
TOWARDS CONTEXTUAL TASK PATTERNS FOR SMART
MEETING ROOMS

Michael Zaki, Peter Forbrig and Jens Brüning
Department of Computer Science, Rostock University, Albert-Einstein Str. 22, Rostock, Germany

Keywords: HCI, Smart Environment, Task Model, Context, Task Pattern, Precondition, Effect.

Abstract: The main idea of smart environments is to deliver proper assistance to the resident users while performing
their daily life tasks. Thus, task models are convenient as a starting point for developing applications for
those environments, as they give the developer the opportunity to focus on the users and their tasks. In such
an environment, mutual dependencies between different types of entities are taking place and affecting the
way the user is executing the tasks. Therefore, other models (e.g. device model, location model …etc.) have
to be developed and linked to the task model in order to truly illustrate how the tasks are executed in those
environments. Due to the increasing number of models and the dependencies among them, modeling an
interactive application to be operated in such an environment is a tedious and overwhelming process. In this
paper, we present an attempt to overcome the modeling complexity by fostering the concept of reuse on a
high level of abstraction using task patterns. We extend the former definition of task patterns by integrating
the environmental preconditions and effects within the pattern structure in order to maximise the benefit of
the usage of those patterns.

1 INTRODUCTION AND
RELATED WORK

In (Cook, 2004) a smart environment is defined as
“a small world where different kinds of smart
devices are continuously working to make
inhabitants' lives more comfortable”. From this
definition, one can infer that the main goal behind
such environments is to assist the inhabitants in their
daily life’s tasks in an efficient and implicit manner.
However, one of the main preconditions for offering
such assistance is to have a clear idea about the
user’s intentions. Thus, we need to model the user’s
expected behavior beforehand and then based on this
model we can infer how the environment should
interact with the user in order to minimize the task
performance burden and to let the user have a
positive impression about the environment.

Task models have usually been used as a tool to
elicit requirements in the early development stages.
Nowadays they are playing a more influencing role
as an appropriate starting point for interactive
processes development. For example, (Feuerstack,
2006) presents an attempt to create a first draft of the
user interface based on task trees. Also (Blumendorf,

2010) suggests the usage of dynamic task models in
order to build adaptive user interfaces. However,
isolated task models cannot express all relevant
information for tasks execution in domains with high
complexity like smart environments. Other
environmental entities and factors (e.g.: devices,
objects, user position…etc.) are constraining and
affecting the way tasks are performed. Thus, in
(Wurdel, 2008) the collaborative task modeling
language (CTML) enables the integration of the
execution domain within the modeling process. In
CTML, a dedicated model is needed for every
environmental aspect to be taken into account.

Whereas CTML seems to be suitable as a
modeling framework for smart environment
applications, building all those models and the
identification of the mutual dependencies among
them is a real burden for the developer even if we
take into consideration the existence of a tool
supporting the development of those models.
Consequently, in this paper we are trying to
overcome the previously described problem by
fostering the concept of reuse on a high level of
abstraction using task patterns. However, we argue
for a broad definition of task patterns in the context
of smart environments by integrating the restricting

162 Zaki M., Forbrig P. and Brüning J..
TOWARDS CONTEXTUAL TASK PATTERNS FOR SMART MEETING ROOMS.
DOI: 10.5220/0003824801620169
In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2012), pages 162-169
ISBN: 978-989-8565-00-6
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

preconditions for the task execution and the effects
resulting due to this execution within the pattern’s
structure. This way the developer is not only assisted
while building her task model, but the integration of
the task template provided by the pattern with all its
dependencies in the other relevant models (e.g.:
device model, object model…etc.) is also feasible.
Thus, we believe that those patterns can make the
modeling process less time-consuming and of better
performance.

Despite the fact that patterns were first invented
in urban architecture by Christopher Alexander in
1977 (Alexander, 1979), their influence has spread
and reached the software engineering as well as the
HCI area. In (Gamma, 1994) the Gang of Four have
introduced patterns as recurring solutions for
common software design problems. These patterns
realized a brilliant success in the software
engineering field, and consequently the idea of using
patterns has also conquered the HCI domain.
(Borchers, 2001) defines HCI design patterns as “a
structured textual and graphical description of a
proven solution to a recurring design problem”.

Moreover, the notion of task patterns is not
totally new. The idea was initially introduced by
(Breedvelt, 1997), where he identified reusable
structures or templates and suggested their usage in
the application’s design process. Afterwards, this
idea was extended in (Sinnig, 2004) where the
authors suggested using patterns as generic reusable
task fragments serving as building blocks for the
creation of task models. They also introduced
domain variables as placeholders to integrate the
context of use. Additionally, (Wurdel, 2007)
presents an attempt to adapt task patterns according
to the context of use by taking benefit of the concept
of “decision nodes” proposed by (Luyten, 2004).
Sub-nodes of a given decision node are annotated
with contextual constraints to decide when a specific
path should be taken.

From our point of view, the already defined task
patterns in previous approaches are suitable for
developing HCI applications where users are
interacting with a designed UI which may run on
several devices in various locations. However, when
examining the domain of smart environments (e.g.:
smart meeting rooms) one can notice that whether a
specific task can or cannot be executed at a given
time ‘t’ may depend on numerous environmental
factors (e.g.: device state, existence of a specific
object, actor location…etc.) or in other words the
state of the environment at this specific time. Thus,
we believe that a seamless integration of those
mandatory preconditions within task patterns

designed for smart environments is of considerable
interest. In other words, the already mentioned
attempts for developing task patterns take into
consideration the changes occurring to the way the
task should be executed under various
environmental conditions. Our approach aims to
extend this idea by expressing the mandatory
preconditions and effects for every individual task
within the task template offered by the pattern as a
solution. (i.e. :Without those constraints, the task
cannot take place).

The paper is structured as follows: In section 2
our new understanding of the term “task pattern” in
the context of smart environments and the suggested
structure of our patterns are presented. Afterwards,
in order to make our ideas more concrete a pattern
example is illustrated in section 3. Finally, we
summarize our ideas and we give a brief overview of
future research avenues in this area.

2 TASK PATTERNS FOR SMART
ENVIRONMENTS

As already discussed, various factors may affect the
executability of the required tasks in a given smart
environment. These factors are formed by the state
of the surrounding intervening entities and thus the
environmental context in which the task occurs.
However, we distinguish here between two types of
context. First of all, we identify the so-called
“forcing context” as “The initial state in which the
environment should be before the task execution and
the final state in which it should be after this
execution”. Secondly, we define the “flexible
context” as “Any information which may change the
way the task is executed in the environment or the
forcing context in which the task occurs”. While the
first sort is mandatory as a pre-request for the task
execution, the second one determines in a precise
way how the task is being executed given the current
devices and objects used to perform the task. We
claim that the forcing context can be adapted
according to the flexible one, as the state in which
the environment should be before or after the task
execution depends on the exact way the task is
performed. For example, a user taking notes of a
presentation given in the environment will need a
device containing a text editor in case this user
decides to take notes electronically, while in case
she prefers to take notes by handwriting a pen is
actually needed.

To make the distinction between the concept of
forcing context and flexible context clearer, let us

TOWARDS CONTEXTUAL TASK PATTERNS FOR SMART MEETING ROOMS

163

take the case of a user playing the role “presenter” in
a presentation scenario taking place in a smart
meeting room. This user cannot give her talk if she
does not have in possession any slides to present.
Thus, the slides can be considered as one of the
elements of the forcing context for the task “Give
Talk”. Additionally, a smart meeting room may give
the user the possibility of using numerous projectors
and canvases for one presentation. However,
whether the presenter decides to use only one
projector or several ones to give her presentation, the
talk can be given. That is only a specification of the
exact way in which the task is performed. Thus, that
is an example of an element in the flexible context to
which the task execution is adapted.

From our point of view, the solution provided by
a convenient task pattern to be employed as a
building block in the user’s task model should
encapsulate the integration of the forcing context
(i.e.: preconditions and effects) in the task template
and should also make the template adaptable to the
given flexible context. In other words, the task
pattern should enable the representation of the
required preconditions and effects and should be
generic enough to be adaptable to several
environmental settings. However, our goal is not to
explicitly integrate the forcing context in the task
model itself, but to provide it to the developer in a
visualized way in the pattern solution so that he can
have a comprehensive image about the exact way in
which the task should be executed in the
environment.

In order to truly express the environmental
dependencies within our patterns, the pattern library
we are developing should not be defined for the
whole domain of smart environments, as the nature
of tasks to be executed and the objects and devices
in need differ from one specific domain to another
one. Therefore, we decided to stick to the domain of
smart meeting rooms as a subset of smart
environments domain while developing our patterns.
Whereas one might think that the fact that the
pattern library is not addressing the whole smart
environment domain might be a disadvantage, we
argue that in order to maximize the benefit gained by
those patterns, being bound to a more precise
domain is highly advisable. Moreover, we argue that
while the patterns themselves are restricted to smart
meeting rooms field, but the methodology we
adopted in order to extract those patterns (and which
will be discussed) can be followed in order to extract
patterns in other smart environment areas (e.g.:
smart homes, smart offices,…etc.) and thus, pattern
libraries addressing those areas can be similarly

identified and developed.
A smart meeting room is an example of a

collaborative environment, where numerous actors
are exchanging information and collaborating
together so that they can achieve a final high level
common goal. Such a goal can be identified as a
team goal. Consequently, every task to be executed
by a given user in the environment is in a way or
another contributing as a step towards the final team
goal (e.g.: Do a presentation) and additionally her
own individual goal in the environment (e.g.: Attend
a presentation). Thus, as a first step to develop our
patterns we started by identifying team goals which
may take place in a given smart meeting room. We
ended up having the following six main team goals
formulized as final states: “Conference session
performed”, “lecture given”, “work defended”,
“topic discussed”, “debate managed” and “video
watched”.

By investigating the above mentioned goals we
can move to the second step which is the extraction
of various roles which may be played by the resident
actors in the environment to finally achieve those
goals. For example, in a conference session scenario
the roles presenter, listener and chairman can be
easily identified. Once we determine all the included
roles in those scenarios, repetitive task templates
existing in several task models are collected and
used as task patterns. In this way we built our pattern
library which is composed of around twenty task
patterns. The exact structure of our patterns as well
as their adaptability is explained in further details in
the next sub-section.

2.1 Task Pattern’s Structure and
Adaptability

Unlike the former task patterns suggested in
(Breedvelt, 1997); (Sinnig, 2004) and (Wurdel,
2007), we aim to integrate the forcing context within
the description of the solution provided by our
patterns. In Fig.1, we present a meta-model
illustrating the relation between the two components
of the pattern solution which are: the task template
suggested by the pattern and the various
environmental dependencies. By having a look at
Fig.1, one can infer the different factors constituting
the preconditions and effects which constrain the
execution of every individual task within the task
template. Briefly, the execution of a given task may
depend on the state of a stationary or dynamic
device, the existence of a certain object, and the
properties of the actor performing the task and her
position within the environment.

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

164

Figure 1: A meta-model presenting the relation between
the task template and the surrounding environment.

To have a clear idea about the exact structure of
our contextual task patterns, one of the simplest
patterns in our library is presented in table 1.
Inspired by the early work of (Wurdel, 2007) and
(Paterno, 2001), we defined the skeleton of our task
patterns. Every pattern is composed of 7 mandatory
sections namely, “Id”, “Name”, “Problem”,
“Situation”, “Solution”, “Diagram”, “Adaptation
variables” and an optional one “Referenced
patterns”. While a visualization of the defined
solution is represented in the “diagram” section, the
last mandatory attribute “adaptation variables” is
determining the components of the flexible context
to which the pattern is sensitive. Finally, we have the
only optional section “referenced patterns” listing
all the patterns which are referred to within the
solution of this pattern. Every task pattern is adapted
to at least one context-dependent variable. Taking
into account that assisting the user is the first duty of
a given smart environment, and as the main trend
nowadays is the design of universally accessible
applications, we decided to take impaired users into
account while developing our patterns. In (Zaki,
2011) the authors propose the usage of the so-called
accessibility patterns in order to alter the way a
given task is executed and make it suitable for an
impaired user depending on the kind of her
impairment. For that, they assume the existence of a
methodology changing the format of the information
to another suitable one for this user. We extend this
approach by restructuring those patterns so that their
solution can have the same skeleton of our task
patterns’ solution.

Other than being adapted to impaired users,
every task pattern in our library can also be adapted
to one or more attributes depending on the task
template itself. To highlight all the sides of the
solution presented, the diagram section is
decomposed into three distinguishable parts as
depicted in table 1. The benefit of each one of those
components as well as its’ adaptability are discussed
in the following:

a) Task Hierarchy: In this part, the task template
itself to be loaded by the developer and integrated in
her model is presented in CTT (Paterno, 1997)
notation. Due to the various task types and moreover
the high expressiveness of the set of temporal
operators offered by CTT, it is convenient as a
notation for the task models which are to be used as
a basement for the application design process. We
suggest the usage of decision nodes in the sense they
are used in (Wurdel, 2007). This way the context of
use can be explicitly visualized on the edges of the
task tree, and during instantiation phase, the
conditions are being evaluated and only one path is
taken. From our point of view these decision nodes
are convenient for integrating the context whenever
the adaptation attribute is changing the structure
itself of the tree. However, we can still have the case
that we aim to adapt the pattern to the object to
which it is applied without substantial changes in the
hierarchy itself. A good example for that is the
search pattern rendered in (Sinnig, 2004) where the
pattern can be adapted to the object searched for
(e.g.: hotel, car, book…etc.). Therefore, we adopt
the concept of domain variables presented by Sinnig
in order to consider those kinds of contextual
variables.

b) Environmental Dependencies: Here, all of the
entities which can be considered as environmental
dependencies for the execution of any of the tasks
within the template and which are categorized as one
of the components of the intervening environment
(as depicted in Fig.1.) are presented using a UML
class diagram (UML, 2011). Three particularly
noteworthy points are to be mentioned here. First of
all, this class diagram is picturing the needed entities
for the performance of the whole task template and
not a specific executable task in the tree. Secondly,
the diagram is not an attempt to represent and model
all resident elements in the environment, but only
the obligatory entities required to perform the tasks.
Thirdly, a major benefit of this diagram is to give the
developer the required information to build the other
related models to this task model. (e.g.: device
model, object model, etc.). We suggest adapting this
diagram using the cardinalities assigned to the
embraced elements. For example in the “Present
Slides Pattern” if the user is not deaf, then in the
instantiation phase a value of “0” is assigned to the
entity text to speech converter. Identically, the
number of projectors to be used can be decided in
the instantiation phase.

c) Execution Constraints Visualization: Unlike
the “environmental dependencies” field which aims
to assist the developer building the related environ-

TOWARDS CONTEXTUAL TASK PATTERNS FOR SMART MEETING ROOMS

165

Table 1: Present slides pattern.

ID 1
Name Present Slides
Problem Use the projector and the presenter device in order to present some slides to the audience.
Situation A given user in the environment has to present some slides on the canvas. This may be needed in a

conference session, lecture or a discussion.
Solution The actor who is performing this task needs to iterate over all the slides of his presentation and to explain

them one by one. As a pre-request, he/she should be located in the presentation area, having the slides to be
presented stored on his/her presenter device which is connected to the projector in use. The number of
projectors needed depend on the presentation mode (e.g.: the smart room gives the user the opportunity to
use only one projector for his presentation, or alternatively several ones in case the slides should be presented
on more than one canvas). Only in case the presenter is deaf, he/she can use a text to speech converter to
present the slides to the audience.

Diagram I. Task hierarchy:

II. Environmental dependencies:

III. Execution constraints visualization:

Adaptation variables number of projectors, kind of user impairment
Referenced patterns Deaf Output Accessibility

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

166

mental models, this field is focusing on the
specification of constraints for every single
executable task within the task template loaded by
the developer. To realize that, we employ the UML
activity diagram notation (UML, 2011). The
authors in (Brüning, 2008) tackle the idea of
bridging the gap between software engineering
domain and task models by providing a valid
transformation from task models to activity
diagrams. A corresponding transformation rule for
every temporal operator in CTT to an activity
fragment is proposed. We find this idea promising
and we extend it here in order to express all the
constraints related to every single task to be
executed. Therefore, we define every leaf node
(executable task) as a simple action in our activity
diagram. Then for a given task, two types of
constraints can be assigned. First, we have the
temporal constraints which express the order of
execution of this action relatively to the other ones
and which are represented following the rules in
(Brüning, 2008). Secondly, we have the
environmental constraints related to this action’s
execution and which we suggest to manifest using
notes enabling the assignment of preconditions and
effects in a formal way. OCL (Object constraint
language) (OMG, 2011) is employed to express
those constraints using formal statements. While
formal languages are powerful enough to identify
precise constraints, they remain difficult for the
people to use. The reason we choose OCL is that it
is a formal language ruling out any ambiguities and
meanwhile it can be easily understood and written
by humans. In order to adapt this component, we
take advantage of the decision nodes provided by
the activity diagrams. In the pattern’s definition
every context-dependent variable results in a
decision node to be added, and while the pattern is
instantiated those decision nodes are removed and
only the actions to be executed remain in the
model by removing the other invalid paths.

Having this overview of the components of the
solution presented by a given task pattern in our
library, one can see that each of those components
is playing a different role by focusing on a specific
aspect. While the “task hierarchy” field provides
the task fragment itself to be used within the
developer’s task model, the “environmental
dependencies” part is giving necessary information
about the other entities needed and thus it helps
building the other models. Finally, the “execution
constraints visualization” highlights all the
necessary constraints for every individual task’s
execution and all effects resulting from this

execution.

3 PATTERN APPLICATION
EXAMPLE

In order to make our ideas and the benefit behind
our patterns more clear, we provide here an
application example for the “Present slides
pattern”. Let us consider the following scenario
taking place in a given smart meeting room: “A
lecture is to be given today by Professor Georges.
He enters the room, sets up his equipment,
introduces his talk and then starts presenting the
slides to the audience. Those slides are presented
on 2 canvases to guarantee a good visualization
for all the attendee. Once he is finished with his
slides, the audiences are allowed to ask questions
that should be answered by him. After answering
those questions, he unplugs his laptop and leaves
the room”.

According to (Wurdel, 2008), to build a valid
CTML model for the scenario we have to start by
identifying the roles taking place. Two main roles
can be easily extracted from the previous scenario.
We have the lecturer role played only by Professor
Georges, and we have the listener role played by
the audiences. We keep focusing on the lecturer
role. The actor playing this role has to enter the
room, introduce the topic of his talk and then he
has to iterate over the slides of his presentation
while explaining them. Afterwards, in case there
are questions from the plenum, he answers them
before finally leaving the room. Unlike the usual
case, in this talk Professor Georges decides to use
2 canvases and consequently 2 projectors. Thus, in
the pattern’s instantiation phase the number of
projectors employed should be settled to 2.
However, the scenario did not mention any kind of
impairment the presenter is suffering from. Now in
order to instantiate the pattern, we have to
substantiate every generic part (context-dependent)
by the concrete value we have. For this pattern, we
have only two adaptation variables which are
“number of projectors” and “kind of user
impairment”. According to the described scenario,
“2” has to be assigned to the first variable and
“none” to the second one. For our task hierarchy,
the decision node can now be evaluated by
removing the “deaf” path. The resulting task
structure after “Present Slide” pattern’s instance
being integrated in the task model is depicted in
Fig.2. For the environmental dependencies section,

TOWARDS CONTEXTUAL TASK PATTERNS FOR SMART MEETING ROOMS

167

Figure 2: Lecturer’s task model after pattern integration.

Figure 3: Present slides pattern’s instance.

it is clear that there is no need for a converter and
so we assign the value “0” to this entity
(disappears). Additionally, the cardinality of the
entity projector is “2”. Finally, for the last part
which is visualizing the execution dependencies,
the decision node branching the default and deaf
user cases is also evaluated and the deaf user’s
path is removed. Moreover, as a precondition for

the task “switch slide” two projectors have to be in
the state on. The resulting pattern instance to be
employed for our model is depicted in Fig.3.

4 CONCLUSIONS

In this paper we presented an attempt to adapt the

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

168

concept of task patterns to the field of smart
environments. We started by answering the
question: Why do we have to model? Afterwards,
we highlighted the role that patterns can play in
order to make this modeling process faster, of
better performance and less-error prone.
Afterwards, we made a distinction between the
forcing and the flexible contexts and we extended
the already known definition of task patterns by
integrating the forcing context which is composed
out of the task’s related preconditions and effects.
We argued that taking this concept of context into
account enables to facilitate the building process of
the other models and additionally makes it feasible
to integrate the solution not only as a simple task
fragment, but as a building block where all the
mandatory related environmental constraints are
expressed. We provided a detailed description of
the structure of our twenty patterns filling a task
pattern library addressing the domain of smart
meeting rooms. Also, the level of flexibility
offered by the patterns was discussed and we
elaborated the idea of taking impaired users into
account in order to give the developer the
opportunity to design universally accessible
applications while being assisted by those patterns.
Moreover, one example of those patterns was
presented in full details and finally we discussed an
application example where a simple scenario was
presented and we illustrated the instantiation of
this pattern and its’ usage to assist the developer
while building the task models to be assigned to
the included roles. Now, we are developing a
pattern tool that we believe can allow the usage of
our patterns in an easier and seamless way. As for
our approach we investigated CTML as a suitable
language for the domain of smart environments,
we are extending the CTML editor which provides
an Eclipse-based IDE to build task models by our
task pattern application tool. We believe that this
tool can offer real assistance to the developer while
developing applications in the context of smart
environments.

REFERENCES

Alexander, C., S. I., Silverstien, M., 1977. A Pattern
Language. In: Towns, Buildings, Construction,
Oxford University Press.

Blumendorf, M., Lehmann, G., Albayrak, S., 2010.
Bridging Models and Systems at Runtime To Build
Adaptive User Interfaces. Proceedings of the 2nd
ACM SIGCHI symposium on Engineering interactive
computing systems. ISBN: 978-1-4503-0083-4: 9-18.

Borchers, J., 2001. A pattern approach to interaction
design, DIS '00 Proceedings of the 3rd conference
on Designing interactive systems: processes,
practices, methods, and techniques. ISBN: 1-58113-
219-0: 369-378.

Breedvelt-Schouten, I. M., Paternò, F., and Severijns, C.
1997. Reusable structures in task models. In
Proceedings of DSV-IS: 225-239.

Brüning, J., Dittmar, A., Forbrig, P., and Reichart, D.,
2008. Getting SW Engineers on Board: Task
Modeling with Activity Diagrams. In Engineering
Interactive Systems. Lecture Notes in Computer
Science, Vol. 4940. Springer-Verlag, Berlin,
Heidelberg: 175-192.

Cook, D., Das, S., 2004. Smart Environments:
Technology, Protocols and Applications. ISBN: 978-
0-471-54448-7.

Feuerstack, S., Blumendorf, M., Albayrak, S., 2006.
Bridging the gab between Model and Design of User
Interfaces. In Proc. GI Jahrestagung (2), pp.131-
137.

Gamma,E., H., R., Johnson, R., Vlissides, J., 1994.
Design Patterns: Elements of Reusable Object-
Oriented Software. Reading Mass., Addison-Wesley.

Luyten, K., 2004. Dynamic User Interfaces Generation
for Mobile and Embedded Systems with Model-
based User Interface Development. PhD, Hasselt
University.

OMG,(Object management group) Retrieved October 1,
2011 from http://www.omg.org/spec/OCL/.

Paternò, F. 2001. Task Models in Interactive Software
Systems. Handbook of Software Engineering &
Knowledge Engineering. S. K. Chang, World
Scientific Publishing Co.

Paterno, F., M, C., Meniconi, C., 1997.
ConcurTaskTrees: A diagrammatic Notation for
Specifying Task Models, in INTERACT 97, IFIP
TC13: 362-369.

Sinnig, D., 2004. The complexity of Patterns and Model-
based Development. PhD Concordia University,
Montreal.

UML (Unified Modeling Language). Retrieved October
1, 2011 from http://www.uml.org/.

Wurdel, M., Forbrig, P., Radhakrishnan, T., Sinnig, D.,
2007. Patterns for Task-and Dialog-Modeling.
Springer Volume 4550/2007, 1226-1235, DOI:
10.1007/978-3-540-73105-4_133.

Wurdel, M., Sinnig, D., Forbrig, P., 2008. CTML:
Domain and Task Modeling for Collaborative
Environments. J.UCS 14: 3188-3201.

Zaki, M., Forbrig, P., 2011. User-oriented Accessibility
Patterns for Smart Environments. Springer Volume
6761/2011, 319-327, DOI: 10.1007/978-3-642-
21602-2_35.

TOWARDS CONTEXTUAL TASK PATTERNS FOR SMART MEETING ROOMS

169

