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Abstract: In this paper we present an approach for high-level behavior recognition and selection integrated with a 
low-level controller to help the robot to learn new skills from demonstrations. By means of Semantic 
Network as the core of the method, the robot gains the ability to model the world with concepts and relate 
them to low-level sensory-motor states. We also show how the generalization ability of Semantic Networks 
can be used to extend learned skills to new situations.  

1 INTRODUCTION 

Learning from Demonstration (LfD) is a technique 
to teach robots new behaviors by having a human or 
robot teacher performing sequences of actions that 
are either observed or perceived by the robot. 
Several algorithms have been proposed. Most of 
them distinguish between low and high-level 
representations of a behavior (see for instance 
Billard et al., 2008). In our approach, the low-level 
is represented by sensory-motor mappings and the 
high-level by combinations of concepts represented 
in Semantic Networks.  

One of the hard problems in LfD is how to 
generalize a demonstrated behavior such that it can 
be performed also in new, previously unseen 
situations. This issue exists from both high and low-
level perspectives and there are several ways to 
approach it (Nehaniv and Dautenhahn, 2000; Byrne 
and Russon, 1998). The purpose of this paper is to 
introduce a technique that integrates high and low-
level learning and control in a way that supports 
generalization. A high-level controller deals with 
concepts represented and processed in Semantic 
Networks (SN). This controller is interfaced to a 
low-level controller that learns and performs 
behaviors defined at the sensory-motor level. The 
glue, interfacing the two levels, is learned contexts, 
describing the necessary high-level conditions for a 
low-level behavior to be performed.  

Behavioral studies of animals and humans 
provide several sources for ideas on how low and 

high-level learning may be combined. For instance, 
Goal emulation (Whiten and Ham, 1992) is 
interesting for learning how to direct focus of 
attention towards favorable goals. Stimulus 
enhancement is the implicit memory effect when 
stimuli in the environment bias the agent’s behavior 
towards receiving similar stimuli in the future. 
Response facilitation is a mechanism that describes 
how motor responses already in the repertoire be 
repeated after observing the performance of the 
same action (Kopp and Graeser, 2006). In a broad 
sense, the work presented in this paper may be seen 
as a realization of response facilitation. All 
mechanisms described above may be seen as 
examples of priming, aiming at guiding animal 
behavior and learning (Byrne, 1994). 

In section 2, the proposed architecture with its 
major units is described. Section 3 is an overview on 
Semantic Networks and its features. Section 4 
elaborates the learning and performing phases based 
on proposed architecture and Semantic Networks. In 
section 5, an example is shown to evaluate learning 
and performing phases. 

2 OVERVIEW OF THE 
ARCHITECTURE 

A number of architectures and frameworks for LfD 
have been developed during passed years which 
influenced the current research in this field (Kasper 
et al., 2001; Nicolescu, 2003). These works are 
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introducing architectures for learning low-level 
sensory-motor behaviors. The purpose of designing 
a new architecture is to interface the low-level 
behavior learning and control which introduces an 
integration and behavior arbitration techniques by 
means of high-level control. Figure 1 depicts the 
proposed architecture. The major units are described 
below. 

 
Figure 1: Proposed architecture. 

2.1 Perception Unit 

This unit collects and pre-processes sensor data from 
the environment. In our experimental set-up, the 
robot is equipped with laser scanner, ultrasonic 
transducers, infra red sensors and an RFID reader 
that acts as a high-level sensor which delivers 
identity (and to some extent position) of places, 
objects and people equipped with RFID tags. Every 
tag is associated with a number of properties defined 
in a database. The RFID technique is commonly 
used in robotics to get reliable performance and 
human-robot interaction (Nguyen et al., 2009), and 
should be considered as a complement to other high-
level sensors like face recognizers, emotion 
detectors, gesture recognizers or any other visual 
inputs, and not a replacement. 

2.2 Cognition Unit 

The Cognition Unit is responsible for all robot 
decision making and action selection processes. It 
contains representation of the robot’s cognitive state 
and has functions to modify its internal states.  

Due to the structural differences between low 
and high-level information, the unit is organized in 
two modules running simultaneously.  

2.2.1 High-Level Controller 

One of the main tasks for this module is to learn 
contexts that are relevant for the execution of low-
level behaviors. The other task is to arbitrate the 
low-level controller. The module relies on the 
abilities of a Semantic Network with predefined 
concepts and relations describing the environment. 
In learning mode, high-level inputs from the 
Perception unit update the SN such that contexts 
associated with the demonstrated behaviors are 
learned. In execution mode (performing phase), the 
module supports the low-level controller by 
activating the most relevant context(s) according to 
the current environmental conditions. These contexts 
act as bias in the activation of behaviors in the low-
level controller. Basically, the cognitive state of the 
robot, represented in the Semantic Network, is 
updated through perception and a behavior 
recognition process, and acts as a cue for performing 
a behavior. 

2.2.2 Low-Level Controller 

The low-level controller learns and executes 
behaviors that are mappings of sensory-motor data 
to low-level actions (Billing et al., 2010a; Billing 
and Hellström, 2010b). In the presented work, the 
technique for learning is Predictive Sequential 
Learning (PSL) (Billing and Hellström, 2008). PSL 
treats control as a prediction problem and decides 
the next action based on the sequence on recent 
sensory-motor events. This technique allows 
learning of many types of complex behaviors, but 
does only work as long as the recent sensory-motor 
history contains all information necessary to select 
an appropriate action. One way to overcome this 
limitation is to define several contexts for PSL, 
where each context acts as a bias for action 
selection. In this way, actions that are less common 
within the present context are inhibited and the risk 
for selecting inappropriate actions is reduced.  

2.3 Output Unit 

This unit is designed to enable tele-operation of the 
robot. In addition, execution of action selection 
results coming from the Cognition unit into motor 
commands will be performed here. 
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3 SEMANTIC NETWORKS 

Semantic Networks are often used to represent 
abstract knowledge in a human-like fashion. They 
are common within artificial intelligence as well as 
in philosophy, psychology and linguistics (Bagchi et 
al., 2000; Brown and Cocking, 2000; Rodriguez, 
2008). In robotics, Semantic Networks is used for 
concept forming and situational awareness 
(Coradeschi and Saffiotti, 2003). The structured way 
of representing knowledge can in combination with 
visualization tools (Hartley and Barnden, 1997) help 
humans to understand the internal state of the robot 
and what is happening in the robot's cognitive 
system. This may for instance help a tutor to put the 
robot back on track when it is distracted during 
learning or performing phases.  

In our usage of Semantic Networks, high-level 
concepts such as perceived object types and 
properties are represented as nodes while relations 
between concepts are represented as links. The 
initial SN is pre-defined and comprises nodes that 
are connected to the perception unit. These nodes are 
activated through perception. 

3.1 Generalization Ability 

A common reason for using a Semantic Network as 
a model of the environment is its ability to 
generalize (Mugnier, 1995), (Vashchenko, 1977). In 
our case, after a demonstration in LfD, the robot will 
be able to extend the learned context to other, 
related, contexts. Assume for instance that the robot 
learns how to clean the table if there are empty cups 
on it. By generalizing the cup concept to all the 
drinkwares, it will also perform the cleaning 
behavior when perceiving a mug on the table. 

3.2 Interfacing to Low-level 
Information 

The success of robots designed to learn and work in 
daily environments with humans, relies on wrapping 
sensory-motor information with high-level concepts. 
This can improve human-robot interaction by 
utilizing Semantic Networks (Galindo et al., 2005). 
As mentioned earlier in section 2.2.2, contexts which 
are activated by the Semantic Network, give 
meaning to low-level information and act as a bias to 
choose suitable behaviors. 

3.3 Spreading and Decaying Activation 

In   the   proposed   approach,   each   node   has   an 

activation level. Spreading is a mechanism by which 
activation spreads from one node to another in 
proportion to the strength of their connection. 
Decaying is a mechanism by which the activation 
levels of nodes gradually decrease over time. These 
processes have been implemented in a variety of 
ways to solve different problems in modeling, 
learning and robotics (Bagchi et al., 2000; Brown 
and Cocking, 2000). The spreading activation model 
used in this work, is based on mechanisms of human 
memory operations that originates from 
psychological studies (Rumelhart and Norman, 
1983) and was first introduced in computing science 
in the area of artificial intelligence to provide a 
processing framework for Semantic Networks 
(Crestani, 1997). In order to make spreading 
activation work properly, we made following 
assumptions: 

• Activation spreads in parallel, to all links 
leading out from a node 

• Activation at a node is divided among the 
links that lead from it 

• Activation decays rapidly without 
stimulation from other nodes or inputs 

• Each node has an energy parameter that 
limits the number of link levels for 
spreading 

The degree of generalization depends on the 
amount of energy available for propagation of 
activations. Higher amounts allow spreading along 
several links, which leads to higher connectivity of 
nodes and increase generalization. 

The connections between nodes have weight 
values that limit the propagation of activation 
through the network. Learning is used to modify the 
connection weights and will be discussed in the next 
section.  

4 LEARNING AND 
PERFORMING PHASES 

One of the objectives of the research presented in 
this paper is to develop mechanisms to identify high-
level contexts in a demonstration, and map each 
context to a low-level behavior. The low-level 
controller is assumed to contain learning capability 
based on sensory-motor data, and an ability to 
execute the behaviors on request. In section 4.1 we 
describe how high-level contexts are learned 
simultaneously with the low-level learning. 
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4.1 Learning Phase 

Our learning approach is inspired by Novelty 
Detection techniques which are commonly used to 
detect new situations that did not occur during 
training (Markou and Singh, 2003).  

We assume that we already have a predefined 
Semantic Network based on an ontology of the 
domain in which the robot should operate. This 
network is used to interface to the Perception unit 
and to identify or activate related nodes through 
spreading and decaying activation.  

The learning process starts by generating a 
History Network describing the normal state of the 
world. The environment is observed by sampling the 
high-level sensors at a given frequency. As 
mentioned earlier, RFID tags are used for 
simplifying object detection and identification. Each 
readout gives object identities and properties that are 
perceived in the environment. Each read tag causes 
the corresponding nodes to be activated. For 
instance, if the RFID belonging to a red ball is 
detected, the nodes Red and Ball will be activated. 
Throughout the learning process, activation levels 
propagate to all connected nodes by spreading 
activation.  

Sometimes a node is activated and deactivated 
due to noise and uncertainties in the RFID sensing. 
Therefore, a decaying delay parameter is defined to 
prevent instant deactivation of nodes after the 
disappearance of correspondent object from the 
environment. 

Finally, the updated Semantic Network will be 
saved as the History Network. 

Now learning of a high-level context may start. 
A context node with the name of the new behavior to 
be learned is added to the network. This version of 
the network is called Learning Network. The human 
teacher then demonstrates the wanted behavior by 
tele-operation. The RFID sensors perceive high-
level concepts, at the same time as sensory-motor 
data is learned by the low-level controller. The 
context node will be connected to nodes activated by 
the RFID sensors. To finalize the learning process, 
two issues must be solved. First, the most relevant 
connections must be determined. Secondly, the 
weights between the remaining nodes and the 
context node must be computed. In order to identify 
relevant connections, the algorithm looks for 
significant differences between the History and 
Learning Networks. An unpaired T-Test is used to 
compare mean node activation for all nodes. 

௫ݐ = ு௫ߤ ு௫݊ுݎ௫ටܸܽߤ	− + ௫݊ݎܸܽ  
(1) 

where ߤு௫  is mean activation of History Node x ߤ௫ is mean activation of Learning Node x 
nH and nL are number of samples for History 
and Learning respectively 

tx tells whether the samples for the two nodes are 
drawn from the same distribution or not. In other 
words: did the node change significantly between 
History and Learning phases. If it did not, the 
connection between the node and the context node 
should be removed. For instance, suppose ambient 
light was always on, during both History and 
Learning phases. In this case, the T-Test will 
consider ambient light as irrelevant because of the 
identical distribution in both phases. 
After the elimination process of irrelevant 
connections, weights (wx) for the remaining nodes 
are calculated. This is done by the following 
equation: ݓ௫ = ௫ܰߤ௫ܲ  (2) 

where Nx is the number of samples for which node x 
has activation value above 0 during the learning 
phase, and P is the weighted sum for all nodes,  
calculated as follows: ܲ = ܰߤ

ୀଵ  (3) 

Finally, the learned context node will be associated 
with the learned behavior representation in the low-
level controller module. 

4.2 Performing Phase 

In the performing phase, RFID sensors update their 
corresponding network nodes. Whenever a node is 
activated, all other linked nodes are activated 
according to the spreading mechanism.  In this way 
previously learned context nodes may get activated, 
thereby, guiding the low-level controller to execute 
the behaviors. If two or more contexts have high 
activation levels, several behaviors are possible, and 
the final decision will be made by the low-level 
controller. This can be viewed as high-level 
behavior recognition and is performed by Behavior 
Recognition module depicted in Figure 1. Due to the 
pre-defined semantic relations in the semantic 
network, the robot will be able to generalize the 
demonstrated context to similar contexts. As 
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previously mentioned, the degree of generalization 
can be controlled by the amount of energy (Huang et 
al., 2006).  

5 EXPERIMENTS 

For better understanding of the whole approach, an 
example is shown. Assume we are going to teach the 
robot how to move a thing to the storage room. First, 
the robot will start moving around by tele-operation 
and collecting information regarding all the objects 
and places by RFID tags. Due to the characteristics 
of the described technique, the blue box should not 
be present at this stage. Figure 2 depicts the robot's 
perceptions that yield the History Network.  

 
Figure 2: History network. 

Learning will begin by placing the blue box 
somewhere in the middle of the room and tele-
operating the robot towards the box. After grasping, 
the teacher commands the robot to push the box and 
guides it to the storage room that ends the learning 

phase. Figure 3 depicts the learned Moving Object 
behavior. Although we did not illustrate any low-
level learning, this is done simultaneously by the 
low-level controller while tele-operating the robot. 
The number of samplings for the history (NH) and 
learning (NL) is 40 and 60 respectively. In order to 
identify the nodes with the most significant changes, 
the t-test is run and results are shown in Table 1. 
Confidence Interval (CI) of the test is given by the t-
distribution with ߙ value set to 0.05. Degree of 
Freedom (DF) is calculated as follows: ܨܦ = ሺ ுܰ + ܰሻ − 	2 (4) 

According to equation 1, ݐ௫ will be computed and 
nodes which fulfill condition 5 will be removed. −ܫܥ ≤ ௫ݐ ≤  (5) ܫܥ

Finally, according to equation 2, weights for the 
remaining nodes are calculated, shown in Table 1. 
After finalizing the learning phase, the robot is able 
to perform Moving Object action whenever it 
perceives blue and box1 in the environment. 

 
Figure 3: Learned network. 
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Table 1: History and learning values, T-Test results and weight values. 

Node ߤு௫ ߪு௫ ுܰ௫ ߤ௫ ௫ߪ ܰ௫ ௫ݐ DF CI ௫ܲ ݓ௫ 
Living Room 1.51 0.56 36 1.65 0.37 58 -0.48 98 2.0 0% -- 

Sofa 1.82 1.2 28 2.24 0.94 51 -1.0 98 2.0 0% -- 
Table1 1.73 1.16 28 2.15 0.9 51 -1.03 98 2.0 0% -- 

Furniture 2.64 1.62 31 3.21 1.24 54 -0.96 98 2.0 0% -- 
Box 0.0 0.0 0 0.73 0.44 44 -6.52 58 2.02 19.74% 0.1974 

Box1 0.0 0.0 0 0.73 0.44 44 -6.52 58 2.02 19.74% 0.1974 
Bed Room 1.3 0.48 36 1.41 0.32 58 -0.48 98 2.0 0% -- 

Chair2 2.81 1.71 31 3.41 1.31 54 -0.95 98 2.0 0% -- 
Table 2.12 1.40 28 2.61 1.09 51 -1.0 98 2.0 0% -- 
Blue 0.0 0.0 0 0.66 0.47 40 -6.21 58 2.02 16.32% 0.1632 

Chair1 2.26 1.40 31 2.76 1.07 54 -0.97 98 2.0 0% -- 
Kitchen 0.87 0.31 36 0.95 0.20 58 -0.46 98 2.0 0% -- 

Movable Obj. 0.0 0.0 0 0.36 0.22 44 -6.52 58 2.02 9.87% 0.0987 
Green 0.0 0.0 0 0.21 0.15 39 -6.14 58 2.02 5.17% 0.0517 
Chair3 3.21 1.89 31 3.87 1.43 54 -0.93 98 2.0 0% -- 
Sofa1 0.67 0.46 27 0.85 0.35 51 -1.09 98 2.0 0% -- 
Ball1 0.0 0.0 0 0.09 0.05 44 -6.52 58 2.02 2.47% 0.0247 
Red 0.0 0.0 0 0.22 0.15 40 -6.21 58 2.02 5.44% 0.0544 

Storage Room 1.97 0.69 36 2.14 0.43 58 -0.46 98 2.0 0% -- 
Ball 0.0 0.0 0 0.18 0.11 44 -6.52 58 2.02 4.94% 0.0494 

Place 2.62 0.94 36 2.85 0.60 58 -0.46 98 2.0 0% -- 
Chair 3.65 2.13 31 4.39 1.61 54 -0.92 98 2.0 0% -- 
Color 0.0 0.0 0 0.66 0.47 40 -6.21 58 2.02 16.32% 0.1632 

 

 
Figure 4: Performing phase. 

The robot is not only capable of performing Moving 
Object behavior by observing the same objects 
during the learning phase, but can also generalize 
objects and concepts in the new situations. In order 
to test the system, the robot should recognize a red 
ball and push it to the storage room. This example 
clearly shows the generalization ability mentioned in 
section 3.1. As can be seen in Figure 4, perceiving 
red and ball1 instead of blue and box1, to some 
degree, activates Moving Object context node 
through direct links and other connections to the 
Color and Movable Object nodes.  

The activation level of the context node (ܣ) is 
calculated by equation 6: 

ܣ =ܣݓ
ୀଵ  (6) 

n is the number of nodes which are currently 
activated and connected to the context node. A 
selection threshold should be defined for accepting 
the selected behavior as a result of generalization. In 
our example, we set the threshold to 0.6 meaning 
that the result of equation 6 should be at least 60% 
of the maximum value of the context node's 
activation (ܣ௫). The maximum value is 
calculated during the learning phase by equation 6 
and by replacing ܣ with ܣ௫	(maximum 
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activation of node i). For this example,  ܣ௫ 
equals 0.8214 and calculated ܣ is 0.5246 which 
passed our threshold with 63%.  Therefore, red and 
ball1 are also able to trigger Moving Object context 
and cause the low-level controller to execute 
corresponding sensory-motor commands. 

6 CONCLUSION AND FUTURE 
WORKS 

In this paper we proposed an architecture to learn 
and act at a conceptual level by means of Semantic 
Networks. By introducing Semantic Networks and 
their usage in some research projects, a possible 
integration to LfD discussed. These aspects are 
valuable in concept forming and provide support for 
higher level cognitive activities such as behavior 
recognition. This integration is useful not only for 
LfD, but can be utilized in scaffolding, 
reinforcement learning or any other supervised 
learning algorithms. In this work, functionality of 
the system is tested with limited objects in the 
environment. In case of scaling up the number of 
entities in the working ontology, generalization will 
be more applicable. 

Currently, our approach is incapable of handling 
quantities and negations. In our future work, we are 
going to define new link types in the Semantic 
Networks and design the high-level control in a way 
that can learn more complex scenarios.  
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