
A SERVICE-DRIVEN DEVELOPMENT TOOL FOR WIRELESS
SENSOR NETWORK

Zhen Yu Song1, Luciano Lavagno1, Riccardo Tomasi2 and Maurizio A. Spirito2
1Dipartimento di Elettronica, Politecnico di Torino, Torino, Italy

2Pervasive Technologies Area, Istituto Superiore Mario Boella, Torino, Italy

Keywords: WSN Programming, WSN Development Tools.

Abstract: Thanks to advances in the area of embedded low-power microprocessors and short-range wireless commu-
nication, pervasive technologies such as Wireless Sensor Networks (WSNs) are easing the collection and
integration of real-world data into ICT systems. However, developing and testing application logic for hetero-
geneous WSN devices remains a challenging and cumbersome task. In order to make prototyping of WSN
solutions faster and less error-prone, in this paper we propose a set of development tools for WSNs based on
object-oriented and service-driven models. Within these tools, applications are modelled as sets of intercon-
nected blocks, each providing or using a number of services defined at design time. Externally, each block is a
self-contained black-box exposing a set of service interfaces and tunable attributes; internally, an event-driven
state-chart model represents its logical behaviour. All blocks are automatically created as skeleton templates
by the tools, and then can be graphically developed and debugged in different hierarchical depths through
widely used Mathworksc© tools. Moreover, the developed functional blocks can be automatically converted
to platform-specific binaries to ease deployment on actual devices (e.g. on TinyOS-based platforms) and large
scale simulation (e.g. in MiXiM) enriched with HIL (Hardware In the Loop) capabilities.

1 INTRODUCTION

Wireless Sensor Networks (WSNs) are communi-
ties of tiny, cooperating, resource-constrained objects
used to sense and collect physical information.

While in past years WSNs have been considered
mostly from the research point of view, nowadays
WSN technology has become mature and many dif-
ferent WSN commercial solutions are now available.

Despite the relative maturity of WSN technology,
when designing and operating a WSN in real-world
scenarios, a number of specific challenges must be
taken into account, including: the need to develop ap-
plication code using low-level languages, often inter-
twined with system level, platform-specific code; the
need to efficiently debug and validate WSN solutions
in large-scale simulations, before deploying massive
(and expensive) field tests; the need to coequally exe-
cute an algorithm on heterogeneous WSN platforms.

The aforementioned challenges, which make de-
veloping and testing WSN application tedious and
error-prone, directly imply the need for appropriate
design and development tools.

Co-design and development-support tools are al-

ready gradually responding to these growing needs.
For instance a solution to develop WSN applications
using a high-level, Stateflow-based approach has been
proposed in (Song et al., 2010). The HySim provides
code generation and Hardware-In-the-Loop (HIL) co-
simulation facilities in order to ease validation of so-
lutions and deployment across multiple WSN plat-
forms. However, HySim had a number of limitations,
including the need to embed the entire application
logic inside a single, large state-chart block; more-
over, HySim simulation capabilities were limited to
small-scale networks (up to some tenths of nodes).

This work introduces two major enhancements to
reinforce HySim in terms ofscalability and modu-
larity, so as to make it more suitable for the design
of large-scale distributed WSN applications. Firstly,
it introduces a programming abstraction support-
ing more complex models, mixing object-oriented
and service-driven approaches; secondly, support for
large-scale simulation has been added, including the
possibility to interface development tools, large-scale
simulation environments and actual hardware.

To allow such abstraction, HySim block is intro-
duced as the self-contained building unit, which is

87Yu Song Z., Lavagno L., Tomasi R. and A. Spirito M..
A SERVICE-DRIVEN DEVELOPMENT TOOL FOR WIRELESS SENSOR NETWORK.
DOI: 10.5220/0003818100870095
In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2012), pages 87-95
ISBN: 978-989-8565-00-6
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: The proposed HySim extension.

externally characterized by the set of services it can
consume and expose. As shown in Fig. 1, the pro-
posed solution allows developers to graphically de-
sign and debug a WSN application as hierarchically
decomposed and loosely coupled “HySim blocks”.
The block skeleton templates are automatically gen-
erated by our tool from services definitions. After the
design phase, the tool provides the capability to vali-
date the design via functional small-scale simulation,
deploy the solution on different hardware platforms,
or verify its performance in large-scale simulation.

The proposed solution leverages a number of
widely used tools from the Mathworksc©: SimulinkR©

is used as a functional design and simulation envi-
ronment, providing functionalities to graphically de-
sign blocks at a high-level of abstraction and to sup-
port quick wiring and configuration among them;
StateflowR© is used to model the internal behavior of
blocks; Stateflow CoderR©, finally, is used for its code-
generation capabilities.

Concerning performance simulation of large-scale
networks, the proposed solution includes support
for generation of OMNeT++ (Varga, 2000) and
MiXiM (Köpke et al., 2008) models.

Concerning deployment on actual hardware, the
previous approach has been mantained, support-
ing generation of code for actual WSN platforms
e.g. TinyOS (Levis et al., 2004).

The remaining of the paper is organized as fol-
lows: Sec. 1.1 describes relevant related work; Sec. 2
describes the proposed solution, introducing its un-
derlying model and reference work-flow; Sec. 3
presents an example use-case; Sec. 4 draws conclu-
sions.

1.1 Related Work

A wide variety of tools to support WSN deployment is
available, focusing on different aspects such as high-
level modelling, architectural design, detailed code
development, code generation, co-simulation, deploy-

ment, validation, debugging, performance monitoring
and evaluation (Marron et al., 2009).

Part of these works is focused on programming
abstractions suitable for WSN environments (Rubio
et al., 2007). WISE-NES and the WSN API (Kuo-
rilehto et al., 2008; Juntunen et al., 2006) provide
a unified framework to design, simulate, deploy and
use WSN solutions, leveraging the functionalities
provided by the Specification and Description Lan-
guage (SDL). A similar approach has been adopted
to support the Insense programming language for
WSN (Dearle et al., 2008), which offers the pos-
sibility to define and describe a target application,
which can be subsequently compiled and mapped to a
lightweight process by a dedicated compiler (Dunkels
et al., 2004). Solutions such as Virtual Nodes (Ci-
ciriello et al., 2006) and ATaG (Bakshi et al., 2005),
supply various levels of programming abstractions to
relieve the programmers from addressing low-level
WSN mechanisms.

The COMDES framework (Angelov and Sier-
szecki, 2006; Angelov and Sierszecki, 2004) is a
UML-based solution targeting development of Dis-
tributed Control Systems (DCS), which are related
to WSNs. COMDES enables the definition of appli-
cations in terms of interacting subsystems (function
units), such as sensor, control unit, actuator, opera-
tor station, etc. These subsystems can be soft-wired
with one another in order to configure specific appli-
cations and their internal behavior can be specified
as an operational state machine. Within COMDES,
an application can be graphically composed using the
tool provided meta-models in the associated graphi-
cal Generic Modelling Environment (GME). A num-
ber of graphical programming environments are also
available for specific platforms (Ghercioiu, 2005;
Quantum Leaps, 2011).

The appearance of light-weigth Java virtual ma-
chines, like MiniMV (Cota et al., 2010) and Squawk
(Shaylor et al., 2003), allows the designers to de-
velop WSN applications using a high level program-
ming language, thus with slightly reduced applica-
tion code performance due to the the extra resources
consumed by the virtual machine. Other techniques
based on virtual machines are also available to re-
lieve the designers from concerns due to the low level
logic, such as UML technique based virtual machine
Matilda (Wada et al., 2007).

Solutions such as Cougar (Bonnet et al., 2001),
TinyDB (Madden et al., 2005) and Spine (Gravina
et al., 2008) employ a different approach. They lever-
age distributed database techniques and extensible
processing and query mechanisms to abstract the un-
derlying network as an entity. Within these solutions,

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

88

a task is described in high-level languages, injected
in the network and transformed into low-level pro-
cedures running on individual nodes. However, they
partially reduce the possibility to obtain a fine-grained
control over application logic due to the limited ex-
pressiveness of high-level task description languages.

Simulation is widely employed in the first phase
of WSN application development, to allow fast and
unexpensive verification. For this reason, much ef-
fort has been devoted to providing rapid prototyping
and graphical debugging capability both for generic
(Breslau et al., 2000; Varga, 1999), and specialized
simulators (Köpke et al., 2008; Levis et al., 2003;
Osterlind et al., 2006). Thanks to these efforts, net-
work protocols and algorithms can be conveniently
and repeatedly evaluated and analysed in a scalable
manner through virtual deployments. In addition, to
increase the realism, simulation techniques can be en-
riched with Hardware-In-the-Loop (HIL) capabilities,
resulting in co-simulative approaches.

In summary, a number of solutions can be em-
ployed to ease development of WSN applications
(e.g. virtual machines, programming abstractions,
code-generation, graphical composition of function-
alities, co-simulation, etc).

Nevertheless, a single comprehensive approach
has not yet emerged.

Moreover, application scenarios are quickly grow-
ing in complexity and scale (Marron et al., 2009), in-
creasing the need to distribute intelligence and sup-
port more complex in-network operations, though
maintaining reliability and trustworthiness.

As a result, current WSN development tools must
evolve to better support composable functionalities
and complex distributed scenarios; service-driven
models can play a key role in this evolution.

2 THE PROPOSED
FRAMEWORK

The proposed framework attempts to combine two
different models for structure and behaviour, respec-
tively blocks and hierarchical Finite State Machines
(FSMs).

Leveraging the structural model, WSN applica-
tions running on the nodes are modelled as a set of
interconnected blocks. On the other hand, an event-
driven state-chart model is used to represent the inter-
nal behaviour of each block.

In order to exploit these abstractions, described in
Sec. 2.1, to effectively support WSN development, a
set of tools and a reference work-flow are discussed
in Sec. 2.2.

Figure 2: Node abstraction.

Figure 3: Block abstraction: black-box view.

2.1 Model

Blocks are self-consistent units which are perceived
by other blocks as “black-boxes”, only exposing ex-
ternally a set of known services. Therefore, internal
details of blocks do not depend on external entities
and thus they can be “wired” with each other in a
loosely-coupled fashion.

As described in Fig. 2, the required functionalities
of any user-defined WSN application are delivered
collectively by a set of blocks (B1, B2, . . . , BN). All
the relevant components and APIs of the host WSN
operating system are also exposed as blocks e.g. as a
set of OSAL (Operating System Abstraction Layer)
blocks. OSAL blocks are platform-dependent, and
must thus be provided in the DDK (Device Develop-
ment Kit) associated with the specific platform.

As described in Fig. 3, a block only exposes a vari-
able number of static attributes (A1, A2, . . . ,AN) and a
set of in-bound and out-bound interfaces (respectively
I1, I2, . . . , IN and O1, O2, . . . , ON). Attributes are
static and allow tuning of relevant parameters within
each block. Interfaces reflect services definitions, and
can thus belong to different service classes, each with
a different set of arguments. They are similar to uni-
directional function calls and can be used to trans-
mit service-specific events from one block to another,
without exposing implementation details.

Within the model, all interfaces and attributes are
typed as classes, which are defined during design

A SERVICE-DRIVEN DEVELOPMENT TOOL FOR WIRELESS SENSOR NETWORK

89

Figure 4: Block abstraction: internal view.

phase. Basic types can support standard numeric ar-
guments (e.g.uint16 t, double, char, . . .), while com-
plex types can be derived by composing basic and
complex types.

Any out-bound interface of a block can be wired
to any in-bound interface of another, as long as they
share the same interface type. Events emitted from
disconnected out-bound interfaces are simply dis-
carded, while no event can be received from discon-
nected in-bound interfaces.

The behaviour of each block can be internally
modelled as an event-driven hierarchical FSM model
(more precisely, a State-chart), as described in Fig. 4.
Each FSM has a set of states (S1, S2, . . . , SN), one of
which (SI) is the initial state. The logic flow (i.e. the
switch from the current active state to the next) can
be controlled either by internal default transitions or
external events incoming from other blocks (I1, I2,
. . . , IN). User-defined operations can be implemented
inside each state: they will be executed upon entry,
permanence or exit phases within each state. Such
user-defined operations can execute user-defined lo-
cal functions (F1, F2, . . . , FN) to implement compu-
tational tasks, as well as generate out-going events
(O1, O2, . . . , ON). Besides the externally-tunable at-
tributes, additional local variables can be freely de-
fined within each block. In case a single FSM is not
sufficient to model the desired functionalities, a single
block can host one or more sub-charts which can be
integrated with the main FSM either in sequential or
parallel execution order, sharing the set of incoming
and outgoing signals, attributes and local variables.

2.2 Work-flow and Tools

The reference work-flow for the proposed solution in-
volves three types of development activities or “tasks”
(numbered fromI to VII).

Manual tasks are not directly supported by the
proposed solution: they must be manually performed
by designers e.g. using other development tools.Sup-

Figure 5: Reference work-flow.

ported tasks also imply some activity by designers:
however, a number of specific tools are provided to
support them.Automatedtasks are instead fully per-
formed by the proposed solution.

As shown in Fig. 5, each task delivers partial out-
comes (D1 . . .D7), which feed into subsequent tasks.

The considered development work-flow (which
can also be viewed as an iterated execution of the clas-
sical V-shaped development flow) starts with an anal-
ysis of the requirements from the application scenario
(Task I). The expected outcome of TaskI is a list of
requirements mapped to functionalities (D1).

OutcomeD1 can be used to drive the design phase
(TaskII). Within this phase the developer decomposes
the global WSN functionality as a network of inter-
connected blocks (similar to Fig. 2), whose internal
behaviour is not yet precisely defined.

The resulting design specifies the functionalities
assigned to each block, their main attributes as well as
the interfaces which are used to “wire” them together.

Interfaces and attributes can be defined from
scratch or taken from a library of pre-existing inter-
faces and attribute types, defined in previous projects.
Since blocks are identified by their “borders”,D2 is a
collection of block definitions sharing common types
for attributes and interfaces, plus wiring information.

Block interfaces and attributes can be specified
using theWSN Block Definition Language(WSN-
BDL). WSN-BDL files are XML files divided in two
parts: the first part specifies all the attribute and inter-
face types (AClassesandIClasses), and can be shared
among multiple WSN-BDL files; the second part lists
all the actual attributes and interfaces exposed by a
block; for interfaces, also the direction (dir) is speci-
fied (incoming or outbound). Currently, wiring infor-
mation is not specified in WSN-BDL, since wiring is
performed manually in further steps.

As depicted in Fig. 6, both classes and instances
of interfaces and attributes are defined as XML el-
ements. Fig. 6, provides a possible WSN-BDL de-

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

90

1 <?xml version="1.0" encoding ="UTF -8"?>
2 <Block name="BlockExample " class="BlockClass ">
3 <!-- Class Definitions -->
4 <AClass name="MYATT1">
5 <Arg name="myarray" type="uint8" dim="10"/>
6 </AClass>
7 <AClass name="MYATT2">
8 <Arg name="myvalue" type="uint8" dim="1"/>
9 </AClass>

10 <IClass name="MYCL1">
11 <Arg name="myval1" type="uint8" dim="1"/>
12 <Arg name="myval2" type="int16" dim="1"/>
13 </IClass>
14 <IClass name="MYCL2">
15 <Arg name="myval1" type="int16" dim="1"/>
16 </IClass>
17 <IClass name="MYCL3">
18 </IClass>
19 <!-- Instances -->
20 <Attribute name="A1" class="MYATT1"/>
21 <Attribute name="A2" class="MYATT2"/>
22 <Attribute name="A3" class="MYATT2"/>
23 <Interface dir="in" name="I1" class="MYCL1"/>
24 <Interface dir="in" name="I2" class="MYCL2"/>
25 <Interface dir="in" name="I3" class="MYCL3"/>
26 <Interface dir="out" name="O1" class="MYCL3"/>
27 <Interface dir="out" name="O2" class="MYCL3"/>
28 </Block>

Figure 6: WSN-BDL example.

scription for the designs described in Fig. 3 and Fig. 4.
The “Class Definition” segment include two attribute
classes (MYATT1and MYATT2) and three interface
classes (MYCL1, MYCL2andMYCL3). This section
defines the types of attributes and interfaces; for in-
stance theMYATT1attribute must be composed of
a 10-element array of unsigned 8-bits words, named
myarray. It is also possible to model interfaces with-
out arguments, e.g.MYCL3, which is useful to model
events which do not carry any numeric value.

The “Instances” segment specifies the actual at-
tributes (A1,A2,A3) and interfaces (I1,I2,I3,O1,O2)
included in theBlockExampleblock, each with its ref-
erence to a specific class; for instance in-bound inter-
faceI1 belongs to classMYCL1, and thus will support
incoming events transporting two arguments: an un-
signed 8-bit word (myval1) and a signed 16-bits inte-
ger (myval2).

D2 (a collection of WSN-BDL files) can be fed
into the FSM Skeleton Generator Tool (FSM-SG) to
accomplish the Skeleton Generation phase (TaskIII).
The FSM-SG is used to parse the WSN-BDL and gen-
erate a block template.

The FSM-SG tool has been implemented based on
Mathworksc© products, namely MatlabR©, SimulinkR©

and StateflowR©. The block template generated by the
FSM-SG tool (D3) is a SimulinkR© block, providing
a bus plug for each external interface and containing
a StateflowR© FSM skeleton, which can be used as a
starting point for the implementation phase (TaskIV).

The block template provided by the FSM-SG tool
contains a “Main” FSM already populated with some
example states (e.g. INIT, START, etc.), whose tran-

sitions are controlled by incoming events. It also con-
tains examples of calls to outbound interfaces.

The implementation task includes a “local” ver-
sion of the implement/simulate/debug cycle, per-
formed using the SimulinkR© and StateflowR© tools.
This simulation can include the interaction of a small
set of blocks (modeling a single or a few WSN nodes).

The provided template includes StateflowR©-
specific input and output drivers, which hide the com-
plexity of handling low-level SimulinkR© signals. As
a result, the internal block implementation can be de-
fined just in terms of high-level events, commands
and attributes defined in the initial WSN-BDL file.

Once implementation and debugging have been
completed, the resulting block prototypes (D4) are
ready to be deployed.

In order to provide support for multiple deploy-
ment platforms (e.g. simulators or node software
platforms), block implementations are processed by
the FSM Code Generator tool (FSM-CG, TaskV).
The FSM-CG tool is able to generate platform spe-
cific code for either large-scale simulators such as
MiXiM (D5.a) or actual WSN platforms (D5.b) such
as TinyOS. OutcomeD5.acan be used within simula-
tors such as MiXiM (Köpke et al., 2008) to simulate a
large number of WSN nodes (while SimulinkR©-based
simulation within TaskIV could be used only for a
limited number of blocks). OutcomeD5.bcan instead
be used, after platform-specific compilation, to test
the developed application on the actual hardware.

In MiXiM a block is mapped to asimple module
described by a NED file, while the generated internal
implementation is a set of C++ classes, and interfaces
are modelled by MiXiM buses transporting messages
with the appropriate interface type.

In TinyOS, blocks are mapped to NesC modules
connected through TinyOS interfaces, while match-
ing C structures are provided to support interface se-
rialization i.e. the operation of converting a function
call representing an event into a format which can be
stored or transmitted across a communication link.

After this stage, blocks must be manually wired
together, based on information provided in (D2).

Both simulation and deployment (TasksVI.a and
VI.b), can provide experimental results (D6.a and
D6.b) for a final validation phase (TaskVII).

The resulting validation results (D7) can be used
to verify requirements and subsequently improve the
design, feeding a new loop of the iterative work-flow.

It is important to observe that the service-driven
model employed in blocks definition is primal to draw
a common line which remains consistent across all
design, development and deployment phases. While
the model remains the same, the internal application

A SERVICE-DRIVEN DEVELOPMENT TOOL FOR WIRELESS SENSOR NETWORK

91

logic can take different forms: for instance, a block
can be initially developed as a “Simulink Model”,
then translated to a “MiXiM Module” in a simulation
phase, then converted to a “NesC Model” in the de-
ployment stage and finally be compiled as a binary
image. Conversion between different forms is auto-
mated by the HySim tools.

3 EXAMPLE

For validation purposes, the proposed solution has
been tested on a number of actual use cases. While
the proposed solution is suitable for development of
complex application models, this paper uses a very
simple example to explain the main features of the
tools and the work-flow. The described use case is
a simple application where nodes perform collection
and distributed processing of data from a temperature
sensor.

In this example, each WSN node:

1. samples temperature values;
2. collaboratively averages the monitored values

with those from its one-hop neighbours within a
sliding time window;

3. broadcasts its latest calculated average tempera-
ture value back to its neighbours.

The following parameters have been identified as
potential tunable attributes of each node:

1. its own node identifier (NodeId);
2. the sampling period of the temperature sensor

(SamplingPeriod);
3. the size of the time window to compute averages

(AvgWinSize);

Based on the above requirement analysis (task I),
a sketch design is modelled (task II). The resulting de-
sign divides the application into three blocks: a Sen-
sor block, a Radio block, and a data processing block
(TempAverager). The Sensor block deals with sam-
pling and pre-processing of temperature data. The Ra-
dio block provides support to interface with the radio
protocol used to communicate with neighbours. The
TempAveragerblock contains all the data processing
capabilities. Both the Sensor and the Radio block are
connected to theTempAveragerblock.

This preliminary design allows one to concentrate
only on the “borders” of theTempAveragerblock, as
all the interfaces of other blocks will be shared with
it. The resulting WSN-BDL file is reported in Fig. 7.

According to the definition, theTempAverager
block can request a temperature reading through
the SenseReqinterface, which will cause an asyn-
chronous call to the inboundSenseRepwhen a valid

1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <Block name="TempAverager " class="BlockClass ">
3 <!-- Class Definitions -->
4 <AClass name="NodeAddr ">
5 <Arg name="addr32" type="uint32" dim="1"/>
6 </AClass>
7 <AClass name="TimeMs">
8 <Arg name="t" type="uint16" dim="1"/>
9 </AClass>

10 <AClass name="NSamplesC ">
11 <Arg name="n" type="uint16" dim="1"/>
12 </AClass>
13 <IClass name="Msg">
14 <Arg name="Src" type="NodeAddr " dim="1"/>
15 <Arg name="Val" type="int16" dim="1"/>
16 </IClass>
17 <IClass name="SenReq">
18 </IClass>
19 <IClass name="SenRep">
20 <Arg name="SenVal" type="int16" dim="1"/>
21 </IClass>
22 <!-- Instances -->
23 <Attribute name="NodeId" class="NodeAddr "/>
24 <Attribute name="SamplingPeriod " class="TimeMs"/>
25 <Attribute name="AvgWinSize " class="NSamplesC "/>
26 <Interface dir="in" name="RecvMsg" class="Msg"/>
27 <Interface dir="out" name="SendMsg" class="Msg"/>
28 <Interface dir="out" name="SenseReq " class="SenReq"/>
29 <Interface dir="in" name="SenseRep " class="SenRep"/>
30 </Block>

Figure 7: WSN-BDL of the TempAverager block.

Figure 8: Node applications composed of linked blocks.

value is ready. When a processing phase is complete,
theTempAveragerblock can request a data broadcast
to the radio through theSendMsgcommand, which
will cause aRecvMsgevent in the 1-hop neighbours.

When these definition files are fed to the FSM-SG,
the corresponding Simulink block templates are au-
tomatically generated (task III) and can be manually
wired as described in Fig. 8.

Within the SimulinkR©, in-bound and out-bound
interfaces are mapped to input and output ports re-
spectively, to exchange service-specific events with

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

92

Figure 9: Implementation of TempAverager block.

other blocks, such asRecvMsg, SendMsg, SenseRep
andSenseReqin Fig. 8. The attribute instances are
mapped to input ports in order to import the tunable
parameter values into the block, i.e.NodeIdandAvg-
WinSizefor StdCompTempAverager.

As shown in Fig. 9, the internal logic of the
TempAveragerblock is implemented using an event-
driven FSM paradigm, supported by APIs available
inside the template and reflecting external interfaces
and attributes.

In the example, a two-state (Idle/Busy) implemen-
tation is proposed in theMain portion. Inside theBusy
state, three parallel state machines (RxSensingRep,
TxSensingReqandRxExtMsg) are in charge of receiv-
ing sensing samples from theSenseRepport, sending
sensing request to theSenseReqport and processing
the received external message from theRecvMsgport
respectively. The developer can rely on both APIs to
model incoming events, e.g. theRecvMsgtriggered
event, and also to model outgoing commands e.g.
TurnOnOutputSendMsg. As previously mentioned,
except for the APIs that are exposed in the template,
the internal behaviour in Fig. 9 is independent from
the external context shown in Fig. 8.

To verify this part of the design in isolation, the
Radio and the Sensor have been modelled as sim-
ple traffic generators and the whole system has been
graphically debugged as a normal Simulink model.

Afterwards, the developed Simulink blocks have
been fed into FSM-CG (task V) for large-scale simu-
lation (task VI.a) and real deployment (task VI.b).

In the MiXiM simulation domain, those functional
blocks are transformed to “Simple modules” (Sensor,
Radio, TempAverager) as displayed in Fig. 10, and
manually interconnected and configured in the initial-
ization file (e.g. to assign to each node aNodeId,
AvgWinSizeandSamplingPeriodvalues). In the ex-
ample, an “adaptor” object, provided with the DDK,
is used as an adaptation layer simply to accommodate
the messages to send and receive through the standard
ports between the Appl layer and the NIC layer.

Similar to the network in Fig. 10, any application

Figure 10: Simulation in MiXiM.

logic can be easily constructed with the obtained com-
pound node module (the automatically transformed
modules can be connected and placed in the Appl
layer of the MiXiM node stack) so as to evaluate the
performance of the algorithm in a large-scale simu-
lation, while the configurations like size of the play-
ground, sensitivity of transceivers, initial position and
mobility of each node can be simply set in the initial-
ization file and managed by MiXiM.

To validate the deployment capabilities, a simple
test-bed has been set up using a set of Memsic Telos
rev. B nodes running TinyOS.

In this case the FSM-CG tool transforms blocks
in the form of NesC modules. For ease of in-
tegration, the automatically generated NesC mod-
ules (TOSStdCompRadioC, TOSStdCompSensorC
and TOSStdCompTempAveragerC) are firstly con-
figured, interconnected and encapsulated into a NesC
module, ManualTOSGenedAppC.

The generated blocks are consequently manually

A SERVICE-DRIVEN DEVELOPMENT TOOL FOR WIRELESS SENSOR NETWORK

93

Figure 11: Deployment in TinyOS.

Table 1: Code size and the memory usage for the example
application.

ROM (bytes) RAM (bytes)
Hand-written 17220 492

Auto-generated 20562 526

wired in TinyOS to adapt the existing radio commu-
nication services as presented in Fig. 11. Finally, the
resulting project has been compiled and downloaded
into real nodes. Code size and memory usage have
been compared for both the binary version generated
with the proposed solution and the same application
logic implemented manually. As shown in Table 1, in
the described example the proposed solution does not
introduce significant overhead.

4 CONCLUSIONS AND FUTURE
WORKS

In this paper, we presented an object-oriented and
service-oriented application development tool for
WSNs, which decomposes an application into a set
of blocks that can be graphically developed and eas-
ily debugged separately or integrated in a network
setup. In order to relieve the developers from the cum-
bersome and error-prone re-implementations task, the
blocks can be seamlessly ported to different plat-
forms, with minor wiring and adaptation for simula-
tion and deployment.

The presented use-case provides a demonstration
about how in-network processing capabilities can be
developed with the proposed solution. The use-case
can be easily extended to more complex applications
e.g. by connecting with more functional blocks or
adding more parallel operational FSMs.

Short-term future directions include the extension

of the FSM-CG tool to support more actual platforms
(e.g. through the Contiki O.S. (Dunkels et al., 2004))
and validation of the proposed solution on more real-
istic usage scenarios.

Longer-term future works will investigate how to
ease discovery and distribution of intelligence to sup-
port composition of WSN applications over multiple
nodes. These works will leverage the ability of the
proposed solution to turn a WSN application into a set
of composable blocks exposing services, which can
be eventually be discovered and executed remotely.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge partial funding of
this work by the regional project “Piattaforma Tecno-
logica Innovativa per l’Internet of Things”.

REFERENCES

Angelov, C. and Sierszecki, K. (2004). A Software Frame-
work for Component-Based Embedded Applications.
11th Asia-Pacific Software Engineering Conference,
pages 655–662.

Angelov, C. and Sierszecki, K. (2006). A Component-
Based Framework for Distributed Control Systems.
32nd EUROMICRO Conference on Software En-
gineering and Advanced Applications (EUROMI-
CRO’06), pages 20–27.

Bakshi, A., Prasanna, V. K., Reich, J., and Larner, D.
(2005). The abstract task graph: a methodology for
architecture-independent programming of networked
sensor systems. InProceedings of the 2005 workshop
on End-to-end, sense-and-respond systems, applica-
tions and services, EESR ’05, pages 19–24, Berkeley,
CA, USA. USENIX Association.

Bonnet, P., Gehrke, J., and Seshadri, P. (2001). Towards
sensor database systems. InProceedings of the Second
International Conference on Mobile Data Manage-
ment, MDM’01, pages 3–14, London, UK. Springer-
Verlag.

Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J.,
Helmy, A., Huang, P., McCanne, S., Varadhan, K.,
Xu, Y., and Yu, H. (2000). Advances in network sim-
ulation. Computer, 33(5):59–67.

Ciciriello, P., Mottola, L., and Picco, G. P. (2006). Build-
ing virtual sensors and actuators over logical neigh-
borhoods. InProceedings of the international work-
shop on Middleware for sensor networks, MidSens
’06, pages 19–24, New York, NY, USA. ACM.

Cota, C., Aguilar, L., and Licea, G. (2010). A java
compatible virtual machine as an embedded mid-
dleware for wireless sensor networks. InElectron-
ics, Robotics and Automotive Mechanics Conference
(CERMA), 2010, pages 265 –270.

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

94

Dearle, A., Balasubramaniam, D., Lewis, J., and Morri-
son, R. (2008). A component-based model and lan-
guage for wireless sensor network applications. In
Proceedings of the 2008 32nd Annual IEEE Interna-
tional Computer Software and Applications Confer-
ence, pages 1303–1308, Washington, DC, USA. IEEE
Computer Society.

Dunkels, A., Grönvall, B., and Voigt, T. (2004). Contiki
- a lightweight and flexible operating system for tiny
networked sensors. InWorkshop on Embedded Net-
worked Sensors, Tampa, Florida, USA.

Ghercioiu, M. (2005). A graphical programming approach
to wireless sensor network nodes. InSensors for In-
dustry Conference, 2005, pages 118 –121.

Gravina, R., Guerrieri, A., Fortino, G., Bellifemine, F., Gi-
annantonio, R., and Sgroi, M. (2008). Development of
body sensor network applications using spine. InSys-
tems, Man and Cybernetics, 2008. SMC 2008. IEEE
International Conference on, pages 2810 –2815.

Juntunen, J., Kuorilehto, M., Kohvakka, M., Kaseva, V.,
Hannikainen, M., and Hamalainen, T. (2006). Wsn
api: Application programming interface for wireless
sensor networks. InPersonal, Indoor and Mobile Ra-
dio Communications, 2006 IEEE 17th International
Symposium on, pages 1–5.

Köpke, A., Swigulski, M., Wessel, K., Willkomm, D., Han-
eveld, P. T. K., Parker, T. E. V., Visser, O. W., Lichte,
H. S., and Valentin, S. (2008). Simulating wire-
less and mobile networks in omnet++ the mixim vi-
sion. InProceedings of the 1st international confer-
ence on Simulation tools and techniques for commu-
nications, networks and systems&workshops, Simu-
tools’08, pages 71:1–71:8, ICST, Brussels, Belgium,
Belgium.

Kuorilehto, M., Hännikäinen, M., and Hämäläinen, T. D.
(2008). Rapid design and evaluation framework for
wireless sensor networks.Ad Hoc Netw., 6(6):909–
935.

Levis, P., Lee, N., Welsh, M., and Culler, D. (2003). Tossim:
accurate and scalable simulation of entire tinyos appli-
cations. InProceedings of the 1st international con-
ference on Embedded networked sensor systems, Sen-
Sys’03, pages 126–137, New York, NY, USA. ACM.

Levis, P., Madden, S., and Gay, D. (2004).TinyOS: An
Operating System for Sensor Networks. Ambient In-
telligence edited by W. Weber, J.Rabaey, and E. Aarts.

Madden, S. R., Franklin, M. J., Hellerstein, J. M., and
Hong, W. (2005). Tinydb: an acquisitional query
processing system for sensor networks.ACM Trans.
Database Syst., 30:122–173.

Marron, P. J., Karnouskos, S., Minder, D., and the
CONET consortium (2009).Roadmap on Cooperat-
ing Objects. Kluwer Academic Publishers, Luxem-
bourg, EU.

Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., and
Voigt, T. (2006). Cross-level sensor network simu-
lation with cooja. InLocal Computer Networks, Pro-
ceedings 2006 31st IEEE Conference on, pages 641–
648.

Quantum Leaps (2011). The qp framework.
http://www.state-machine.com/.

Rubio, B., Diaz, M., and Troya, J. (2007). Programming
approaches and challenges for wireless sensor net-
works. In Systems and Networks Communications,
2007. ICSNC 2007. Second International Conference
on, page 36.

Shaylor, N., Simon, D. N., and Bush, W. R. (2003). A java
virtual machine architecture for very small devices.
SIGPLAN Not., 38:34–41.

Song, Z. Y., Mostafizur, M., Mozumdar, R., Tranchero,
M., Lavagno, L., Tomasi, R., and Olivieri, S. (2010).
Hy-sim: model based hybrid simulation framework
for wsn application development. InProceedings of
the 3rd International ICST Conference on Simulation
Tools and Techniques, SIMUTools ’10, pages 87:1–
87:8, ICST, Brussels, Belgium, Belgium.

Varga, A. (1999). Using the omnet++ discrete event simu-
lation system in education. InIEEE Transactions on
Education, volume 42, page 11 pp.

Varga, A. (2000). The OMNET ++ Discrete Event Simula-
tion Event. Proceedings of the European Simulation
Multiconference (ESM’2001).

Wada, H., Boonma, P., Suzuki, J., and Oba, K. (2007).
Modeling and executing adaptive sensor network ap-
plications with the matilda uml virtual machine. In
Proceedings of the 11th IASTED International Con-
ference on Software Engineering and Applications,
pages 216–225, Anaheim, CA, USA. ACTA Press.

A SERVICE-DRIVEN DEVELOPMENT TOOL FOR WIRELESS SENSOR NETWORK

95

