SOLVING THE LOCK HOLDER PREEMPTION PROBLEM
IN A MULTICORE PROCESSOR-BASED VIRTUALIZATION LAYER
FOR EMBEDDED SYSTEMS

Hitoshi Mitake, Yuki Kinebuchi, Tsung-Han Lin and Tatsuo Nakajima
Department of Computer Science and Engineering, Waseda University, Tokyo, Japan

Keywords:

Abstract:

Virtualization Technologies, Real Time Systems, Embedded Systems.

In this paper, we explain the reason why the Lock Holder Preemption(LHP) problem is serious when using a

multi-core processor based virtualization layer. Then, we introduce two new techniques for avoiding the LHP
problem. The existing techniques and new proposed techniques have been implemented on our virtualization
layer called SPUMONE, and we measured the results showing that the proposed new techniques reduce the
semantic gap to use a virtualization layer on a multi-core processor in embedded systems.

1 INTRODUCTION

As predicted by the Moore’s law, today’s computer
systems have become significantly powerful. The
powerful computing platforms make it possible to vir-
tualize the platforms to execute multiple operating
systems on a single processor. In server side comput-
ing, virtualization already became a de-facto standard
technology, mainly for integrating multiple servers.
In this field, virtualization significantly reduces the
cost of engineering, management, and hardware re-
sources.

Increasing the number of processor cores is be-
coming popular trend in current embedded systems.
This trend is very attractive because multi-core pro-
cessors containing several cores that run at the low
clock frequency require less energy than processors
containing only one core and running at the high clock
frequency, if the parallelism of applications is well ex-
ploited. This benefit, reducing energy consumption,
is especially important for embedded devices because
they may run with limited batteries.

However, developing dedicated software for ev-
ery rich functional device introduces a significant
engineering cost. Reusing existing software is the
most important approach not to increase the cost of
highly functional embedded systems. The virtualiza-
tion technology offers a possibility to reuse existing
software without modifying it. Therefore, this ap-
proach reduces the development cost significantly.

A traditional RTOS is suitable for executing real-

Mitake H., Kinebuchi Y., Lin T. and Nakajima T..

time applications, but lacks the huge software library
that GPOSes like Linux have. Developing modern
embedded devices with both rich interfaces and guar-
anteed real-time responsiveness by using either GPOS
or RTOS is a very difficult task. So running the two
types of OSes on the same device is a promising ap-
proach to combine the best of both worlds. Espe-
cially on multicore processor based embedded sys-
tems, sharing one core by several OSes is effective to
use the CPU resource efficiently. If the interference
between OSes is severe, the cores should be statically
assigned to respective OSes. But this approach might
produce high amounts of processors’ idle time, and
from a hardware cost perspective, it is not economi-
cal.

For increasing the throughput of GPOS, SMP
OSes are becoming popular. For example, Linux cur-
rently supports SMP very well, and many applications
on Linux are already parallelized to exploit it. Be-
cause of the today’s trend of cloud computing, web
browsers became especially important for client side
computers including mobile terminals. For example,
Jones et al. showed that a web browser is similar to
a compiler because it uses a large amount of process-
ing power for lexical analyzing, syntax parsing and
rendering web pages, and has lots of potential par-
allelism (Christopher Grant Jones and Bodik, 2009).
So parallelizing web browsers is an efficient approach
to reduce energy consumption and to utilize SMP OS
efficiently. The virtualization layer allows both SMP
OS and RTOS to coexist on the same multi-core pro-

SOLVING THE LOCK HOLDER PREEMPTION PROBLEM IN A MULTICORE PROCESSOR-BASED VIRTUALIZATION LAYER FOR EMBEDDED 369

SYSTEMS.
DOI: 10.5220/0003800603690377

In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2012), pages 369-377

ISBN: 978-989-8565-00-6

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

cessor. As described above, this approach reduces the
development cost by reusing software significantly.

When RTOS and SMP GPOS share one SMP sys-
tem, there is a possibility that the RTOS preempts
the SMP GPOS even when the SMP GPOS executes
a code in a critical section. This preemption may
cause critical performance degradation of the SMP
GPOS. The problem is called the lock holder preemp-
tion (LHP) problem. The existing solution for solving
the problem is called the delayed preemption tech-
nique (Uhlig et al., 2004). When a kernel thread of
SMP GPOS executes a critical section, RTOS is pro-
hibited to preempt the SMP GPOS. Thus, the LHP
problem does not occur, and there is no throughput
degradation of GPOS. However, the technique de-
creases the real-time responsiveness of RTOS as de-
scribed in Section 5 because the critical section in
GPOS like Linux is not enough short.

In this paper, we propose two new techniques for
avoiding the LHP problem. Both techniques rely on
the vCPU migration mechanism to migrate a virtual
core implemented by a virtualization layer among
physical cores. The first technique is called the trap
based migration technique, and the second technique
is the on demand migration technique. The two tech-
niques have different tradeoffs in terms of real-time
responsiveness and overhead. Each system needs to
choose the suitable one by taking into account the
tradeoffs of both techniques and the requirements of
each system. We have implemented the delayed pre-
emption technique and the proposed two techniques
on SPUMONE, a virtualization layer developed in our
research group. We also show the evaluation results
of the three techniques. The results present the merits
and demerits of each technique clearly.

The rest of the paper is structured as follows.
We first explain the LHP problem and show the ef-
fect on SPUMONE in Section 2. In Section 3,
we present an overview of SPUMONE. Section 4
presents the delayed preemption technique and the
effect on SPUMONE. In the section, two new tech-
niques are also proposed and we show how to imple-
ment them in SPUMONE. The evaluation of the new
techniques to avoid the LHP problem is shown in Sec-
tion 5 and Section 6 summarizes the paper.

2 THE LOCK HOLDER
PREEMPTION(LHP) PROBLEM
IN AVIRTUALIZATION LAYER

The LHP problem occurs in SMP OS in the following
situation: on a virtualization layer, multiple OSes may

370

run simultaneously on the same core. We assume that
RTOS uses one virtual core, and SMP GPOS uses two
virtual cores offered by a virtualization layer. We also
assume that the virtual core for RTOS and one virtual
core of SMP GPOS share the first physical core and
the other virtual core used by SMP GPOS that runs
on the second physical core. Now, a virtual core used
by SMP GPQOS holds a spin lock, and the virtual core
used by RTOS becomes ready and preempts the ex-
ecution of the virtual core of SMP GPOS. When an-
other virtual core of SMP GPOS tries to acquire the
same spin lock, it needs to wait for the virtual core to
release the lock after RTOS becomes idle.

We also assume that the priority of RTOS is higher
than the priority of GPOS. This is a natural configu-
ration to use both RTOS and GPOS simultaneously.
So, the preempted GPOS cannot resume the execu-
tion until all activities in RTOS becomes idle. There-
fore, there is a high possibility that the lock holder
waits for a long time to be resumed and that other
physical cores are also stopped until RTOS becomes
idle. This degrades the throughput of SMP.GPOS sig-
nificantly. Of course, the LHP problem is well dis-
cussed is the case when multiple SMP GPOSes run
on a multi-core processor. However, the combination
of RTOS and SMP GPOS may cause more serious
performance degradation.

There is also another problem related to the LHP
problem. Typical SMP GPOSes like Linux use the in-
ter core interrupt mechanism to synchronize between
physical cores. For example, the TLB shutdown uses
the mechanism to keep the consistency of TLBs of
all physical cores. GPOSes usually assume that the
synchronization cannot be preempted by other activi-
ties. Therefore, the preemption of the synchronization
also causes significant performance degradation, and
in the worst case, it may cause the deadlock in the
GPOS kernel.

We demonstrate the effect of the LHP problem
with a virtualization layer called SPUMONE.

In this demonstration, we are using SMP Linux
as SMP GPOS and TOPPERS/JSP (which we sim-
ply call “TOPPERS”) (Toppers, 2011) as RTOS!.
Figure 1 shows the result of running the hackbench
benchmarking program (Hackbench, 2011) on Linux,
when TOPPERS consumes CPU time every 500ms.
A virtual core is assigned to TOPPERS and four vir-
tual cores are assigned to Linux. The virtual core for
TOPPERS and one virtual core for Linux shares one
physical core. Three other virtual cores for Linux use
the remaining three respective physical cores.

LTOPPERS is a open source RTOS that offers pITRON
interface, and it is used in many Japanese commercial prod-
ucts.

SOLVING THE LOCK HOLDER PREEMPTION PROBLEM IN A MULTICORE PROCESSOR-BASED

55 T T T
TOPPERS + Linux —+—
2 cores
3 cores -/
5 4 cores /4

a5 F /

Score of hackbench [second] (lower is better)
w
&
N

1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
Time consumption by RTOS [%] (500ms periodic)

Figure 1: Score of hackbench on SPUMONE when the LHP
problem does not take into account.

The X axis indicates the rate of CPU consumption
by TOPPERS, where the unit is 10%. The Y axis rep-
resents time in seconds which was required to com-
plete the execution of hackbench, where the lower
value means the hetter score with better throughput.
This graph contains three horizontal lines. Each of
these horizontal lines describes the score of hack-
bench when Linux dominates 2, 3 or 4 physical cores
without executing TOPPERS. As the graph shows,
when the CPU consumption of TOPPERS is lower
than 50%, the performance of Linux is better than
the situation where Linux dominates three dedicated
physical cores. However, when the CPU consumption
of TOPPERS becomes higher than 50%, the result
of hackbench becomes worse than when Linux dom-
inates three dedicate physical cores. Moreover, when
the CPU consumption of RTOS exceeds 80%, the re-
sult is worse than when Linux dominates only two
dedicated physical cores. The result means that the
throughput of SMP Linux is significantly degraded
when the CPU utilization of RTOS become high and
that there is a possibility that the execution of the
Linux kernel is stopped for a long time until the lock
holder in Linux is resumed.

3 AN OVERVIEW OF SPUMONE

3.1 Basic Design Principle

SPUMONE is a virtualization layer for single and
multi-core processor based embedded systems. In the
design of SPUMONE, our design is to satisfy the re-
quirements for developing a virtualization layer for
embedded systems described in (Armand and Gien,
2009). SPUMONE offers the para-virtualized inter-
face to guest OSes because most of processors for

VIRTUALIZATION LAYER FOR EMBEDDED SYSTEMS

embedded systems do not offer hardware virtualiza-
tion supports like x86. As shown in 2, the size of
SPUMONE is very small, and the overhead is also
very small. Minimum modification of guest OSes is
one of the most important requirements described in
(Armand and Gien, 2009). In our design, we decide
modify only the initialization code and the interrupt
dispatching mechanism in each guest OS. The ap-
proach was adopted VirtualLogic VLX(Armand and
Gien, 2009), and the virtualization layer has been
adopted in many commercial embedded system prod-
ucts. VLX is not open source software, so we de-
cided to develop SPUMONE. The architectures of
SPUMONE and VLX is very similar when used
on a single core processor, but the architecture of
SPUMONE is dramatically different on a muticore
processor. As described in IV.B, our architecture
does not have data structures shared by multiple phys-
ical cores, so SPUMONE does not require to use
the complex multiprocessor synchronization mecha-
nism that may cause problems in real-time systems.
Also, our architecture can use physical core more ef-
ficiently by moving a guest OS according to its work-
load, and unused physical core can be turned off to
reduce energy. L4(Heiser, 2009) is another virtual-
ization layer for embedded systems. L4 offers a high
level para-virtulization interface, and it offers the iso-
lation among guest OSes. A guest OS on L4 needs
to replace all privileged instructions, so the amount
of modification of guest OSes becomes large. In
SPUMONE, guest OSes directly invoked privileged
instructions, and radically new mechanisms to iso-
late a virtualization layer and guest OSes using mul-
ticore processors without increasing the modification
of guest OSesare offered. Therefore, SPUMONE is
a promising platform for multicore processor based-
embedded systems than traditional virtualization lay-
ers because the amount of modification of guest OSes
is significantly less than other virtualization layer.
The most important abstraction offered by
SPUMONE is vCPU. vCPU is a virtual core, and
multiple vCPUs can be multiplexed on a physical
core. Each guest OS requires a necessary number
of vCPUs, and the total number of vCPUs can ex-
ceed the number of physical cores. Figure 2 shows an
overview of SPUMONE. In the figure, SPUMONE
runs on a single core processor, and offers two vC-
PUs. One vCPU is used for RTOS and another vCPU
is used for GPOS. Each guest OS contains its own
scheduler to multiplex a set of processes implemented
in the guest OS. Therefore, each guest OS maintains
its own scheduling policy to schedule its own pro-

2The modification of a guest OS is less than 100 lines,
and the overhead is less than 2%.

371

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

[App H App H App’ User

RT H RT H RT’

‘ App || App || App GPOS

([RTOS

__..vcrU 1 veeu Ll
‘ SPUMONE ’

(CPU]

Figure 2: The structure of SPUMONE on a single core pro-
Cessor.

cesses.

SPUMONE also offers a scheduler to sched-
ule multiple vCPUs. In the current implementa-
tion, the fixed priority scheduling is used to sched-
ule RTOS and GPOS. vCPU for RTOS has always a
higher priority than the priority of vCPU for GPOS.
The vCPU for RTOS can preempt the vCPU for
GPOS anytime to ensure the real-time responsive-
ness of RTOS. The interrupt is also virtualized by
SPUMONE. SPUMONE intercepts all interrupts, and
decides which interrupt should be delivered to re-
spective guest OSes. For ensuring the real-time re-
sponsiveness of RTOS, even the interrupt handlers of
GPOS are always preempted by RTOS. When multi-
ple vCPUs executing the SMP Linux kernel are mul-
tiplexed on the same physical core, the vCPUs are
scheduled by the timesharing scheduler.

The current target processor of SPUMONE is the
SH4a architecture, which is the high-end processor
in the SuperH (Corporation, 2011) RISC processor
family. Linux, TOPPERS, and L4 currently run on
SPUMONE.

3.2 Supporting Multicore Processors

SPUMONE is currently supporting a shared memory-
based multi-core processor. Figure 3 shows the struc-
ture of SPUMONE on a multi-core processor. The
most important feature for supporting multi-core pro-
cessors is to adopt the distributed model, where each
core has its own instance of a virtualization layer.
The approach is significantly different from the tra-
ditional approach that has only one instance shared
by all physical cores. The distributed model offers
better scalability in terms of a number of physical
cores (Baumann et al., 2009). Also, the model does
not require the synchronization among cores to ac-
cess most of key data structures. Thus, the single core
version and the multicore version can share the same
binary code. This improves the maintainability of the

372

[App H App H App } User
App | App GPOS
RTOS
- o =z S Kernel
vcPUu i veeu [VCPU i
SPUMONE { SPUMONE }
[Core 0 M Core 1 }

Figure 3: The structure of SPUMONE on a multi-core pro-
Cessor.

virtualization layer significantly. Traditional virtual-
ization layers like Xen suffer significant scalability
problems because shared data structures are accessed
from multiple cores simultaneously. This is an impor-
tant design issue to reduce the overhead of virtualiza-
tion layer when they are used on multicore processors.
However, as described in Section I, the LHP prob-
lem need to be solved to utilize multicore processors
effectively.

In Figure 3, we assume that SPUMONE runson a
dual core processor. Each core executes a separate in-
stance of SPUMONE. The SPUMONE instance run-
ning on core 0 offers two vCPUs and the instance run-
ning on core 1 offers one vCPU. One vCPU of core 0
is used by RTOS and another vCPU of core 0 is used
by GPOS. The vCPUs of core 1 is also used by GPOS.
Thus, GPOS has two vCPUs. The configuration may
cause the LHP problem when the vCPU on core 0 for
GPOS is preempted by the vCPU for RTOS.

In SPUMONE, the mapping between vCPUs and
physical cores is dynamically changed according to
the current situation of guest OSes. If the total uti-
lization of guest OSes becomes low, all vCPUs may
share only one core and the power of other cores can
be turned off. This approach offers a possibility to
reduce the power consumption significantly. Also,
when RTOS becomes idle, GPOS can use the entire
utilization of a multicore processor. This means that
multiple vCPUs used by an SMP GPOS may share
the same physical core to utilize multicore proces-
sors more efficiently according to the current situa-
tion. However, for achieving the maximum through-
put, the LHP problem should be taken into account.

For realizing the flexible management of a mul-
ticore processor, SPUMONE offers a mechanism
called the vCPU migration mechanism. The mecha-
nism moves vCPU from one physical core to another
physical core. The images of guest OSes reside in the
shared memory, so the mechanism just copies only
the register states between different SPUMONE in-
stances. The mechanism uses inter core interrupts to
synchronize between physical cores. A more detailed

SOLVING THE LOCK HOLDER PREEMPTION PROBLEM IN A MULTICORE PROCESSOR-BASED

implementation will be explained in the next section
because the vCPU migration mechanism is a key un-
derlying infrastructure for the new techniques to avoid
the LHP problem.

The multicore version of SPUMONE runs on
the MSRP1 board developed by Hitachi and Rene-
sas. The board contains a multicore processor called
RP1, which consists of four SH4a cores and 128MB
DRAM as main memory. The memory is shared by
all cores.

4 IMPLEMENTATION TO AVOID
THE LHP PROBLEM ON
SPUMONE

Currently, we are using Linux as SMP GPOS and
TOPPERS as RTOS. In this section, we describe how
we implemented techniques to avoid the LHP prob-
lem on SPUMONE.

4.1 Implementation of the Delayed
Preemption Technique

In order to compare the effectiveness of the delayed
preemption technique with our new techniques based
on the vCPU migration technique, we implemented
the delayed preemption technique on SPUMONE.

Our current implementation exploits the internal
structure of Linux. Every thread in Linux has its own
data structure for management. This data structure
is named struct thread_info, and it has a field named
preempt_count. preempt_count indicates whether the
thread is in the IRQ context and how many locks
the thread holds. We implemented the delayed pre-
emption technique by using the preempt_count field.
When the preempt_count field of the currently run-
ning thread becomes bigger or equal to 1, our mod-
ified Linux kernel invokes SPUMONE API to notify
to disable the preemption of Linux. When the pre-
empt_count field of the thread reaches to 0, Linux in-
vokes SPUMONE API to enable the preemption of
Linux.

When RTOS becomes ready, it can usually pre-
empt GPOS anytime. However, the delayed pre-
emption technigue does not allow RTOS to preempt
GPOS while GPOS holds a lock. Thus, the thread
dispatch of RTOS is delayed until the lock is released.
This means that the dispatch latency is degraded ac-
cording to the length to hold a lock.

VIRTUALIZATION LAYER FOR EMBEDDED SYSTEMS

User User

@ Linux @ : @
RTOS Linux ’ Linux || Linux
SPUMONE SPUMONE SPUMONE
[Core 0 N Core 1 }][Core 1]
Kernel Kernel

Figure 4: The vCPU migration mechanism.

4.2 Avoiding the LHP Problem using
the vCPU Migration Mechanism

In this section, we first describe a brief overview
of the vCPU migration mechanism of SPUMONE.
Then, we show two new techniques based on the
vCPU migration mechanism to avoid the LHP prob-
lem.

4.2.1 Implementation of the vCPU Migration

SPUMONE provides the vCPU migration mechanism
for moving vCPUs owned by guest OSes. By using
this mechanism, guest OSes can change the physical
core that executes their vCPUSs.

The vCPU migration in SPUMONE has two
types. One is departure migration, and another is re-
turn migration. In Figure 4, vCPU VC 1 runs on core
0 in the left figure. departure migration moves VC1
on core 0 to core 1 as shown in the right figure, and re-
turn migration moves VC1 from corel to core0. The
vCPU migration is invoked by using the inter core in-
terrupt mechanism.

The source core that migrates a virtual core exe-
cutes spm_cpu_migrate() to initiate the migration, and
the destination core executes accept_immigrant() to
resume the migrated vCPU. The overhead of the mi-
gration is the sum of the two functions. As shown in
Section 5.4, the overhead of the vCPU migration is
small.

4.2.2 Trap based Migration Technique

As described in Section 2, the LHP problem occurs
when one of vCPUs for Linux is preempted by TOP-
PERS while it executes a critical section in the kernel
space. In Figure 4, the situation shown in the left fig-
ure may cause the LHP problem. However, the LHP
problem occurs only when the Linux kernel executes
the kernel code. If Linux does not invoke the kernel,
the problem does not occur.

This technique does not allows Linux to execute
the kernel code on core 0. When Linux invokes a trap

373

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

instruction or receives an interrupt, departure migra-
tion is invoked and the vCPU of Linux running on
core 0 is moved to core 1. After returning from the
trap or interrupt, return migration is invoked and the
VvCPU is moved from core 1 back to core 0. This tech-
nique can be easily implemented on SPUMONE be-
cause SPUMONE intercepts all traps and interrupts
before forwarding them to guest OSes.

When using this technique, RTOS can always
preempt Linux without causing the LHP problem.
Thus, it does not degrade the real-time responsive-
ness. However, it requires to move the vCPU every
time traps and interrupts are invoked. The overhead
of moving the vCPU may become a problem if the
frequency of traps and interrupts becomes high. At
least, every interrupt causes a vVCPU migration even if
there is no user level activity.

4.2.3 On Demand Migration Technique

When using the technique, a vCPU for Linux is mi-
grated from core O to core 1 while RTOS becomes
active on-core 0. When the RTOS becomes idle, the
vCPU of Linux is backed from core 1 to core 0.

When RTOS becomes ready, departure migration
is invoked, and return migration is invoked when the
RTOS becomes idle. This technique can solve the
LHP problem because before RTOS preempts Linux,
Linux is migrated to another core.

However, before handling an interrupt of RTOS,
Linux needs to be migrated to another physical core.
The preemption of RTOS needs to wait for the com-
pletion of departure migration to move the vCPU
from core 0 to core 1. This means that the technique
increases the interrupt latency, but this increased la-
tency can be bounded by the worst case latency of
the departure migration. The technique requires to
invoke the vCPU migration mechanism, whenever
RTOS becomes active or idle. This means that ev-
ery timer interrupt causes the vCPU migration even if
there is no active thread on RTOS.

5 EVALUATION

In this section, we show the evaluated results of the
delayed preemption technique and of the new tech-
niques based on the vCPU migration mechanism. We
especially measured the following two performance
aspects:

Dispatch latency of RTOS.
Maximum throughput of GPOS.

In our evaluation, the dispatch latency of RTOS
means the elapsed time to activate the highest priority

374

thread after an interrupt that makes the thread ready is
received by a processor.

The maximum throughput of GPOS shows the ef-
fect of the proposed solution. In the measurement,
there are two possibilities to degrade the throughput
of GPOS. The first possibility is caused by the LHP
problem, and the second possibility is caused by the
overhead of the proposed technique. Our solutions
can solve the LHP problem, but if the overhead is big,
the solutions may degrade the throughput.

In the following subsections, we show the results
of the two aspects, and interpret their significance.

5.1 Evaluation Environment

When executing both- TOPPERS and Linux on the
multicore processor, one physical core multiplexes
one VCPU for TOPPERS and one vCPU for Linux.
The other three vCPUs for Linux run on dedicated
physical cores. departure migration moves the vCPU
of Linux to another physical core. In this case, two
VCPUs. for Linux share the same physical core. -In
the measurement, at the begginning, we do not take
into account the LHP problem caused when multiple
VvCPUs for Linux are executed on one physical core.
Our focus is the LHP problem when SMP Linux is
preempted by TOPPERS, but as shown later, the LHP
problem within SMP Linux also causes serious per-
formance degradation, and needs to be taken into ac-
count.

5.2 The Impact on RTOS Dispatch
Latency

In this experiment, a periodic task runs every 1ms.
It is sampled 100,000 times during the measurement.
The dispatch latency is the time spent from the inter-
rupt triggered until the periodic task starts its execu-
tion. Only the periodic task is executed on TOPPERS
which means that no other task on TOPPERS will pre-
vent the execution of the periodic task.

Figure 5, 6 and 7 show the dispatch latency in
TOPPERS where running hackbench on Linux2. Our
approach improves the dispatch latency significantly
compared to the delayed preemption technique. The
reason of this improvement is that our approach does
not execute the Linux kernel with RTOS at the same
time. When RTOS becomes runnable, vCPU execut-
ing Linux is migrated to another core. The source of
the increase of interrupt latency is the time to disable

3The avarage is 24.09 jt when using the delayed preemp-
tion technique, 2.30 p when using the trap based migration
technique, and 4.71p when using the on demand migration
technique.

SOLVING THE LOCK HOLDER PREEMPTION PROBLEM IN A MULTICORE PROCESSOR-BASED

10000

"delay

1000

100 -

Sample [num]

. .
40 60 80 100 120
Delay [us]

Figure 5: Dispatch latency with the Delayed Preemption
technique.

10000

"delay

1000 |

Sample [num]
"
5
8

0 5 10 15 20 25 30
Delay [us]

1 ‘ ‘ L

Figure 6: Dispatch latency with the Trap based Migration
technique.

interrupts. In the Linux kernel, there are many places
to disable interrupts and they have a significant impact
on the dispatch latency.

As shown in , the dispatch latency without the mi-
gration based techniques is almost the same as the la-
tency when using them. Thus, the techniques solve
the LHP problem significantly, but also they do not
degrade the dispatch latency.

5.3 The Impact on GPOS Throughput

We compared the score of the hackbench benchmark
which evaluates the scalability of the number of cores
with Linux running on the top of four dedicated cores
(indicated as four cores in the Figure 8 and Figure 9),
Linux running on the top of three dedicated cores and
one core shared with TOPPERS in various workloads
(xx% in the figures), and Linux running on the top
of three dedicated cores (indicated as three cores in
the figures). The task on TOPPERS is executed in
the cycle of 500 ms. The percentage shows the ratio

VIRTUALIZATION LAYER FOR EMBEDDED SYSTEMS

10000

" delay

1000 ¢

Sample [num]
=
1)
3

|
40

0 20

60 80 100
Delay [us]

Figure 7: Dispatch latency with the On Demand Migration
technique.

T T T
Previous SPUMONE —+—

Delayed Preemption Mechanism -
2cores -

8 [3 cores 4

4 cor
Trap based vCPU Migration
On demand based vCPU Migration -- -e-

Score of hackbench [second)] (lower is better)
IS o
. ©
9

b o ﬁ
F P
4
| . I
! 4 I I I L

.
0 10 20 30 40 50 60 70 80 9
Time consumption by RTOS [%] (500ms periodic)

Figure 8: The hackbench scores in Four Configurations(1).

of the execution time of the periodic task against the
cycle (30% means that the task is executed for 150 ms
continuously).

The hackbench program executing on SMP Linux
that has four vCPUs. One of the vCPUs shares a phys-
ical core with the vCPU of TOPPERS. In the evalu-
ation, we change the utilization of a periodic task on
RTOS.

When the utilization of RTOS is high, the possi-
bility to preempt critical sections and cause the LHP
problem becomes high. Hackbench creates many pro-
cesses that communicate each other. Hackbench is
executed in the kernel almost of the entire time. The
score becomes better when the kernel overhead is low.
When the LHP problem occurs, the kernel remains
busy waiting for a long time. Thus, the LHP problem
makes the score of hackbench bad. We consider that
this benchmark is suitable to measure the worst case
effect of the LHP problem.

Figure 8 shows the score of hackbench in four
configurations. The first configuration does not use
any techniques to avoid the LHP problem. The result

375

PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems

shows that the LHP problem significantly degrades
the throughput of hackbench. The second configu-
ration shows the result when the delayed preemption
technique is used. The result indicates the technique
solves the LHP problem, and the utilization of RTOS
proportionally affects the score of hackbench. How-
ever, as shown in the previous section, the technique
increases the dispatch latency of RTOS significantly.
The third configuration adopts the trap based migra-
tion technique. The result is not good as we expected
due to the overhead of virtual core migration mech-
anism because hackbench invokes system calls very
frequently. The last configuration adopts the on de-
mand migration technique. This configuration can
improve the throughput significantly because the ap-
proach solves the LHP problem, and the overhead is
small.

However, the results of the figure show that the
throughput achieved by our techniques is not as good
as the delayed preemption technique is used. When
using our proposed approach, some virtual cores used
by SMP Linux share the same physical core. Because
the VCPUs are scheduled by the time sharing sched-
uler in SPUMONE, the execution of a critical section
in the Linux kernel may be preempted by the other
VvCPUs executing the SMP Linux kernel, thus it might
cause another LHP problem. For solving this LHP
problem within SMP Linux, we modified SMP Linux
to yield the vCPU when the length of busy waiting for
entering a critical section exceeds a pre-determined
threshold. Figure 9 shows the results when apply-
ing the technique. In this case, the LHP problem
is completely solved without degrading real-time re-
sponsiveness.

The above discussion shows that the trap based
migration technique solves the LHP problem, but also
that the overhead to invoke frequent vCPU migrations
is high, so the GPOS throughput does not improved
when the utilization of RTOS is high. On the other
hand, the on demand migration technique improves
the GPOS throughput dramatically without degrading
real-time responsiveness. Thus, the results show that
the on demand migration technique is well fit to be
used in embedded systems.

5.4 Overhead of the vCPU Migration
Mechanism

As we described in Section 4.2.1, the main source of
overhead of the vCPU migration mechanism occurs
in accept_immigrant() and smp_cpu_migrate(). Figure
12 shows the measured costs of the two functions in
the departure migration and return migration. The
sum of the costs of the two functions indicates the ac-

376

T T T
Previous SPUMONE —+—
Delayed Preemption Mechanism
s
8 3 cores
4 cores ———-
Trap based vCPU Migration ---&
On demand based vCPU Migration -- -e-

Score of hackbench [second] (lower is better)
IS @
o
8
: \ 3
L | | | | | |

.
0 10 20 30 40 50 60 70 80 90
Time consumption by RTOS [%] (500ms periodic)

Figure 9: The hackbench scores in Four Configurations(2).

Migration path [spm_cpu-migrate() [accept_immigrant()

Departure migration 24.9ps 28.0ps
Return migration 38.1us 12.0us

Figure 10: Overhead of the vCPU migration.

tual cost of the vCPU migration, which is about 50s.

If the frequency of vCPU migration is increased,
the overhead to avoid the LHP problem is also in-
creased. The result shows that the effectiveness of the
proposed techniques depends on the workload run-
ning on Linux. Also, it depends on the workload of
real-time applications. Especially, the utilization of
real-time activities and the frequency of resuming and
suspending RTOS have significant impact on the ef-
fectiveness of the proposed techniques.

6 CONCLUSIONS

When a virtualization layer supports a shared mem-
ory based multi-core processor, the LHP problem be-
comes very serious. The existing technique called
the delayed preemption technique solves the problem
and exploits the maximum merits of multicore pro-
cessors. However, this technique decreases the real-
time responsiveness of RTOS. The existing solution is
adopted in virtualization layers for enterprise servers
because the maximum throughput is the most critical
design criteria in this area. However, is is not appro-
priate for embedded systems, which need to satisfy
the real-time constraints. We proposed two new tech-
niques based on the vCPU migration mechanism to
avoid the LHP problem. The measure results show
that the trap based migration technique reduces dis-
patch latency and solves the LHP problem. However,
it does not improve the GPOS throughput due to the
overhead of frequent vCPU migration due to system

SOLVING THE LOCK HOLDER PREEMPTION PROBLEM IN A MULTICORE PROCESSOR-BASED

calls. On the other hand, the on demand migration
technique solves the LHP problem and reduces the
dispatch latency. Also, the overhead is not large, so
the GPOS throughput is not degraded. Therefore, the
on demand migration technique is well fit to be used
in embedded systems.

REFERENCES

Hackbench. (2011). http://people.redhat.com/mingo/cfs-
scheduler/tools/hackbench.c

Toppers project. (2011). http://www.toppers.jp/en/index.
html

Armand, F. and Gien, M. (2009). A practical look at micro-
kernels and virtual machine monitors. In Proceedings
of the 6th IEEE Conference on Consumer Communi-
cations and Networking Conference, CCNC’09, pages
395-401, Piscataway, NJ, USA. IEEE Press.

Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs,
R., Peter, S., Roscoe, T., Schupbach, A., and Singha-
nia, A. (2009). The multikernel: a new os architecture
for scalable multicore systems. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles, SOSP ’09, pages 29-44, New York, NY,
USA. ACM.

Christopher Grant Jones, Rose Liu, L. M. K. A. and Bodik,
R. (2009). Parallelizing the web browser. In Proceed-
ings of the First USENIX Workshop on Hot Topics in
Parallelism.

Renesas Electronics Corporation. (2011). Superh risc en-
gine family. http://www.renesas.com/products/mpum
cu/superh/superh_landing.jsp

Heiser, G. (2009). Hypervisors for consumer electronics. In
Proceedings of the 6th IEEE Consumer Communica-
tions and Networking Conference.

Ousterhout, J. K. (1982). Scheduling techniques for concur-
rent systems. In Proceedings of Third International
Conference on Distributed Computing Systems, 1982.

Uhlig, V., LeVasseur, J., Skoglund, E., and Dannowski, U.
(2004). Towards scalable multiprocessor virtual ma-
chines. In Proceedings of the 3rd conference on Vir-
tual Machine Research And Technology Symposium -
Volume 3, Berkeley, CA, USA. USENIX Association.

VIRTUALIZATION LAYER FOR EMBEDDED SYSTEMS

377

