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Abstract: Having been constructed as trading strategies, option spreads are also used in margin calculations for offsetting
positions in options. All option spreads that appear in trading and margining practice have two, three or four
legs. It is well-known that the option spreads with three and four legs are combinations of two option spreads
with two legs, and that hedging mechanisms of these combinations consolidate hedging mechanisms of their
components. Although more complex combinations with similar properties can be traced in regulatory litera-
ture of 2003, they have not yet been studied and used. In this paper we develop a theory for the construction
of multi-leg option spreads as combinations of well-known option spreads with two, three and four legs. We
show how multi-leg option spreads with extreme properties can maximize arbitrage opportunities in trading
options and substantially reduce margin requirements for option portfolios.

1 INTRODUCTION

Option spreads with two, three and four legs such as
bull and bear spreads, butterfly, condor, iron butter-
fly, iron condor and box spreads have been known for
more than three decades and have become standard in
options trading; cf. (McMillan, 2002; Cohen, 2005;
Curley, 2008). Descriptions of more complex spreads
appeared as efficient means of margin reductions in
2003. It is important to explain how these spreads
were motivated.

1.1 Regulatory Breakthrough

By the end of the nineties, it was commonly recog-
nized that margin regulations impose excessively high
minimum margin requirements, especially for option
portfolios. This can be partially explained by the fact
that option spreads permitted for offsetting by mar-
gin regulations by that time had at most four legs.1

However, it is well-known that the more legs an op-
tion spread has the more margin reduction it gives.
As shown in (Matsypura and Timkovsky, 2011), just
one additional leg can save several thousand dollars
on margin. Thus, the reduction of minimum margin
requirements can be achieved by constructing new op-
tion spreads with a larger number of legs.

1A leg of an option spread or offset based on this spread
is a position in options with the same exercise price and
expiry date.

Option spreads with up to 12 legs appeared as
combinations of option spreads with two, three and
four legs in August 2003 when the CBOE2 proposed
new margin rules based on these combinations that
were calledcomplex spreads(CBOE, 2003). After
two revisions of this proposal (CBOE, 2004; CBOE,
2005), the SEC3 approved these rules (SEC, 2005)
and added them to NYSE Rule 431 in December
2005. In August 2007, these rules were also recog-
nized in Canada (IDA, 2007).

1.2 Motivation

The regulatory breakthrough of 2005, however, re-
ceived a limited response of the brokerage industry by
the following two reasons: firstly, the definition of the
complex spreads was given in a text form that does
not allow for complete understanding of their struc-
ture, and hence how these spreads can be utilized;
secondly, the interest to multi-leg option spreads had
been lost because the risk-based margining methodol-
ogy that had become popular in the U.S. in 2005 of-
fered computationally easier solutions. Consequently,
option spreads with more than four legs are still not
being used, primarily because they have neither been
studied nor properly understood.

Multi-leg option spreads thus call for academic re-
search that shall explain how they can be constructed,

2The Chicago Board Options Exchange.
3The U.S. Securities and Exchange Commission.
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what advantage they give, and how they can be uti-
lized in options trading and margining practice. To the
best of our knowledge, this kind of research has never
been attempted. As we show in this paper, 12 legs is
not the final step. We discover new multi-leg option
spreads that have the same hedging mechanism as that
of complex option spreads and propose a full charac-
terization of option spreads with any number of legs.
We also formulate integer programs that demonstrate
that multi-leg option spreads maximize arbitrage op-
portunities in options trading and substantially reduce
margin requirements in margin accounts with options.

2 MAIN SPREADS

A vector model of option spreads with up to four legs
was proposed in (Matsypura and Timkovsky, 2011).
In this section we give an extension of this model that
deals with option spreads of different width.

2.1 Vector Model of Option Spreads

Let d ≥ 2 be a positive integer.Option spreadsof
dimensiond are integer vectors

v = ( c1 c2 · · · cd p1 p2 · · · pd )

whose components are associated with positions in
options in a margin account as follows.

The componentc j , 1 ≤ j ≤ d, is the number of
option contracts in thejth call option series, with the
exercise priceej . Similarly, the componentp j is the
number of option contracts in thejth put option se-
ries, with the same exercise priceej .

Nonzero components represent legs. A positive,
negative or zero component means that it is a long,
short leg or a leg is absent, respectively. Azero
spread, denoted0, is a spread without legs.

Let a be a nonnegative integer. Thenav is amulti-
ple of v with factor a. A spread is said to beprime if
it is not a multiple of another spread with factor more
than one. Thus,0 is a prime spread. Ifv is a prime
spread, thena is a multiplicity of av. If not stated
otherwise, we assume further only prime spreads.

Treating spreads as vectors we can add and sub-
tract them, multiply by an integer scalar, cyclicly shift
their components and take theirtranspositions, i.e.,
create the spreads̄v, where the componentsci andpi
are transposed for alli = 1,2, . . . ,d.

We assume that the exercise prices are all different
and placed in increasing order, i.e.,e1 < e2 < · · ·< ed.
The set{e1,e2, . . . ,ed} is called anexercise domain.
If the exercise prices are separated by the same price

interval, then the length of the interval,D, is theex-
ercise differentialof the domain, and the exercise do-
main is said to beuniform. 4

In what follows, we consider only uniform exer-
cise domains and option spreads on the same exercise
domain. Therefore, it will be convenient to normal-
ize all prices and costs by divisorD. Thus, we will
further assume that all exercise prices and all option
prices have been normalized, and hence all exercise
domains have exercise differential 1.

Definition 1. Let w and k be positive integers such
that w< d and k≤ 2d, and let v1,v2, . . . ,vk be the
sequence of leg indices in a spreadv of dimension d
such that

ev1 ≤ ev2 ≤ ·· · ≤ evk

If evj+1 −evj = 0 or w for each j= 1,2, . . . ,k−1, then
v is a uniform spread of width w.

We consider only uniform spreads because only
they are being used in practice. Besides, as we con-
sider only normalized prices, the width of spreads will
always be integer in the set{1,2, . . . ,d−1}. Simplest
uniform spreads are basic spreads. They can be de-
fined as follows:

Definition 2. A basic spread is uniform and has two
legs,1 and−1, such that both legs are on the same
side, call or put. A basic spread is a basic call/put
spread if all its legs are on the call/put side. A basic
spread is a basic bull spread if its first leg is long;
otherwise it is a basic bear spread.

The first 12, 8, 4 spreads in Tables 1, 2, 3, present
all basic spreads of width 1, 2, 3 and dimension 4,
respectively. The abbreviations “dr” and “cr” mark
debit spreadsandcredit spreads. 5

Definition 3. All basic spreads are two-leg main
spreads. Letu and v, whereu 6= −v, be a basic
bull spread and a basic bear spread, respectively, of
the same width w, and letu+ v be a uniform spread
of width w. Thenu+ v is a three- or four-leg main
spread of width w.

Although our attention will be focused on the case
of dimension four, all further results are valid for
any dimension higher than four. The set of all main
spreads of width 1, 2, 3 and dimension 4 is presented
in Tables 1, 2, 3, respectively. Note that butterfly and

4Exercise prices of listed options of the same expiration
date generate a uniform exercise domain. For example, ac-
cording tohttp://finance.google.com, as of 02-AUG-2011,
5:50PM, exercise prices of options on the IBM stock listed
in NYSE and expiring on 20-AUG-2011 generated the uni-
form exercise domain{85,90, . . . ,270} of dimension 38.

5The termdebit/credit indicates that the spread is a re-
sult of anet debit/credit transaction, respectively.
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Table 1: Main spreads of width 1 and dimension 4.

spread spread name calls puts legs net

a 1st bull call 1 -1 2 dr
b 2nd bull call 1 -1 2 dr
c 3rd bull call 1 -1 2 dr
e 1st bull put 1 -1 2 cr
f 2nd bull put 1 -1 2 cr
g 3rd bull put 1 -1 2 cr

-a 1st bear call -1 1 2 cr
-b 2nd bear call -1 1 2 cr
-c 3rd bear call -1 1 2 cr
-e 1st bear put -1 1 2 dr
-f 2nd bear put -1 1 2 dr
-g 3rd bear put -1 1 2 dr

a−b 1st long call butterfly 1 -2 1 3 dr
b−a 1st short call butterfly -1 2 -1 3 cr
b−c 2nd long call butterfly 1 -2 1 3 dr
c−b 2nd short call butterfly -1 2 -1 3 cr

e− f 1st long put butterfly 1 -2 1 3 cr
f−e 1st short put butterfly -1 2 -1 3 dr
f−g 2nd long put butterfly 1 -2 1 3 cr
g− f 2nd short put butterfly -1 2 -1 3 dr

a−c long call condor 1 -1 -1 1 4 dr
c−a short call condor -1 1 1 -1 4 cr

e−g long put condor 1 -1 -1 1 4 dr
g−e short put condor -1 1 1 -1 4 cr

a−e 1st long box 1 -1 -1 1 4 dr
e−a 1st short box -1 1 1 -1 4 cr
b− f 2nd long box 1 -1 -1 1 4 dr
f−b 2nd short box -1 1 1 -1 4 cr
c−g 3rd long box 1 -1 -1 1 4 dr
g−c 3rd short box -1 1 1 -1 4 cr

a− f 1st long call iron butterfly 1 -1 -1 1 4 dr
f−a 1st short call iron butterfly -1 1 1 -1 4 cr
b−g 2nd long call iron butterfly 1 -1 -1 1 4 dr
g−b 2nd short call iron butterfly -1 1 1 -1 4 cr

e−b 1st long put iron butterfly -1 1 1 -1 4 cr
b−e 1st short put iron butterfly 1 -1 -1 1 4 dr
f−c 2nd long put iron butterfly -1 1 1 -1 4 cr
c− f 2nd short put iron butterfly 1 -1 -1 1 4 dr

e−c long put iron condor -1 1 1 -1 4 cr
c−e short put iron condor 1 -1 -1 1 4 dr
a−g long call iron condor 1 -1 -1 1 4 dr
g−a short call iron condor -1 1 1 -1 4 cr

condor spreads, iron butterfly and iron condor spreads
of width 2 or 3 and dimension 4 do not exist.

Theorem 1. The number of main spreads of width w
and dimension d is n(w,d) =

6(d−w)+8max{0,d−2w}+8max{0,d−3w}.

Proof A direct count shows that for fixedw and
d the numbers of bull, bear or box spreads, but-
terfly or iron butterfly spreads, and condor or iron
condor spreads are 2(d−w), 4max{0,d− 2w}, and
4max{0,d−3w}, respectively.

2.2 Portfolios and Linear Combinations
of Main Spreads

Let A denote the 2d×n matrix, where

n=
d−1

∑
w=1

n(w,d)

whose columns are all main spreads of dimensiond.
If A(w,d) is the matrix of main spreads of widthw
and dimensiond, then
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Table 2: Main spreads of width 2 and dimension 4.

spread spread name calls puts legs net

a 1st bull call 1 -1 2 dr
b 2nd bull call 1 -1 2 dr
e 1st bull put 1 -1 2 cr
f 2nd bull put 1 -1 2 cr

-a 1st bear call -1 1 2 cr
-b 2nd bear call -1 1 2 cr
-e 1st bear put -1 1 2 dr
-f 2nd bear put -1 1 2 dr

a−e 1st long box 1 -1 -1 1 4 dr
e−a 1st short box -1 1 1 1 4 cr
b− f 2nd long box 1 -1 -1 1 4 dr
f−b 2nd short box -1 1 1 -1 4 cr

Table 3: Main spreads of width 3 and dimension 4.

spread spread name calls puts legs net

a 1st bull call 1 -1 2 dr
e 1st bull put 1 -1 2 cr

-a 1st bear call -1 1 2 cr
-e 1st bear put -1 1 2 dr

a−e 1st long box 1 -1 -1 1 4 dr
e−a 1st short box -1 1 1 -1 4 cr

A = [ A(1,d) A(2,d) · · · A(d−1,d) ]
In what follows, an integer column vector of sizen
with nonnegative components will be associated with
the portfolio of main spreads taken in quantities equal
to the components of this vector. Such vectors consti-
tute aportfolio space.

An integer column vector of size 2d will be asso-
ciated with a spread, as we described in Section 2.1.
Such vectors constitute aspread space. Further, all
vectors in the portfolio/spread space will be denoted
by italic/direct bold letters.

Thus, the matrixA, as a left multiplier, transforms
portfolios of main spreads into linear combinations of
main spreads. As we show in Section 5, a portfolio of
main spreads can have multiple representations in the
form of linear combination of main spreads.

According to this assumptions, a main spread can
be presented in the following two forms:
• as a column vector of sizen whoseith component

is 1 and the other components are 0s, that is de-
noted byei (a presentation in theportfolio space);
the indexi will be dropped if the main spread is
not specific; or

• as a column ofA, i.e., as a column vector of size
2d, that is denoted bybi , if the main spread is the
ith column ofA, or byb if the main spread is not
specific (a presentation in thespread space).

These forms are obviously related by the equation
Aei = bi

2.3 Market Risk of Main Spreads

It is well known that debit spreads are free of mar-
ket risk, i.e., they have no loss associated with un-
derlying instrument price changes, cf. (Cohen, 2005)
or (McMillan, 2002) for a detailed discussion. Credit
spreads, in contrast, are not free of market risk.

The maximum loss on a prime credit spread asso-
ciated with underlying instrument price changes is its
width in all cases except for ashort call iron butterfly
and ashort call iron condorfor which the maximum
loss is two widths. Therefore, the market risk of a
main spreadb is the integer

m(b) =



























0 if b is a debit spread,
2w if b is

a short call iron butterfly
or short call iron condor
spread,

w otherwise.

(1)

In this paper, we consider the market risk of a main
spread to be its maintenance margin requirement.

Moreover, we consider only maintenance margin
requirements. Details related to a justification of the
market risk as a measure of maintenance margin re-
quirements and discussions on the relationship be-
tween maintenance and initial margin requirements
for main spreads can be found in (Matsypura and
Timkovsky, 2011). In what follows, the term “mar-
gin” will stand for a maintenance margin requirement.
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3 COMPLEX SPREADS

The regulatory amendment of December 14, 2005,
initiated by the CBOE, was motivated by the obser-
vation that some combinations of main spreads have
the same risk profile as single main spreads. This can
be explained by the fact that the summation of main
spreads in such a combination turns out to be also a
main spread that is a resulting spread. These combi-
nations were namedcomplex spreads. The margin of
a complex spread is exactly the margin of its resulting
spread (CBOE, 2003).

3.1 Table of Complex Spreads

Ten of the complex spreads are presented in Ta-
ble 4. The other ten are their transpositions, where the
names of the components have the words “call” and
“put” interchanged. Negations of these 20 produce
another 20, where the names of the components have
the words “long” and “short” interchanged. Thus, Ta-
ble 4 defines a total of 40 complex spreads. As com-
plex spreads 1 and 2, 4 and 5, 7 and 8 are isomorphic,
there exist only seven types of the complex spreads.6

Note that there are no complex spreads of width
more than 1 and dimension 4 because otherwise they
would involve as components butterfly spreads of
width more than 1, which do not exist.

3.2 Advantage of Complex Spreads

The margins of complex spreads are exactly the mar-
gins of their resulting spreads, cf. (CBOE, 2003); and
a complex spread is anoffsetif its margin is less than
the total margin of its components. Hence, not all
complex spreads are offsets.

For example, the complex spread 6 in Table 4 has
three components: the 1st long call butterfly spreads
b− c, the 2nd long call butterfly spreada−b and the
3rd bull call spreadc. All the three are debit spreads.
By formula (1), the market risks for these spreads are
zeros. The resulting spread is the 1st bull call spread

6The regulatory definitions given in SEC Release 34-
52738, the CBOE Regulatory Circular and NYSE Rule 431
imply only these seven types. The CBOE gave some of
complex spreads the same names as those of their result-
ing main spreads. To avoid confusions, we do not use these
names. We should also emphasize that this paper presents
our mathematical interpretation of CBOE’s informal defini-
tions of complex spreads in a text form. Our goal was to
follow the idea given in the definitions as close as possible
and, at the same time, avoid inconsistencies that we found
in them. Any omission that someone may find in our math-
ematical interpretation of CBOE’s complex spreads will be
our responsibility.

a, which is also a debit spread. Therefore, the mar-
gin of the complex spread 6 is also zero. Thus, it is
not an offset, and there is no advantage of using it
for margin reductions. It is not hard to verify that all
complex spreads in Table 4 are not offsets. However,
their negations are offsets.

For example, since the bear call spread−a is a
credit spread, the margin of the negation of the com-
plex spread 6 isw, while the total margin ofb−a,
c−b and −c, which are all credit spreads, is 3w.
Thus, the negation of the complex spread 6 is an offset
with advantage 2w.

In general, if a complex spread with the resulting
debit or credit spread is an offset, then it reduces the
total margin of its components bykw or (k−1)w, re-
spectively, wherek is the number of credit compo-
nents. Thus, the negations of the complex spreads 1
through 5, 6 through 9 and 10 reduce the margin by
w, 2w and 3w, respectively.

4 BEYOND COMPLEX SPREADS

Complex spreads are constructed as summations of
bull/bear spreads, long/short butterfly spreads and
long/short box spreads; cf. Table 4.

Developing the idea of complex spreads, we give
in this section definitions of other multi-leg spreads as
more general combinations of main spreads that we
call centipedesandmillipedes. 7

4.1 Centipedes

Definition 4. A centipede is a set of main spreads
such that their linear combination with nonegative
integer coefficients is a nonzero multiple of a main
spread, which is the resulting spread of the centipede.

A nonzero multiple of a main spread, obviously,
generates atrivial centipedeby itself. The margin rule
for complex spreads we formulated in the preamble of
Section 3 naturally applies to centipedes because they
have the same risk profiles as their resulting spreads.

Let a be a positive integer,0 be a zero vector of
sizen, and letb be a main spread. Then centipedes

7Centipedes, as all other creatures, have even number of
legs (one pair of legs per body segment), and this number
can reach 200 and more. Centipedes usually do not bite hu-
mans but a few species, when provoked, can bite inflicting
painful wounds. Millipedes are creatures with number of
legs multiple of four (two pairs of legs per body segment).
Some species have over 400 legs. Millipedes are not preda-
tors as centipedes.– Wikipedia(terrestrial animals). It can
be observed that multi-leg spreads introduced in this section
have similar properties.
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Table 4: CBOE’s complex spreads, their components and resulting spreads.

complex spread:component sum = resulting spread calls puts net
1. b+(a−b) = a : 5 legs

2nd bull call 1 -1 dr
+ 1st long call butterfly 1 -2 1 dr

= 1st bull call 1 -1 dr
2. c+(b−c) = b : 5 legs

3nd bull call 1 -1 dr
+ 2st long call butterfly 1 -2 1 dr

= 2nd bull call 1 -1 dr
3. (b−c)+(a−b) = a−c : 6 legs

2nd long call butterfly 1 -2 1 dr
+ 1st long call butterfly 1 -2 1 dr

= long call condor 1 -1 -1 1 dr
4. (a−b)+(e−a) = e−b : 7 legs

1st long call butterfly 1 -2 1 dr
+ 1st short box -1 1 1 -1 cr

= 1st long put iron butterfly -1 1 1 -1 cr
5. (b−c)+(f−b) = f−c : 7 legs

2nd long call butterfly 1 -2 1 dr
+ 2nd short box -1 1 1 -1 cr

= 2nd long put iron butterfly -1 1 1 -1 cr
6. c+(b−c)+(a−b) = a : 8 legs

3rd bull call 1 -1 dr
+ 2nd long call butterfly 1 -2 1 dr
+ 1st long call butterfly 1 -2 1 dr

= 1st bull call 1 -1 dr
7. b+(a−b)+(e−a) = e : 9 legs

2nd bull call 1 -1 dr
+ 1st long call butterfly 1 -2 1 dr

+ 1st short box -1 1 1 -1 cr

= 1st bull put 1 -1 cr
8. c+(b−c)+(f−b) = f : 9 legs

3rd bull call 1 -1 dr
+ 2nd long call butterfly 1 -2 1 dr

+ 2nd short box -1 1 1 -1 cr

= 2nd bull put 1 -1 cr
9. (b−c)+(a−b)+(e−a) = e−c : 10 legs

2nd long call butterfly 1 -2 1 dr
+ 1st long call butterfly 1 -2 1 dr

+ 1st short box -1 1 1 -1 cr

= long put iron condor -1 1 1 -1 cr
10. c+(b−c)+(a−b)+(e−a) = e : 12 legs

3rd bull call 1 -1 dr
+ 2nd long call butterfly 1 -2 1 dr
+ 1st long call butterfly 1 -2 1 dr

+ 1st short box -1 1 1 -1 cr

= 1st bull put 1 -1 cr

with resulting spreadab can be identified with integer
solutions to the systemAx = ab, x ≥ 0, where com-
ponents ofx representmultiplicitiesof main spreads
in the centipedex.

If m is the margin ofb, then the margin ofx is am.
Note that multiplicities of main spreads involved in
complex spreads are 1 or 0. Centipedes with a result-

ing spreadab can be considered as synthetic coun-
terparts ofab that are possible to build from main
spreads. We will relate centipedes to the sametype
b if their resulting spreads are multiples of the same
main spreadb.
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4.2 Millipedes

Now we consider combinations of main spreads that
are market risk-free. They are based on the concept
of a horizontal spread, i.e., a long option combined
with a short option on the same underlying security
of the same type and exercise price. It is well-known
that such a spread is invariant to underlying security
market price changes and therefore market risk-free.

Lemma 1. A horizontal spread is market risk-free.

Proof Let us consider ahorizontal call spreadwhere
the long position in a call optionlC and the short posi-
tion in a call optionsC have the same exercise pricee.
Each option contracts, say, 100 underlying units.

If sC is exercised, then the spread holder is obliged
to sell 100 underlying units to the holder ofsC at the
pricee. In this case, the spread holder can exerciselC,
i.e., buy 100 underlying units at the same price, and
deliver them to the holder ofsC with no loss. IfsC is
not exercised andlC is out-of-the-money, thenlC can
be kept unexercised. Ahorizontal put spreadhas the
same hedging mechanism except that exercising put
options triggers the sell of underlying units.

Definition 5. A millipede is a set of main spreads
such that their linear combination with nonegative in-
teger coefficients is a zero spread.

Thus,0 is a trivial millipede. This definition im-
plies that millipedes can be found as integer solutions
to the systemAx = 0, x ≥ 0, wherex is the same
variable vector as in Section 4.1. Asubmillipedeis
a subset of a millipede which is also a millepede. A
submillipedey of a millipedex is proper if 0 6= y 6= x.

Theorem 2. A millipede is market risk-free.

Proof Using induction on the number of components
of a millipede and Lemma 1, it is easy to verify that
the set of legs of a millipede can be partitioned into
pairs such that each pair is a horizontal call or put
spread. Therefore a millipede is a market risk-free
option combination.

Thus, the margin of a millipede is zero. There ex-
ists a simple relationship between centipedes and mil-
lipedes: ifx is a centipede with the resulting spread
abi , wherebi is the ith column ofA, andAei = bi ,
thenx−aei is a millipede.

Definition 6. A millipede is minimal if it does not
contain proper submillipedes. A centipede is minimal
if it does not contain nontrivial millipedes. A cen-
tipede obtained from another centipede by deleting a
nontrivial millipede is a subcentipede.

We should notice that the absence of linear combi-
nations with negative coefficients in the definitions of

centipedes and millipedes does not affect the gener-
ality of these multi-leg option spreads because nega-
tions of main spreads are also main spreads. Thus,
a main spreadb with negative coefficient−c can be
replaced by−b with positive coefficientc.

As mentioned in Section 2.2, the matrixA de-
fines alinear transformationof vectors in the port-
folio space to vectors in the spread space.

It is important to observe that the set of millipedes
is thekernel, the set of centipedes with the same re-
sulting spread is anequivalence class, the set of linear
combinations of main spreads is theimage, and the
set of coefficient vectors of these combinations is the
coimageof this transformation.

5 USING CENTIPEDES AND
MILLIPEDES

As we show in this section, centipedes, as synthetic
counterparts of main spreads, can increase their profit
if the set of options with the same expiration date is
mispriced; while millipedes represent “white holes”
of option portfolios, i.e. a group of positions whose
margin is zero because, as shown in Section 4.2, mil-
lipedes are market risk-free option combinations.

5.1 Maximizing Option Arbitrage
Opportunities

Let p be the column vector of the prices of main
spreads including the transaction costs. Assume that
a main spreadb is chosen for trading with quantitya.
Then a solution to

min{p⊤x : Ax = ab} (2)

answers the question whether there exist a synthetic
counterpartx of ab that is less expensive thanab.

If the answer is positive, then it is probably better
to trade the synthetic counterpart. Note that ifab is a
credit spread, then its synthetic counterpart can give
an advantage only if the minimum (2) is negative.

If ab is a multiple of a box spread, then solving
the above integer program, as we show in this section,
can maximize an option arbitrage opportunity. We
should note here that known arbitrage strategies in-
volving only options are based on box spreads which
are market risk-free; cf. (Cohen, 2005).

A long box spread is a debit spread because its
long (buy) side is more expensive than its short (sell)
side. The difference between the prices of these sides
is the long box spread price. An arbitrage opportunity
appears when the long box spread price is lower than

COMBINATIONS OF OPTION SPREADS

327



we−r(τ−t), wherew is the box spread width. i.e., the
amount that can be invested in a risk-free asset paying
interestr, whereτ is the expiration date of the options
involved in the long box spread, andt is the present
date; cf. (Ronn and Ronn, 1989; Bharadwaj and Wig-
gins, 2001; Benzion et al., 2005). Therefore, catching
the arbitrage opportunity implies finding a long box
spread in the options market with aminimumprice.

A short box spread is a symmetrical image of a
long box spread in relation to adjectives “long” and
“short”. Therefore, a short box spread is a credit
spread, i.e. of a negative price, and hence gives a risk-
free profit right on entering into it. Thus, catching an
arbitrage opportunity by a short box spread implies
finding a short box spread in the options market with
also aminimumbutnegativeprice.

The box spread arbitrage has been well studied.
A recent study and literature review can be found
in (Benzion et al., 2005). It is well-known that a box
spread is a synthetic position in a short position in a
stock and a long position in the same stock. A box
spread can also be viewed as a synthetic position in
other option spreads as follows:

Definition 7. A synthetic box spread is a centipede
whose resulting spread is a multiple of a box spread.

Let pb be the price of a box spreadb. We assume
that pb > 0 and thenb is a long box (debit) spread,
or pb < 0 and thenb is a short box (credit) spread.
We exclude the casepb = 0 which means an obvious
error in pricing of options.

Let x∗ be the synthetic box spread with the result-
ing spreada∗b that is found by solving the integer
program (2) with variablesx and 1≤ a≤ amax, where
amax is a chosen multiplicity upper bound.

As a multiple of a box spread is a trivial synthetic
box spread,p⊤x∗ ≤ a∗pb. We assume thata∗pb > 0
implies p⊤x∗ > 0; otherwise we have again an obvi-
ous error in pricing of options. Thus, ifa∗b gives
an arbitrage opportunity, then its synthetic counter-
part x∗ gives a better arbitrage opportunity only if
p⊤x∗ < a∗pb.

While a box spread can find an arbitrage opportu-
nity by capturing only four mispriced options, a syn-
thetic box spread is a much more powerful tool be-
cause it captures mispriced options in the whole op-
tion chain.

5.2 Decompositions of Option Portfolios

Let us recall that, according to the definition given in
Section 2.2, a portfolio of main spreads is an in-

teger column vector of sizen whose componentsqi
represent quantities of main spreads. Thus, ifmi is

the margin of main spreadi, thenmiqi is the margin
of theith component of the portfolio, where 1≤ i ≤ n.

We assume thatqi > 0 implies that the portfolio
has a position in main spreadi with quantityqi and
that qi = 0 implies that the portfolio has no position
in the main spreadi.

Let us introduce the following constant vectors:

m⊤ = ( m1 m2 · · · mn )
q⊤ = ( q1 q2 · · · qn )
1⊤ = ( 1 1 · · · 1 )

and the following nonnegative integer variable vectors

a⊤ = ( a1 a2 · · · an )
xi
⊤ = ( xi1 xi2 · · · xin )

y j
⊤ = ( y j1 y j2 · · · y jr )

z⊤ = ( z1 z2 · · · zr )

where components ofa are associated with multiplic-
ities of main spreads that are not necessarily in the
portfolio, components ofxi andy j are associated with
multiplicities of main spreads in centipedes and milli-
pedes, respectively, that are in the portfolio, and com-
ponents ofz are 0-1 variables for counting minimal
millipedes in the portfolio. We assume thatr = ⌊n/2⌋
because a nontrivial millipede involves at least two
main spreads, hence 1≤ j ≤ r.

We also consider the nonnegative integer variable
vector

y⊤ = ( y1 y2 · · · yr )

instead of the vectorsy j in portfolio decompositions
with a single millipede.

Now we show how theno-offsetmarginm⊤q of
the portfolioq can be reduced to obtain anoffset mar-
gin of this portfolio using centipedes and millipedes
as offsets. As we show in this section, the reduction
follows from a decomposition of the portfolio into
centipedes and millipedes.

Let b be a main spread. We say that the portfo-
lio q contains a centipede or millipedex with the re-
sulting spreadab, wherea> 0 ora= 0, respectively,
if Ax = ab andx ≤ q. Centipedes and/or millipedes
x1,x2, . . . ,xs generate a decomposition of the portfo-
lio q if x1+ x2+ . . .+ xs = q.

If µi denotes the margin of theith component of
this decomposition, whereµi = 0 if xi is a millipede,
thenµ1+µ2+ . . .+µs is thedecomposition margin.

Lemma 2. Any decomposition of an option portfo-
lio into centipedes and millipedes can be transformed
into a decomposition with at most n nonzero compo-
nents, at most one centipede of each type, and the
same decomposition margin.
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Proof We can sum up centipedes of each type, arbi-
trarily add to these sums all nontrivial millipedes, if
any, and thus obtain a decomposition with at mostn
nonzero components. The margin of the sumxi + x j
is µi + µj , therefore the new decomposition has the
same margin.

To obtain a maximum reduction of the marginm⊤q
using centipedes and millipedes as offsets we can de-
compose the portfolioq as follows.

Let bi be theith main spread, i.e., theith column
of A, and let{a,x1,x2, . . . ,xn,} be the variable set.
Then the set of solutions to the system

Axi = aibi , 1≤ i ≤ n
n

∑
i=1

xi = q (3)

defines a set of decompositions of the portfolioq that
contains, by Lemma 2, a decomposition with a mini-
mum margin. Note that settinga = q andxi = qiei for
all i gives a trivial solution to this system.

It is important to observe that a solution to the sys-
tem (3) defines a portfolioa from the coimage of the
transformation by the matrixA. The no-offset mar-
gin of a, i.e., m⊤a, is the offset margin ofq. Sincea
carries the same risk profile asq we call it arepresen-
tativeof q for the decompositionx1,x2, . . . ,xn.

Note thata is not always a subportfolio ofq be-
cause the inequalitya ≤ q may not hold. If it holds,
then we calla a proper representativeof q.

Lemma 3. If a is a representative ofq, thenq− a is
a millipede.

Proof Multiplying the lower equation in (3) byA
from the left and using the upper equation we obtain

Aa =
n

∑
i=1

aibi = Aq

which impliesA(q− a) = 0.

Obviously, ifa is a proper representative ofq, then
the millipedeq− a is a subportfolio ofq.

Definition 8. A solutiona∗,x∗1,x
∗
2, . . . ,x

∗
n to the inte-

ger program of minimizing the objective

m⊤a (4)

under the constraints(3) defines a main decomposi-
tion x∗1,x

∗
2, . . . ,x

∗
n of the portfolioq and a main repre-

sentativea∗ of q for this decomposition.

The following theorem establishes that the mar-
gin of a main decomposition cannot be reduced using
centipedes and millipedes as offsets.

Theorem 3. A main representative of a main repre-
sentative ofq is also a main representative ofq.

Proof Let a′ be a main representative ofa∗ for the de-
compositionx′1,x

′
2, . . . ,x

′
n. Obviously,m⊤a′ ≤ m⊤a∗.

Then it is not hard to verify thata′ is also a represen-
tative ofq for the decompositionx′′1,x

′′
2, . . . ,x

′′
n, where

x′′i = x∗i + x′i −a∗i ei

for all i. Therefore,m⊤a′ = m⊤a∗, and hencea′ is a
main representative ofq.

A main decomposition contains millipedes not
only among its own millipedes but also inside its cen-
tipedes which, therefore, may not be minimal. How-
ever, solving the following modified version of the
problem (3)(4) we can extract all millipedes from the
centipedes that are not minimal and collect all milli-
pedes in a single subportfolio we call awhite hole.

Let {a,x1,x2, . . . ,xn,y} be the variable set. Then
the set of solutions to the system

Axi = aibi , 1≤ i ≤ n, Ay = 0
n

∑
i=1

xi + y = q (5)

defines a set of decompositions ofq that contains all
main decompositions.

Definition 9. A solutiona◦,x◦1,x
◦
2, . . . ,x

◦
n,y

◦ to the in-
teger program of minimizing the objective

m⊤a−
1⊤y
1⊤q

(6)

under the constraints(5) defines a white-hole de-
composition of the portfolioq into centipedes, which
are nonzero vectors amongx◦1,x

◦
2, . . . ,x

◦
n, and a milli-

pedey◦, which is a white hole inq.

As the following lemma and theorem state, a
white-hole decomposition is just an extension of a
main decomposition by one component collecting all
millipedes; hence, a white-hole decomposition has
only one millipede and only minimal centipedes.

Lemma 4. The vectorsx◦1,x
◦
2, . . . ,x

◦
n are either mini-

mal centipedes or zero vectors.

Proof Let a centipedex◦i be not minimal, and letv be
a nontrivial millipede inx◦i . Then movingv from x◦i
to y◦ adds value

−m⊤v−
1⊤v
1⊤q

to the objective (6). As1⊤v > 0, the objective would
decrease, which is a contradiction.

Let x◦i > 0 be not a minimal centipede. Then it is
a nontrivial millipede that could be added toy◦ and
decrease the objective again.
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Theorem 4. m⊤a◦ = m⊤a∗, i.e., x◦1,x
◦
2, . . . ,x

◦
n is a

main decomposition, and hencea◦ is a main repre-
sentative ofq, whereq− a◦± y◦ is a millipede.

Proof If y◦ = 0, then the equationm⊤a◦ = m⊤a∗ is
evident. Assume thaty◦ > 0.

Let y∗ be the sum of all millipedes inside and
amongx∗1,x

∗
2, . . . ,x

∗
n. Note thaty◦ > 0 impliesy∗ > 0

and thatx◦1,x
◦
2, . . . ,x

◦
n + y◦ is a decomposition with

marginm⊤a◦ ≥ m⊤a∗; otherwisex∗1,x
∗
2, . . . ,x

∗
n is not

a main decomposition.
If m⊤a◦ > m⊤a∗, then

m⊤a∗ ≤ m⊤a◦−1≤ m⊤a◦−
1⊤y◦

1⊤q

becausey◦ ≤ q. As m⊤a∗−
1⊤y∗

1⊤q
< m⊤a∗, we have

m⊤a∗−
1⊤y∗

1⊤q
< m⊤a◦−

1⊤y◦

1⊤q

Thus,x◦1,x
◦
2, . . . ,x

◦
n,y

◦ is not a white-hole decomposi-
tion, which is a contradiction.

By Lemma 3, q − a◦ is a millipede, therefore
q− a◦± y◦ is a millipede because it is a sum of two
millipedes,q− a◦ and±y◦.

A white-hole decomposition partitions a given
portfolio into two subportfolios that can be indepen-
dently closed without affecting the risk profiles of
each other. A white hole can be closed because the
residual portfolio can be more attractive for returns
or, vice versa, because the white hole is risk-free.

Providing the finest partition of the residual port-
folio into minimal centipedes (that can also be closed
independently), a white-hole decomposition leaves
the structure of the white hole unclear. Solving the
following integer program, however, decomposes a
white hole into minimal millipedes.

Let y1,y2, . . . ,yr ,z be the variable set. Then the set
of solutions to the system

Ay j = 0, 1⊤y j ≥ zj , 1≤ j ≤ r
r

∑
j=1

y j = y◦ (7)

defines all decompositions of the white holey◦ into at
mostr millipedes.

A solutiony†
1,y

†
2, . . . ,y

†
r ,z

† to the integer program
of maximizing the score1⊤z under the constraints (7)
defines a decomposition of the white holey◦ into
1⊤z nontrivial millipedes, which are nonzero vectors
amongy†

1,y
†
1, . . . ,y

†
r .

Definition 10. a◦, x◦1,x
◦
2, . . . ,x

◦
n, y†

1,y
†
2, . . . ,y

†
r , z† de-

fine a main representativea◦ and a prime decompo-
sition of the portfolioq into centipedes, which are

nonzero vectors amongx◦1,x
◦
2, . . . ,x

◦
n, and 1⊤z non-

trivial millipedes, which are nonzero vectors among
y†

1,y
†
2, . . . ,y

†
r .

The following theorem establishes that a prime de-
composition of an option portfolio is a finest decom-
position that completely reveals its structure in terms
of centipedes and millipedes.

Theorem 5. All centipedes and millipedes in a prime
decomposition are minimal.

Proof Lemma 4 implies that all centipedes in a prime
decomposition are minimal. Let us show that all non-
trivial millipedes in there are also minimal.

Let a nontrivial millipedey†
k be not minimal.

Theny†
k contains a proper submillipedev and hence

u = y†
k − v is also a proper submillipede.

Besides, there exists a positive integerl < r such
that y†

l = 0 and hencez†
l = 0; otherwise each milli-

pede amongy†
1,y

†
2, . . . ,y

†
r is minimal and contains two

components. Then we can construct a new decom-
position replacingy†

k, y†
l andz†

l with y‡
k = u, y‡

l = v,

andz‡
l = 1, wherey‡

k + y‡
l = y†

k. This replacement de-
creases the number of nontrivial millipedes by one,
which is a contradiction.

5.3 Decompositions with Proper
Representatives

It is not hard to verify that all results obtained in Sec-
tion 5.2 remain valid if the systems (3) and (5) are
complimented by the inequalitya ≤ q. Thus, there
exist counterparts of main, white-hole and prime de-
compositions with proper representatives. The option
trader can be interested in this kind of decomposi-
tions because the conversion of the portfolioq into its
proper representativea requires only selling the sub-
portfolio q− a. While the conversion into a represen-
tative, which is not proper, requires selling quantities
qi −ai from positionsi with qi > ai , buying quantities
a j − q j for positions j with a j > q j > 0 and open-
ing new positionsk with quantitiesak if ak > qk = 0.
Considering only proper main representatives, how-
ever, can reduce savings on margin; see Section 6.

6 COMPUTATIONAL
EXPERIMENT

Now we are conducting the computational study on
finding option arbitrage opportunities by synthetic
box spreads and the estimation of margin reductions

ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems

330



for portfolios of main spreads by white-hole decom-
positions using ILOG CPLEX 12.1 for solving integer
programs. We present here only preliminary results.

We experimented with the option chains for differ-
ent stocks provided bywww.google.com/finance and
did not detect an option arbitrage. It is not surprising
because the price quotes in this web site are delayed
by 15 minutes, while option arbitrage opportunities
usually last for seconds; cf. (Bharadwaj and Wiggins,
2001; Benzion et al., 2005).

Using the same web site we also estimated the av-
erage savings on margin by replacing randomly gen-
erated portfolios of different sizes by their main rep-
resentatives. The results are presented on Fig. 1.

3 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

10%

20%

30%

40%

50%

60%

70%
M

P

Figure 1: The percentage of average savings on margin by
main (M) and proper main (P) representatives of over 500
portfolios of main spreads of each size from 3 to 32. All the
main spreads were on the exercise domain of size 10 and ex-
ercise differential of $5USD. The portfolios were generated
by proportional random sampling with replacement based
on the trading volume of options on NASDAQ:AAPL ex-
piring on 22-OCT-2011. The options data were taken from
www.google.com/finance on 04-AUG-2011 when the under-
lying security price was at $377.37USD.

7 CONCLUSIONS

This paper takes only the first step in studying combi-
nations of option spreads and demonstrates how these
combinations can be used in trading and margining
practice. An important consequence of this study is
a sketch of a combinatorial theory of option port-
folios that we believe will be useful for developing
new techniques for high-frequency trading and new
margining methodologies.

Our next step will be devoted to computational ex-
periments for detecting option arbitrage opportunities
using live option price quotes and estimating margin
reductions for portfolios of main spreads with differ-
ent underlying stocks.
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