
KERNEL SELECTION BY MUTUAL INFORMATION FOR
NONPARAMETRIC OBJECT TRACKING
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Abstract: This paper presents a method to select kernels for the subsampling of nonparametric models used in real-
time object tracking in video streams. We propose a method based on mutual information, inspired by the
CMIM algorithm (Fleuret, 2004) for the selection of binary features. This builds, incrementally, a model of
appearance of the object to follow, based on representative and independant kernels taken from points of that
object. Experiments show gains, in terms of accuracy, compared to other sampling strategies.

1 INTRODUCTION

Many methods of object tracking are based on the ap-
pearance of the object in the first frame of the video.
The aim is to find an area whose appearance is closer
to the previous one in the next frames.

This modeling is called nonparametric because it
makes no assumption on the data distribution. It is
largely based on the use of kernel functions whose
bandwidth is critical. To fit to local densities, Sylvain
Boltz (Boltz et al., 2009) used the k-nearest neighbors
(k-NN) instead of the Parzen windows (Parzen, 1962)
and showed how to estimate the Kullback-Leibler di-
vergence within this framework. He made the con-
nection with Mean-Shift described by (Fukunaga and
Hostetler, 1975) and revived by (Comaniciu et al.,
2000).

However k-NN sin by their computational com-
plexity. For two populations ofn andm points in di-
mensiond, we have to makeO(nmd) calculations to
get the distances andO(nmlogm) to sort them. Gar-
cia et al. (Garcia et al., 2008) showed that GPU par-
allelization pushed the limit and was better than ap-
proximate k-NN. This technical resolution is not chal-
lenged here, we only seek to reduce ”upstream” the
number of points of the model.

For this we propose an algorithm based on in-
formation theory to select representative and inde-
pendant kernels. Once the model is built, the track-
ing is performed by a sequential particle filter whose
observation function uses an approximation of the
Kullback-Leibler divergence by the k-nearest neigh-
bors.

2 METHOD

The initialization takes place in the first frame. The
method is assumed to access to theRegion of Interest
(ROI) containing the cropped portion of the object to
follow. The labelling of the pixels is binary (0/1) and
is thea priori to start. The image labels are notedY.
Figure 1 shows an example of appearance to track and
the map of the associated labels.

Figure 1: Labelling of the object of interest. To the left:
image of the object to track. To the right: labels image.

2.1 Kernel Generation and
Optimization

The aim is to select special points and kernels associ-
ated with the object to track. We first chooseM ran-
dom pixelsxm(um,vm) in the ROI. Each one is coded
by U,V,R,G,B and is the support of nine kernels in
the D following dimensions:R, G, B, UVR, UVG,
UVB, UV, RGB and UVRGB. Each dimension is
normalized by its highest amplitude, from 0 to 255
for the 8-bit colors, 1 tow for U and 1 toh for V.
ColorC includes the channelsR, G, B. Then, for each
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xm, nine maps of normalized Euclidean distances are
computed for all the pixelsx(u,v) of the ROI:

dC(x,xm) =

(

C(u,v)−C(um,vm)

255

)2

dUV(x,xm) = 1/2

{

(

u−um

w−1

)2

+

(

v− vm

h−1

)2
}

dUVC(x,xm) = 1/2{dUV(x,xm)+dC(x,xm)}

dRGB(x,xm) = 1/3{dR(x,xm)+dG(x,xm)+ ...

dB(x,xm)}

dUVRGB(x,xm) = 1/2{dUV(x,xm)+dRGB(x,xm)}

For each distance, we define a probability to be-
long to the object or not by taking a Gaussian kernel
K. This step introduces a parameterλ, related to the
kernel bandwidth, which spreads more or less the dis-
tribution aroundxm. At this stage, no normalization is
performed to remain homogeneous with the Boolean
labels. However, round to a normalization, the no-
tions of kernel and distribution remain valid. Thus:

P[x ∈Ob ject] = KD,λ,xm(x) with :

KD,λ,xm(x) =
{

e−λ.dD(x,xm) if Y(xm) = 1
1−e−λ.dD(x,xm) if Y(xm) = 0

Subsequently, we callX the map of probabili-
ties of the pixels associated with the kernelKD,λ,xm .
The parameterλ is very important. We optimize it
by maximizing the mutual informationI between the
probability mapX and the labelsY (MacKay, 2003):

I(X;Y) = H(X)+H(Y)−H(X,Y)

This optimization via, for example, the
Levenberg-Marquardt method quickly converges
to a solutionλ∗. We do not detail it and simply
present a possible evolution ofI depending onλ in
Figure 2.

Figure 3 shows the evolution ofX from white to
black depending on the kernel bandwidthλ. When
λ becomes small the map of probabilities becomes all
white ( lim

λ→0+
e−λ.d =1) and the information exchanged

with the labels null. Whenλ becomes large the prob-
ability map is all black ( lim

λ→+∞
e−λ.d = 0) and mutual

information null again. Between the two there is aλ∗
solution as 0≤ I(λ∗)≤H(Y).

2.2 Kernel Selection

N = 9M kernels, optimal in the sense ofλ, were gen-
erated but onlyK with K≪ N are selected. The goal
is to keep the set the most representative of the labels

Figure 2: Kernel bandwidth optimization by maximizing
the mutual information with the labelsY. I = f (λ) with
λ = 10k where k = [-2, 5].

Figure 3: Evolution of the map of probabilitiesX based on
the kernel bandwidth.Y vs Xfor λ = {1, 10, 100}.

Y of the ROI of the first image. This was performed
by the CMIM algorithm (Conditional Mutual Infor-
mation Maximization) (Fleuret, 2004) with a novelty
to compare booleans to probabilities:

for n=1...Ndo
s[n]← I(Y;Xn)

end
for k=1...K do

ν[k] = arg maxn s[n]
for n=1...Ndo

s[n]←min{s[n], I(Y;Xn|Xν[k])}

end
end

Algorithm 1: CMIM algorithm.

I(Y;Xn|Xm) =H(Y,Xm)−H(Xm)

−H(Y,Xn,Xm)+H(Xn,Xm)

For the calculations of H(Xn,Xm) and
H(Y,Xn,Xm) the labels Y and the probability
maps Xn and Xm are assumed to get as much
information as possible together. For instance,
for one pixel, if pn = 0.8 and pm = 0.7 then
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p(Xn=1)∩(Xm=1) = min(pn, pm) = 0.7. This exchange
of information can be represented by a noisy channel
with H(Xn)≤ H(Xm).

Figure 4 shows an example of the selection of five
kernels by CMIM based on Figure 1:

[19, 9] XY [ 8,24] B [18, 4] G [26, 3] XY [ 1, 9] B

Figure 4: Selection of 5 kernels by CMIM.

2.3 k-PPV MCMC Tracking

The goal is to find in each new image the closest
ROI to the original. Information is normalized by
dimension and weighted on UVRGB by the weights
[1/4, 1/4, 1/6, 1/6, 1/6]. Each image can be viewed
as a probability density function (PDF) and compared
with another one by a similarity measure, namely
the Kullback-Leibler divergence. (Boltz et al., 2009)
showed how to estimate it in a k-NN framework and
why it is well aware of the local densities in high di-
mensions.

For a reference populationR of nR points in di-
mensiond and a target populationT of nT points in
the same dimension (nR 6= nT a priori), withρk(U,s),
the Euclidean distance between the points and itskth

nearest neighbor inU (U ≡ Ror T), the Kullback-
Leibler divergenceDKL(T,R) can be estimated, in an
unbiased way, by:

DKL (T,R)
kPPV
= log

nR

nT −1
+

d
nT

∑
s∈T

log
ρk(R,s)
ρk(T,s)

An ideal estimation would consider all the pixels
of R andT. However, to avoid the combinatorial ex-
plosion or just speed up the calculations, we try to
downsample these regions. The question is how. We
have compared three types of sub-samples: two regu-
lar, one random and one from the kernels selected by
CMIM.

Trackings use a sequential particle filter (Arulam-
palam et al., 2002) with a Markov chain (Khan et al.,
2005). Each particle represents a region of the im-
age. The upper left corner of the reference ROIR
indicates the first position. From the second we ap-
ply Np random transformationsϕi to R. It gener-
atesNp particles or ROI targetsTi whose weight is:
wi = e−µ.DKL (Ti ,R) with µ a fixed constant. The parti-
cle with the maximum weight takes on the new posi-
tion. The others are not forgotten. They will generate
new particles in the subsequent iterations. The repro-
duction rate is governed by the Metropolis-Hastings

rule: min(1,wnew/w∗)< rand(). Few particles of low
weight are also ”burned” at each iteration.

We have also several important assumptions: that
the referenceR doesn’t not change, that the object is
far from the camera and therefore that the ROI under-
goes only translations and remains fixed.

3 EXPERIMENTS

A manual tracking provided the ground truthGT. The
particle filter algorithm truthAT was then compared
to GT following different configurations.

Figure 5: Intersection areaAAT∩GT of the ROI of the algo-
rithm AT and of the ground truthGT in the same image.

To determine the qualityη of a tracking,AT and
GT were compared image by image. We calculated
their reports of intersection area and union area and
check whether for a given toleranceτ it makes ”fit”
the tracked ROIs to the ground truth or not. This state,
good or not, is ratedβ. ForNi images:

βi(τ) =

{

1 if
A

i
AT∩GT
A

i
AT∪GT

≥ τ
0 else

η(τ) =
1
Ni

Ni

∑
i=1

βi(τ)

Four significant subsamplings are presented: reg-
ular on raw data (”Raw”), regular on data smoothed
by a Gaussian kernel (”Gauss”), random on data aver-
aged per Voronoi cell (”RandVor”), and finally from
the convolution of kernels selected by CMIM with
their optimized bandwidth (”KerOpt”).

Results are based on the sequence ”Walk-
ByShop1cor” of CAVIAR between images 192 and
309. We tried to follow the head of a man on a win-
dow of size 31×25 pixels. The curves show the vari-
ation of good trackingη depending on the tolerance
τ on the percentage of area common with the ground
truth. The four curves in green, khaki, brown and red
in Figure 6 represent subsamplings of a pixel of 1, 4,
7 and 10i.e.: 775, 56, 20 and 12 points for the con-
figurations ”Raw”, ”Gauss” and ”RandVor”, from top
to bottom. Down on the same figure, the three curves
gray, violet and cherry compile the ”KerOpt” config-
uration for respectively: 55, 30 and 5 points filtered
from the selected kernels.
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Figure 6: Tracking performancesη(τ) of the subsamplings
”Raw”, ”Gauss” and ”RandVor” for K ={775, 56, 20, 12}
points and ”KerOpt” for K ={55, 30, 5} points.

4 CONCLUSIONS

Our goal was to track a target with appearance model
at low cost,i.e. based on few points. We have shown
how to build a light model made up of independent
and representative kernels of the prime appearance.
Trackings made with this filtering were compared to
other more traditional and showed equivalent perfor-
mance for a number of points lower.

However, many things has to be improved. Here’s
a partial list: 1) integrate the temporal coherence in
addition to the spatial coherence by introducing ex-
plicit time T in a new representation, for instance:
UVRGBT, 2) make evolve the reference ROIRalong
the tracking by an on-line learning of new likely la-
bels, 3) add new parameters to the transformationϕ
to consider rotations or homotheties or even why not
seeϕ in a nonparametric way by considering each
point of the model as a single control point connected
to other by a consistent deformable mesh. All these
points seem difficult but not unattainable.
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