methods, designed to learn a policy of actions 
on-line, i.e. at the same time the agent interacts with 
the system, by incrementally estimating the utility of 
state-actions pairs and then by mapping situations to 
actions (Sutton, Barto 1998). 

However, for a wide range of complex (including 
real world) problems, the complete information about 
the exact state of the environment is not available. 
This kind of problem is often represented as a 
Partially Observable MDP (POMDP) (Kaelbling et 
al., 1998). The POMDP provides an elegant 
mathematical framework for modeling complex 
decision and planning problems in stochastic domains 
in which the system states are observable only 
indirectly, via a set of imperfect, incomplete or noisy 
perceptions. In a POMDP, the set of observations is 
different from the set of states, but related to them by 
an observation function, i.e. the underlying system 
state s cannot be directly perceived by the agent, 
which has access only to an observation o. We can 
represent a larger set of problems using POMDPs 
rather than MDPs, but the methods for solving them 
are computationally even more expensive 
(Hauskrecht, 2000). 

The main bottleneck about the use of MDPs or 
POMDPs is that representing complex universes 
implies an exponential growing-up on the state space, 
and the problem quickly becomes intractable. 
Fortunately, most of real-world problems are quite 
well-structured; many large MDPs have significant 
internal structure, and can be modeled compactly; the 
factorization of states is an approach to exploit this 
characteristic (Boutilier et al., 2000). In the factored 
representation, a state is implicitly described by an 
assignment to some set of state variables. Thus, the 
complete state space enumeration is avoided, and the 
system can be described referring directly to its 
properties. The factorization of states enables to 
represent the system in a very compact way, even if 
the corresponding MDP is exponentially large 
(Guestrin et al. 2003). When the structure of the 
Factored Markov Decision Process (FMDP) is 
completely described, some known algorithms can be 
applied to find good policies in a quite efficient way 
(Guestrin et al., 2003). However, the research 
concerning the discovery of the structure of an 
underlying system from incomplete observation is 
still incipient (Degris, Sigaud, 2010). 
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2.2 FPOMDP 

The classic MDP model can be extended to include 
both factorization of states and partial observation, 
then composing a Factored Partially Observable 
Markov Decision Process (FPOMDP). In order to be 
factored, the atomic elements of the non-factored 
representation will be decomposed and replaced by a 
combined set of elements. A FPOMDP (Guestrin et 
al., 2001), (Hansen; Feng, 2000), (Poupart; 
Boutilier, 2004), (Shani et al., 2005), (Sim et al., 
2008), can be formally defined as a 4-tuple {X, C, R, 
T}. The state space is factored and represented by a 
finite non-empty set of system properties or 
variables X = {X1, X2, ... Xn}, which is divided into 
two subsets, X = P ∪ H, where the subset P contains 
the observable properties (those that can be accessed 
through the agent sensory perception), and the 
subset H contains the hidden or non-observable 
properties; each property Xi is associated to a 
specified domain, which defines the values the 
property can assume; C = {C1, C2, ... Cm} represents 
the controllable variables, composing the agent 
actions; R = {R1, R2, ... Rk} is a set of (factored) 
reward functions, in the form Ri : Pi → IR, and T = 
{T1, T2, ... Tn} is a set of transformation functions, as 
Ti : X × C → Xi , defining the system dynamics. Each 
transformation function can be represented by a 
Dynamic Bayesien Network (DBN), which is an 
acyclic, oriented, two-layers graph. The first layer 
nodes represent the environment state in time t, and 
the second layer nodes represent the next state, in 
t+1 (Boutilier et al. 2000). A stationary policy π is a 
mapping X → C where π(x) defines the action to be 
taken in a given situation. The agent must learn a 
policy that optimizes the cumulative rewards 
received over a potentially infinite time horizon. 
Typically, the solution π* is the policy that 
maximizes the expected discounted reward sum. 

In this paper, we consider the case where the agent 
does not have an a priori model of the universe where 
it is situated (i.e. it does not have any idea about the 
transformation function), and this condition forces it 
to be endowed with some capacity of learning, in 
order to be able to adapt itself to the system. Although 
it is possible directly learn a policy of actions, in this 
work we are interested in model-based methods, 
through which the agent must learn a descriptive and 
predictive model of the world, and so define a behavior 
strategy based on it. Learning a predictive model is 
often referred as learning the structure of the problem. 

In this way, when the agent is immersed in a 
system represented as a FPOMDP, the complete task 
for its anticipatory learning mechanism is both to 

create a predictive model of the world dynamics (i.e. 
inducing the underlying transformation function of 
the system), and to define an optimal (or sufficiently 
good) policy of actions, in order to establish a 
behavioral strategy. Degris and Sigaud (2010) present 
a good overview of the use of this representation in 
artificial intelligence, referring algorithms designed to 
learn and solve FMDPs and FPOMDPs. 

3 ANTICIPATORY LEARNING 

In the artificial intelligence domain, anticipatory 
learning mechanisms refer to methods, algorithms, 
processes, machines, or any particular system that 
enables an autonomous agent to create an anticipatory 
model of the world in which it is situated. An 
anticipatory model of the world (also called predictive 
environmental model, or forward model) is an 
organized set of knowledge allowing inferring the 
events that are likely to happen. For cognitive sciences 
in general, the term anticipatory learning mechanism 
can be applied to humans or animals to describe the 
way these natural agents learn to anticipate the 
phenomena experienced in the real world, and to adapt 
their behavior to it (Perotto, 2012). 

When immersed in a complex universe, an agent 
(natural or artificial) needs to be able to compose its 
actions with the other forces and movements of the 
environment. In most cases, the only way to do so is by 
understanding what is happening, and thus by 
anticipating what will (most likely) happen next. A 
predictive model can be very useful as a tool to guide 
the behavior; the agent has a perception of the current 
state of the world, and it decides what actions to 
perform according to the expectations it has about the 
way the situation will probably change. The necessity 
of being endowed with an anticipatory learning 
mechanism is more evident when the agent is fully 
situated and completely autonomous; that means, when 
the agent is by itself, interacting with an unknown, 
dynamic, and complex world, through limited sensors 
and effectors, which give it only a local point of view 
of the state of the universe and only partial control over 
it. Realistic scenarios can only be successfully faced by 
an agent capable of discovering the regularities that 
govern the universe, understanding the causes and the 
consequences of the phenomena, identifying the forces 
that influence the observed changes, and mastering the 
impact of its own actions over the ongoing events. 

3.1 CALM Mechanism 

The constructivist anticipatory learning mechanism  
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(CALM), detailed in (Perotto, 2010), is a mechanism 
developed to enable an agent to learn the structure of 
an unknown environment where it is situated, trough 
observation and experimentation, creating an 
anticipatory model of the world. CALM operates the 
learning process in an active and incremental way, 
and learn the world model as well as the policy at the 
same time it actuates. The agent has a single 
uninterrupted interactive experience into the system, 
over a theoretically infinite time horizon. It needs 
performing and learning at the same time. 

The environment is only partially observable from 
the point of view of the agent. So, to be able to create 
a coherent world model, the agent needs, beyond 
discover the regularities of the phenomena, also 
discover the existence of non-observable variables 
that are important to understand the system evolution. 
In other words, learning a model of the world is 
beyond describing the environment dynamics, i.e. the 
rules that can explain and anticipate the observed 
transformations, it is also discovering the existence of 
hidden properties (once they influence the evolution 
of the observable ones), and also find a way to 
deduces the dynamics of these hidden properties. In 
short, the system as a whole is in fact a FPOMDP, 
and CALM is designed to discover the existence of 
non-observable properties, integrating them in its 
anticipatory model. In this way CALM induces a 
structure to represent the dynamics of the system in a 
form of a FMDP (because the hidden variables 
become known), and there are some algorithms able 
to efficiently calculate the optimal (or near-optimal) 
policy, when the FMDP is given (Guestrin et al., 2003).  

CALM tries to reconstruct, by experience, each 
transformation function Ti, which will be represented 
by an anticipation tree. Each anticipation tree is 
composed by pieces of anticipatory knowledge called 
schemas, which represent some perceived regularity 
occurring in the environment, by associating context 
(sensory and abstract), actions and expectations 
(anticipations). Some elements in these vectors can 
undertake an “undefined value”. For example, an 
element linked with a binary sensor must have one of 
three values: true, false or undefined (represented, 
respectively, by ‘1’, ‘0’ and ‘#’). The learning process 
happens through the refinement of the set of schemas. 
After each experienced situation, CALM updates a 
generalized episodic memory, and then it checks if the 
result (context perceived at the instant following the 
action) is in conformity to the expectation of the 
activated schema. If the anticipation fails, the error 
between the result and the expectation serves as 
parameter to correct the model. The context and 
action vectors are gradually specialized by 

differentiation, adding each time a new relevant 
feature to identify more precisely the situation class. 
The expectation vector can be seen as a label in each 
“leaf” schema, and it represents the predicted 
anticipation when the schema is activated. Initially all 
different expectations are considered as different 
classes, and they are gradually generalized and 
integrated with others. The agent has two alternatives 
when the expectation fails. In a way to make the 
knowledge compatible with the experience, the first 
alternative is to try to divide the scope of the schema, 
creating new schemas, with more specialized 
contexts. Sometimes it is not possible and the only 
way is to reduce the schema expectation.  

CALM creates one anticipation tree for each 
property it judges important to predict. Each tree is 
supposed to represent the compete dynamics of the 
property it represents. From this set of anticipation 
trees, CALM can construct a deliberation tree, which 
will define the policy of actions. In order to 
incrementally construct all these trees, CALM 
implements 5 methods: (a) sensory differentiation, to 
make the tree grow (by creating new specialized 
schemas); (b) adjustment, to abandon the prediction 
of non-deterministic events (and reduce the schemas 
expectations) (c) integration, to control the tree size, 
pruning and joining redundant schemas: (d) abstract 
differentiation, to induce the existence of non 
observable properties; and (e) abstract anticipation, to 
discover and integrate these non-observable properties 
in the dynamics of the model. 

Sometimes some disequilibrating event can be 
explained by considering the existence of some 
abstract or hidden property in the environment, which 
could be able to differentiate the situation, but which 
is not directly perceived by the agent sensors. So, 
before adjusting, CALM supposes the existence of a 
non-sensory property in the environment, which it 
will represent as a abstract element. Abstract elements 
suppose the existence of something beyond the 
sensory perception, which can be useful to explain 
non-equilibrated situations. They have the function of 
amplifying the differentiation possibilities. 

4 EXPERIMENTS 

In (Perotto et al., 2007) the CALM mechanism is used 
to solve the flip problem, which creates a scenario 
where the discovery of underlying non-observable 
states are the key to solve the problem, and CALM is 
able to do it by creating a new abstract element to 
represent these states. In (Perotto, 2010) and (Perotto; 
Álvares, 2007) the CALM mechanism is used to solve 
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the wepp problem, which is an interesting RL situated 
bi-dimensional grid problem, where it should learn 
how to behavior considering the interference of 
several dimensions of the environment, and of its 
body. Initially the agent does not know anything 
about the world or about its own sensations, and it 
does not know what consequences its actions imply. 
Figure 1 shows the evolution of the mean reward 
comparing the CALM solution with a classic Q-
Learning implementation (where the agent have the 
vision of the entire environment as flat state space), 
and with a situated version of the Q-Learning agent. 
We see exactly two levels of performance 
improvement. First, the non-situated implementation 
(Classic Q) takes much more time to start an 
incomplete convergence, and it is vulnerable to the 
growing of the board. Second, the CALM solution 
converges much earlier than Q-Learning, taken in its 
situated version, due to the fact that CALM quickly 
constructs a model to predict the environment 
dynamics, and it is able to define a good policy sooner. 
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5 CONCLUSIONS 

Over the last twenty years, several anticipatory 
learning mechanisms have been proposed in the 
artificial intelligence scientific literature. Even if 
some of them are impressive in theoretical terms, 
having achieved recognition from the academic 
community, for real world problems (like robotics) no 
general learning mechanism has prevailed. Until now, 
the intelligent artifacts developed in universities and 
research laboratories are far less wondrous than those 
imagined by science fiction. However, the continuous 
progress in the AI field, combined with the progress 
of informatics itself, is leading us to a renewed 
increase of interest in the search for more general 
intelligent mechanism, able to face the challenge of 
complex and realistic problems. 

A necessary changing of  directions in  relation to 
the traditional ways to state the problems in AI is 

needed. The CALM mechanism, presented in 
(Perotto, 2010) has been used as an exemple of it, 
because it provides autonomous adaptive capability to 
an agent, enabling it to incrementally construct 
knowledge to represent the regularities observed 
during its interaction with the system, even in non-
deterministic and partially observable environments. 
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