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Abstract: Humanoid robots are created to imitate some of the tasks that humans undergo, but no current robot can 
emulate the cognitive capabilities of even the simplest mammals. One approach to developing computing 
platforms for cognitive robotics is to make use of experimental characterizations of the neurobiological 
substrate for action and perception systems and simulate brain functions designing real-time spiking neural 
networks. Biologically detailed network models are a powerful tool to understand how molecular and 
cellular mechanisms determine high level network processing. Recent advances in experimental and 
theoretical studies of the dynamic organization of neuronal populations suggest that our further success in 
creation of higher intelligence robots will depend on the ability to incorporate such basic principles of brain 
functioning as (i) stochastic dynamics and intrinsic nonlinearities in input-output transformation of neurons, 
(ii) structural and functional plasticity, (iii) signaling through neuromodulator networks. 

1 INTRODUCTION 

The adult human brain contains about 86 billion 
neurons (Azevedo, Carvalho, Grinberg, Farfel, 
Ferretti et al., 2009). The main function of neurons 
is to process and transmit information. This 
transmission occurs via roughly 10,000 chemical 
and, in few locations, electrical synapses. Both 
synapses and neurons have complex stochastic 
dynamic properties. The ability to learn and fulfill 
fine movements is achieved after an integration and 
representation in the brain of information from a 
large number of sensorimotor and cognitive signals. 
The human brain can rewire itself and change its 
structure and function in response to an experience, 
can pursue goals, think abstractly and creatively. 
Serious consideration to the possibility of building 
an electronic brain starts from the middle of the last 
century. However, the traditional artificial neural 
networks contain only very simplified (one-node) 
models of biological neurons with reciprocal 
interactions between all nodes and require a large 
diversity of training for real-world operations. In 
spite of immense calculation speeds, machines are 
much less effective than biological systems in real-
world environments and cannot match the 
capabilities of the human brain. At the same time, a 
number of detailed network models representing 
diverse   types   of   neurons   with   their     complex 

morphology and distinct subsets of ion channels 
were simulated (see Markram, 2006 for review). 
These models are intended to fill the considerable 
gap in our understanding between the processes on 
the molecular level and on the level of network 
function. It is sufficiently difficult to build network 
models that incorporate realistic morphologies and 
asynchronous, dynamical and self-organizing 
changes in the synaptic connections and intrinsic 
properties. However, it is evident that understanding 
of the brain requires the development of realistic 
detailed models based on experimental description 
of all of their components that can be tested and 
refined through new experiments. Recently a large 
international project whose aim is to simulate in a 
supercomputer the brains of mammals with a high 
level of biological accuracy has been started 
(Markram, 2006). This may help to create a new 
generation of intelligent neuromorphic devices with 
the ability to form neural representations of their 
bodies and environment. Internal models will allow 
them to plan and prepare for future eventualities. I 
shall emphasize several aspects of neural 
functioning that may be important for biologically 
accurate brain simulations. 

170 Saftenku E..
THE THORNY PATH TO AN ARTIFICIAL BRAIN - How to Build a Bridge between Neurophysiology and Network Modeling.
DOI: 10.5220/0003824901700176
In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2012), pages 170-176
ISBN: 978-989-8565-00-6
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

2 REQUIREMENTS FOR 
BIOLOGICALLY ACCURATE 
BRAIN SIMULATIONS 

2.1 Intrinsic Nonlinearities in Input-
Output Transformation of Neurons 

The most difficulty in accurately modeling signal 
flow in neural circuits arises from the fact that the 
electrical behavior of neurons is determined by a 
large number of non-linear elements, such as 
membrane ion channels with non-linear voltage-
dependence and synapses with highly non-linear 
transmission. Moreover, most neurons have 
extensive dendritic trees, but the distribution and 
properties of dendritic ion channels still cannot be 
characterized experimentally. Dendrites integrate 
multiple synaptic inputs and translate them into 
axonal action potentials (APs). The spiking of 
neurons is usually driven by irregular synaptic inputs 
and stochastic flickering of voltage-gated channels. 
Physiological levels of channel noise can produce 
qualitative changes in neural dynamics (Dorval and 
White, 2005) and allow probabilistic synaptic 
integration (Cannon, O’Donnell and Nolan, 2010). 
However, synaptic transmission is often a major 
contributor to the voltage noise. Traditionally, it was 
thought that a neuron simply summates synaptic 
inputs, which it receives. When physiologically 
realistic patterns of synaptic inputs, as observed in 
vivo, were included in in vitro experiments, it was 
found that the slope of the relationship between 
mean input and output firing rates (gain) is 
fundamentally altered (Silver, 2010). For neurons 
that operate in coincidence-detection mode under 
sparse activation conditions (Olshausen and Field, 
2004), synaptic noise results in the broadening of the 
time window for synaptic integration. The temporal 
fidelity of coincidence detection is influenced by 
shunting inhibitory conductances, which can be 
regulated by voltage-dependent membrane 
conductances (Pavlov, Scimemi, Savtchenko, 
Kullmann and Walker, 2011). In addition, neural 
gain can be controlled by active dendritic 
conductances under some conditions (Silver, 2010) 

It is widely believed that activity-dependent 
change in synaptic plasticity is a fundamental 
mechanism for stably altering the function of neural 
networks. The standard models of memory in 
neuroscience are based on Hebb’s postulate (Hebb, 
1949) that repetitive co-activation of neurons 
strengthens the connection among them. These 
models assume that only the synaptic strength 

changes. However, short-term changes in the 
dynamics of the synaptic transmission introduce the 
frequency-dependent nonlinearity and modify the 
sensitivity of a neuron to the temporal coincidence 
of its inputs. These changes can be modulated by 
long-term plasticity. In result, the strengthening of 
synapses for different frequencies appears to be non-
uniform and depends on prior activity (Silver, 2010; 
Markram, Gerstner and Sjöström, 2011). Changing 
the gain of neurons alters their responsiveness to 
input and, therefore, their functional connectivity in 
the network (Haider and McCormick, 2009).  This is 
a mechanism by which functional neuronal 
assemblies can be formed and broken. Therefore, in 
order to understand the operating principles of 
network dynamics in the brain, it is necessary to 
include in the models realistic dynamics of synaptic 
transmission and the spatial and temporal patterns of 
synaptic activation observed in vivo. 

Another important issue that has been paid 
insufficient attention in the past is that neural coding 
may be based on selective responses of neurons to 
some subsets of input interpulse intervals 
(Vartanian, Pirogov and Shabaev, 1986). Interpulse 
intervals can carry sufficiently higher stimulus-
related information than either spike-timing 
precision or mean firing rate (Imaizumi, Priebe, 
Sharpee, Cheung and Schreiner, 2010). Specific 
classes of voltage-gated currents support 
subthreshold oscillations of the membrane potential 
and the intrinsic frequency preferences of neurons 
(Hutcheon and Yarom, 2000). Recently, 
experimental recordings have demonstrated a critical 
role of cell-specific subthreshold oscillations of 
membrane potential for spatial firing of grid cells in 
enthorhinal cortex (Giocomo, Zilli, Fransén and 
Hasselmo, 2007).  

An additional complexity stems from the 
dependence of information transfer in neural circuits 
not only on synaptic transmission, but also on the 
diffusion of neurotransmitter molecules through the 
extracellular and cerebrospinal fluid. For example, 
hippocampal neurogliaform cells release the 
inhibitory neurotransmitter γ-aminobuteric acid 
(GABA) and do not require synapses to produce 
inhibitory responses in the majority of nearby 
neurons (Oláh, Füle, Komlósi, Varga, Báldi et al., 
2009). The ambient levels of GABA can increase or 
decrease the neuron firing probability (Song, 
Savtchenko, and Semyanov, 2010). Spillover of the 
main excitatory neurotransmitter glutamate from the 
synaptic cleft prolongs the decay of synaptic 
currents, increasing the time window of synaptic 
integration and may activate presynaptic 
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metabotropic glutamate receptors at inhibitory 
neurons.  

2.2 Multiple Forms of Experience-
Induced Plasticity in the Brain 

One of the central goals of computational 
neuroscience is to explain how learning and memory 
is achieved in the brain. Learning algorithms in 
existing models of neural nets use synaptic plasticity 
rules derived from already existing synapses to 
reorganize or to reconfigure the connectivity within 
a group of neurons. However, experience-dependent 
plasticity in adult neural circuits may involve 
formation and elimination of synaptic contacts, 
spines, and axonal boutons (Holtmaat and Svoboda, 
2009). For example, in the neocortex, the induced 
appearance and disappearance of multiple synaptic 
contacts over a time scale of hours was directly 
shown in experiments after glutamate application 
(Le Bé and Markram, 2006). Spine and synapse 
densities can increase after training in enriched 
environment, after long-term sensory stimulation, 
and after induction of long-term potentiation (LTP), 
which is an artificial form of plasticity (Lambrecht 
and LeDoux, 2004). Nevertheless, the determinants 
of the location of new synaptic connections are not 
clear. Moreover, exposing animals to complex 
environment leads to rearrangement of 
axonal/dendritic arbors (Galimberti, Gogolla, Alberi, 
Santos, Muller et al., 2006). The actin cytoskeleton 
plays a major role in structural changes of neurons. 
It constantly rearranges in response to neuronal 
activity; and this leads to formation of new axonal 
varicosities and to changes in the head volume of 
dendritic spines (Dillon and Goda, 2005). The 
structural changes of the spine head result in 
changes of the calcium dynamics that controls, in its 
turn, the induction of synaptic plasticity. Besides, 
actin may contribute to synaptic transmission as it is 
involved in the trafficking of glutamate and GABA 
receptors and in vesicle translocation (Cingolani and 
Goda, 2008). A number of limitations preclude 
realistic modeling. Simulation environments for 
modeling individual neurons and neural circuits 
provide tools for spatial models with biologically 
realistic morphology and synaptic connections, but 
this morphology must be fixed. Solving of 
diffusion−reaction systems on domains with moving 
boundaries is challenging. So the techniques of 
multi-level simulations should be developed in 
which the model switches from dynamic structural 
changes to electrical activity. 

On  the  other  hand, it  becomes  more  and more 

evident that learning cannot be completely equated 
with synaptic plasticity. For example, intrinsic 
plasticity in neurons can be considered as a cellular 
correlate of learning. Neuronal activity persistently 
regulates plasma membrane ion channels, which 
determine the ability of a neuron to generate an AP 
in response to a given input signal. Persistent 
changes in the intrinsic excitability of neurons 
elicited by modifications in the properties and/or 
number of ion channels can be produced by training 
in behaving animals or by activation of cellular 
preparations by definite artificial patterns.  These 
changes may influence modifications in the synaptic 
strength in a defined time window following the 
training, function as a part of the engram itself, 
promote the consolidation of memory, and 
contribute to saving during reacquisition or to cross-
modal acquisition (Zhang and Linden, 2003). The 
activity-dependent modulation of synaptic plasticity, 
the so-called metaplasticity (Abraham and Bear, 
1996), can be caused by an alteration of the 
threshold for axosomatic spike generation or by a 
change of the properties of voltage-gated channels in 
a local domain of the dendritic tree. The latter is 
especially important since most neuronal types have 
a remarkable dendritic arbor onto which the majority 
of synaptic connections are made. Moreover, the 
properties and localization of dendritic voltage-gated 
channels can be altered by synaptic activity or 
neuromodulators and result in the qualitative change 
of the neuronal firing patterns (Remy, Beck and 
Yaari, 2010). Thus, both neurons and synapses are 
history-dependent, and learning occurs at multiple 
levels and time scales. 

In addition, the brain responds to experience by 
adding new neurons, glial cells and capillaries 
(Grossman, Churchill, Bates, Kleim and Greenough, 
2002). Induction of LTP at excitatory synapses 
depends on signalling molecules released by 
astrocytes (Henneberger, Papouin, Oliet and 
Rusakov, 2010). Therefore, the simulations should 
include the glial networks to capture neuron-glia 
interactions.  

2.3 Neuromodulatory Control of 
Synaptic Transmission and 
Neuronal Excitability 

The most difficult problem of neuroscience is to 
understand how system-level brain functions may 
arise from low level molecular and cellular 
mechanisms. The brain is connected with the body 
and the body and brain interact with the external 
environment. The behavior of an animal or human at 
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each given moment is hierarchically organized and 
directed towards the satisfaction of some need, 
which predominates over all other needs. Needs can 
be biological (e.g., for meals), social (e.g., for 
communication), and cognitive (e.g. for novelty). 
While a need induces active behavior, the acquired 
connections between a need and an object, which 
can it satisfy, makes the behavior and learning 
reward-mediated. The satisfaction of needs induces 
positive emotional states. 

Neuromodulators, the substances that alter the 
function of other neurons at a slower time scale than 
neurotransmitters and diffuse through large areas, 
have a vital role in regulation of cognitive processes 
and behavior. They change intrinsic excitability of 
neurons, presynaptic release of neurotransmitters, 
and the conditions for induction of long-term 
synaptic plasticity (Schweighofer, Doya and Kuroda, 
2004; Hasselmo and Sarter, 2011; Pawlak, Wickens, 
Kirkwood and Kerr, 2010). Neuromodulators are 
thought to be essentially required for induction of 
spike-dependent plasticity at specific synapses in 
vivo where there is a huge amount of constantly 
ongoing presynaptic and backpropagating spiking 
activity (Pawlak et al., 2010). Some 
neuromodulators, e.g. such as dopamine, 
noradrenaline, acetylcholine, serotonin, opioid 
peptides, are involved in behaviorally based learning 
and reward and play a particular important role in 
emotional responses. Thus, dopamine provides 
reward prediction errors and its release may be 
activated by reward-predicting stimuli (Schultz, 
2010). However, it is still unclear how the specific 
neuronal activity around the reward event links to 
the behavioral outcome (Pawlak et al., 2010). A 
possible mechanism determining the crucial role of 
emotional reinforcement in formation of the 
functional connectivity between neurons could be 
gain modulation to sensory stimuli due to tonic 
changes in membrane potential. These changes may 
be evoked by the release of neuromodulators 
(Vartanian et al., 1986). To make matters more 
complicated, we know that certain brain structures 
process more specific reward information and 
predictions of future outcomes, but our general 
knowledge about how the reward systems are 
organized is very incomplete. 

The majority of monoaminergic neurons do not 
make synaptic contacts and release neuromodulators 
for long-distance diffusion. Some other locally 
acting systems, such as endocannabinoids, 
metabotropic glutamate receptors, brain-derived 
neurotrophic factor (BDNF), and retrograde 
messengers also play an important role in synaptic 

plasticity. BDNF modulates synaptic transmission 
and membrane excitability and is thought to be 
necessary and sufficient for long-term memory 
retention in the hippocampus (Cunha, Brambilla and 
Thomas, 2010). Taking into consideration that a 
variety of neuromodulatory agents are released at 
different concentrations in behaving animals and 
may interact, realistic modeling can be a very 
challenging task. 

One of the most intriguing issues is the role of 
activity-dependent plasticity in forming assemblies 
of neurons with pre-specified genetically determined 
connectivity. Recently it was shown that small 
clusters of pyramidal neurons in the neocortex 
containing about 50 neurons make predictable 
connections with predictable synaptic weights 
independently of individual experiences (Perin, 
Berger and Markram, 2011). Connection probability 
between any two neurons increases linearly with the 
number of their common neighbors. This 
synaptically organizing principle is genetically 
prescribed and applies across different animals. It 
was suggested that acquired memory relies on 
combining these microcircuits, which are 
fundamental building blocks of perception (Perin et 
al., 2011). The theory of neuronal group selection 
(Edelman, 1993) maintains that the brain gives 
repertoires of variant neuronal groups. The groups 
that emerged during embryonic development are 
selected to match the novelty and diversity of 
experience under control of inborn value systems 
producing neuromodulators. Experience could serve 
to combine these groups in a hierarchical manner.  

3 FUTURE DIRECTIONS 

Henry Markram, the founder of Brain Mind Institute 
in Switzerland, has claimed that with the right 
resources and strategy it would be possible to 
simulate the complete human brain at the cellular 
level within 12 years. The Human Brain Project 
proposes to integrate everything that we know about 
brain into computer models and use these models to 
simulate the actual working of the brain on a 
supercomputer (http://www.humanbrainproject.eu). 
It looks likely that the main constraint for this 
project may be not an insufficient power of 
supercomputer, which grows very quickly, but 
insufficient experimental data necessary for model 
development. 

As it was mentioned above, one of the most 
crucial issues in neuroscience is to establish the 
functional role and mechanisms of neuromodulatory 
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control in cortical structures.  For this, the 
combination of in vitro and in vivo techniques is 
required to bridge between cellular effects and 
behavioral functions. Most studies of neural 
dynamics and plasticity have been carried out in 
vitro. Systematic recordings in vivo are technically 
very demanding, they can be carried out only from 
the largest neuronal elements. Instead, optical and 
electrophysiological recordings are performed using 
reduced preparations, particularly acute brain slices, 
where controlled analysis of neuronal activity and 
cellular properties can be made. In in vitro slice 
preparations many synaptic connections are cut and 
natural neuromodulation does not occur at all. In 
result, the majority of experiments are conducted 
under conditions where high levels of stochastic 
voltage noise, which are observed in vivo, are 
significantly decreased and the degree of 
neuromodulation is negligible. However, both 
synaptic noise and changes in neural excitability 
evoked by neuromodulators alter the way the neuron 
transforms its synaptic input into output firing rate 
(Silver, 2010). Future optogenetic work might 
delineate the contributions of the different 
components of the cellular responses elicited by 
neuromodulators to behavioral learning and identify 
the particular forms of learning sensitive to these 
substances. 

The appropriate level of physical detail required 
to understand how the behavioral function emerges 
from the observed effects at the molecular and 
cellular levels is unclear. Some phenomenological 
descriptions and simplifications are inevitable 
because of the limitations of realistic modeling, but 
it is clear that such a model may not replicate 
faithfully the neuron’s dynamics under different 
conditions. If the prediction of the model does match 
experimental data, it does not guarantee the validity 
of the model, but should suggest new predictions 
that can be verified experimentally or other 
experiments that can test its validity under different 
conditions. This approach drew on the rich history of 
biophysical research and may be used for models at 
different levels of complexity. 

Presently, our group is developing a large-scale 
computational model of the cerebellum based on 
some recent experimental data to show that learning 
in this brain structure can be regulated rather by 
neuromodulators and neuropeptides than by a 
climbing fiber error-driven teaching signal. 

Many important details still remain to be 
specified. The involvement of long-term synaptic 
plasticity in learning and memory remains to be 
conclusively demonstrated. We still do know neither 

what cellular processes are necessary for the 
maintenance and retrieval of long-term memory nor 
what processes are central to the persistence of 
memory after recall. Recent finding of innate neural 
cortical assemblies (Perin et al., 2011) suggests that 
in order to construct neural microcircuits in the 
neocortex with realistic properties, it is necessary to 
create at first these assemblies using genetically 
determined connectivity principles and then to apply 
a learning rule to associate them. But we know a 
little about the topography of neurons in other brain 
areas. Interestingly, there is convincing evidence 
that the autoassociator theory of memory (Hebb, 
1949) is incorrect for the hippocampus where the 
mutual synaptic interconnections are set up in early 
development (Colgin, Leutgeb, Jezek, Leutgeb, 
Moser et al., 2010). 

The greatest challenges, however, appear when 
higher brain functions, such as cognition or 
consciousness are attempted to be reproduced. The 
subjective experience of each living being is unique 
and arises from the trinity of the brain, body, and 
environment. The brain works as a whole system, 
and only one percept at any time is possible. Each 
percept involves many brain areas simultaneously in 
order to update episodic memory, spatial maps, 
value systems, prefrontal planning, and motor 
preparation (Edelman, Gally and Baars, 2011). Our 
knowledge about the function and connections 
between different brain structures are still 
incomplete. For example, neuroscience inquires of 
such a basic human ability as creativity show a 
muddled picture. On the other hand, the construction 
of brain-based devices, which should incorporate the 
main principles of brain functioning and value 
system, can help us to explore how numerous 
biological mechanisms may interact to create new 
system properties. 

4 CONCLUSIONS 

Computer modeling is becoming a valuable tool for 
understanding how high brain functions arise from 
molecular and cellular mechanisms. The living brain 
is much more complex of any brain-based device, 
which it is possible to imagine. We only have begun 
to understand some basic operating characteristics of 
neural networks. Control of neural dynamics and 
connectivity by synaptic noise, a combination of 
biochemical networks of neuromodulators with 
neural networks to perform computations, the 
existence of multiple forms of plasticity are 
fundamental principles of their functioning. These 
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principles should be included in future models. Our 
basic knowledge about neural coding and brain 
functions on the systems level are still very 
insufficient. Hopefully, computational science and 
neuroscience will develop with a close 
interdependence, such that model predictions will 
inspire new experiments with discrepancies between 
theory and experiment serving as the impetus for 
model refinement. 
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