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Abstract: Having been constructed as trading strategies, option spreads are also used in margin calculations for offsetting
positions in options. All option spreads that appear in trading and margining practice have two, three or four
legs. Itis well-known that the option spreads with three and four legs are combinations of two option spreads
with two legs, and that hedging mechanisms of these combinations consolidate hedging mechanisms of their
components. Although more complex combinations with similar properties can be traced in regulatory litera-
ture of 2003, they have not yet been studied and used. In this paper we develop a theory for the construction
of multi-leg option spreads as combinations of well-known option spreads with two, three and four legs. We
show how multi-leg option spreads with extreme properties can maximize arbitrage opportunities in trading
options and substantially reduce margin requirements for option portfolios.

1 INTRODUCTION Option spreads with up to 12 legs appeared as

combinations of option spreads with two, three and
Option spreads with two, three and four legs such as four legs in August 2003 when the CBGroposed
bull and bear spreads, butterfly, condor, iron butter- new margin rules based on these combinations that
fly, iron condor and box spreads have been known for were calledcomplex spreadéCBOE, 2003). After
more than three decades and have become standard itwo revisions of this proposal (CBOE, 2004; CBOE,
options trading; cf. (McMillan, 2002; Cohen, 2005; 2005), the SEC approved these rules (SEC, 2005)
Curley, 2008). Descriptions of more complex spreads and added them to NYSE Rule 431 in December
appeared as efficient means of margin reductions in2005. In August 2007, these rules were also recog-
2003. It is important to explain how these spreads nhized in Canada (IDA, 2007).
were motivated.

1.2 Motivation
1.1 Regulatory Breakthrough

The regulatory breakthrough of 2005, however, re-
By the end of the nineties, it was commonly recog- c€ived a limited response of the brokerage industry by
nized that margin regulations impose excessively high the following two reasons: firstly, the definition of the
minimum margin requirements, especially for option complex spreads was given in a text form that does
portfolios. This can be partially explained by the fact not allow for complete understanding of their struc-
that option spreads permitted for offsetting by mar- ture, and hence how these spreads can be utilized;
gin regulations by that time had at most four legs. ~ secondly, the interest to multi-leg option spreads had
However, it is well-known that the more legs an op- been lost because the risk-based margining methodol-
tion spread has the more margin reduction it gives. 0gy that had become popular in the U.S. in 2005 of-
As shown in (Matsypura and Timkovsky, 2011), just fered computationally easier solutions. Consequently,
one additional leg can save several thousand dollarsoption spreads with more than four legs are still not
on margin. Thus, the reduction of minimum margin Peing used, primarily because they have neither been
requirements can be achieved by constructing new op-studied nor properly understood.
tion spreads with a larger number of legs. Multi-leg option spreads thus call for academic re-
- search that shall explain how they can be constructed,

1A leg of an option spread or offset based on this spread ————

is a position in options with the same exercise price and  °The Chicago Board Options Exchange.
expiry date. 3The U.S. Securities and Exchange Commission.
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what advantage they give, and how they can be uti-

lized in options trading and margining practice. To the

interval, then the length of the intervad, is theex-
ercise differentiabf the domain, and the exercise do-

best of our knowledge, this kind of research has never main is said to beniform *

been attempted. As we show in this paper, 12 legs is

not the final step. We discover new multi-leg option

In what follows, we consider only uniform exer-
cise domains and option spreads on the same exercise

spreads that have the same hedging mechanism as thatomain. Therefore, it will be convenient to normal-

of complex option spreads and propose a full charac-

terization of option spreads with any number of legs.

ize all prices and costs by divis@. Thus, we will
further assume that all exercise prices and all option

We also formulate integer programs that demonstrateprices have been normalized, and hence all exercise

that multi-leg option spreads maximize arbitrage op-
portunities in options trading and substantially reduce
margin requirements in margin accounts with options.

2 MAIN SPREADS

A vector model of option spreads with up to four legs
was proposed in (Matsypura and Timkovsky, 2011).
In this section we give an extension of this model that
deals with option spreads of different width.

2.1 Vector Model of Option Spreads

Let d > 2 be a positive integerOption spreadsf
dimensiond are integer vectors

v=(c ©C Ca P1 P2 Pd )

domains have exercise differential 1.

Definition 1. Let w and k be positive integers such
that w< d and k< 2d, and let ¥, v»,...,v be the
sequence of leg indices in a spreadf dimension d
such that

Q/lﬁalzﬁﬁalk

Ife\,j+1 —8y, =0orwforeach j=1,2,...,k—1, then
v is a uniform spread of width w.

We consider only uniform spreads because only
they are being used in practice. Besides, as we con-
sider only normalized prices, the width of spreads will
always be integerin the sét, 2, ... d—1}. Simplest
uniform spreads are basic spreads. They can be de-
fined as follows:

Definition 2. A basic spread is uniform and has two
legs, 1 and —1, such that both legs are on the same
side, call or put. A basic spread is a basic call/put
spread if all its legs are on the call/put side. A basic

whose components are associated with positions inspread is a basic bull spread if its first leg is long;

options in a margin account as follows.

The componentj, 1 < j <d, is the number of
option contracts in théth call option series, with the
exercise pricegj. Similarly, the componenp; is the
number of option contracts in thgh put option se-
ries, with the same exercise prieg

Nonzero components represent legs. A positive,

negative or zero component means that it is a long,

short leg or a leg is absent, respectively. zAro
spread denoted), is a spread without legs.

Letabe a nonnegative integer. Thawnis amulti-
ple of v with factor a A spread is said to bgrimeif
it is not a multiple of another spread with factor more
than one. Thug) is a prime spread. W is a prime
spread, thera is a multiplicity of av. If not stated
otherwise, we assume further only prime spreads.

otherwise it is a basic bear spread.

The first 12, 8, 4 spreads in Tables 1, 2, 3, present
all basic spreads of width 1, 2, 3 and dimension 4,
respectively. The abbreviationsdr” and “cr’” mark
debit spreadsindcredit spreads®

Definition 3. All basic spreads are two-leg main
spreads. Lew andv, whereu # —v, be a basic
bull spread and a basic bear spread, respectively, of
the same width w, and let+ v be a uniform spread

of width w. Theru+ v is a three- or four-leg main
spread of width w.

Although our attention will be focused on the case
of dimension four, all further results are valid for
any dimension higher than four. The set of all main
spreads of width 1, 2, 3 and dimension 4 is presented

Treating spreads as vectors we can add and sub-n Tables 1, 2, 3, respectively. Note that butterfly and

tract them, multiply by an integer scalar, cyclicly shift
their components and take theianspositionsi.e.,
create the spreads where the components and p;
are transposed for dl= 1,2,...,d.

We assume that the exercise prices are all different

and placed in increasing order, i.e..< e < --- < €4.
The set{ei,e,...,eq} is called anexercise domain

4Exercise prices of listed options of the same expiration
date generate a uniform exercise domain. For example, ac-
cording tohttp://finance.google.com, as of 02-AUG-2011,
5:50PM, exercise prices of options on the IBM stock listed
in NYSE and expiring on 20-AUG-2011 generated the uni-
form exercise domaifi85,90,...,270} of dimension 38.

5The termdebitcredit indicates that the spread is a re-

If the exercise prices are separated by the same pricesult of anet debifcredit transaction, respectively.
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Table 1: Main spreads of width 1 and dimension 4.

[ spread | spread name || calls I puts [ legs [[ net |
a 1st bull call 1|-1 2 dr
b 2nd bull call 1]-1 2 dr
c 3rd bull call 1|1 2 dr
e 1st bull put 1]-1 2 cr
f 2nd bull put 1]-1 2 cr
g 3rd bull put 1|1 2 cr
-a Istbearcall || -1 | 1 2 cr
-b 2nd bear call 1)1 2 cr
-C 3rd bear call -1 1 2 cr
-e 1st bear put -1 1 2 dr
-f 2nd bear put KR 2 dr
-g 3rd bear put -1 1 2 dr

a—b 1stlong call butterfly || 1 | -2 | 1 3 dr
b—a 1st short call butterfly || -1 | 2 | -1 3 cr
b-c 2nd long call butterfly 1]-21] 1 3 dr
c—b 2nd short call butterfly 1] 2] -1 3 cr
e—f 1st long put butterfly 1(-2| 1 3 cr
f—e 1st short put butterfly 1] 2] -1 3 dr
f—g 2nd long put butterfly 1]-21] 1 3 cr
g—f 2nd short put butterfly ] 2| -1 3 dr
a—c long call condor 1|-1]-1 1 4 dr
c—a short call condor || -1 1 1|1 4 cr
e—g long put condor 1]1-1(-1 1 4 dr
g—e short put condor 11 1)1 4 cr
a—e 1st long box 1]-1 -1 1 4 dr
e—a 1st short box || -1 1 1|1 4 cr
b—f 2nd long box 1]-1 101 4 dr
f—b 2nd short box 101 1]-1 4 cr
c—g 3rd long box 1|1 1)1 4 dr
g—c 3rd short box 1)1 1]-1 4 cr
a—f 1st long call iron butterfly 1]-1 1|01 4 dr
f—a 1st short call iron butterfly || -1 1 1]-1 4 cr
b—g 2nd long call iron butterfly 1]-1 -1 1 4 dr
g—b | 2nd short call iron butterfly 1)1 1]-1 4 cr
e—b 1st long put iron butterfly 101 1] -1 4 cr
b—e 1st short put iron butterfly 1]-1 -1 1 4 dr
f—c 2nd long put iron butterfly -1 1 1]-1 4 cr
c—f 2nd short put iron butterfly 1]-1 -1 1 4 dr
e—c long put iron condor -1 1 1] 4 cr
c—e short put iron condor 1]-114 -1 1 4 dr
a—g long call iron condor 1|-1 1)1 4 dr
g—a short call iron condor || -1 | 1 1]-1 4 cr

condor spreads, iron butterfly and iron condor spreads2.2  Portfolios and Linear Combinations

of width 2 or 3 and dimension 4 do not exist. of Main Spreads
Theorem 1. The number of main spreads of width w
and dimension d is(w,d) = Let A denote the & x n matrix, where
6(d —w) +8max0,d — 2w} + 8max0,d — 3w}. de1
Proof A direct count shows that for fixeds and n= Z n(w,d)
d the numbers of bull, bear or box spreads, but- w=1
terfly or iron butterfly spreads, and condor or iron \hose columns are all main spreads of dimension
condor spreads arg@—w), 4max0,d —2w}, and  |f A(w,d) is the matrix of main spreads of width
4max0,d — 3w}, respectively. O  and dimensiom, then
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Table 2: Main spreads of width 2 and dimension 4.

[ spread [ spread name || calls [ puts [ legs [ net |
a 1st bull call 1 -1 2 dr
b 2nd bull call 1 -1 2 dr
e 1st bull put 1 -1 2 cr
f 2nd bull put 1 -1 2 cr
-a Istbearcall || -1 1 2 cr
-b 2nd bear call -1 1 2 cr
-e 1st bear put -1 1 2 dr
-f 2nd bear put -1 1 2 dr

a—e 1st long box 1 -1 -1 1 4 dr
e—a 1st short box || -1 1 1 1 4 cr
b—f 2nd long box 1 -1 -1 1 4 dr
f-b 2nd short box -1 1 1 -1 4 cr

Table 3: Main spreads of width 3 and dimension 4.

[ spread [ spread name || calls I puts [ legs [ net |
a 1st bull call 1 -1 2 dr
e 1st bull put 1 -1 2 cr
-a 1st bear call || -1 1 2 cr
-e 1st bear put -1 2 dr
a—e 1st long box 1 -1 -1 4 dr
e—a 1st short box || -1 1 1 -1 4 cr
A=[A(Ld)A2d) - A[d—1,d)] 2.3 Market Risk of Main Spreads

In what follows, an integer column vector of sine : .
with nonnegative components will be associated with 't 1S Well known that debit spreads are free of mar-

the portfolio of main spreads taken in quantities equal K€t 1SK, i.e., they have no loss associated with un-
to the components of this vector. Such vectors consti- 4€rying instrument price changes, cf. (Cohen, 2005)
tute aportfolio space or (McMillan, 2002) for a detailed discussion. Credit

An integer column vector of sizedawill be asso- spreads, in contrast, are not free of market risk.
ciated with a spread, as we described in Section 2.1. 1 ne maximum loss on a prime credit spread asso-
Such vectors constitute spread space Further, all ciated with underlying instrument price changes is its

vectors in the portfolio/spread space will be denoted Width in all cases except forsnort call iron butterfly
by italic/direct bold letters. and ashort call iron condorfor which the maximum

Thus, the matrid, as a left multiplier, transforms loss is two widths. Therefore, the market risk of a

portfolios of main spreads into linear combinations of Main spread is the integer

main spreads. As we show in Section 5, a portfolio of 0 if bis a debit spread

main spreads can have multiple representations in the 2w ifbis

form of linear combination of main spreads. a short call iron butterfly
According to this assumptions, a main spread can m(b) = or short call iron condor 1)

be presented in the following two forms: spread

e as a column vector of sizewhoseith component w otherwise

is 1 and the other components are Os, that is de-

noted bys (a presentation in theortfolio spacd: In this paper, we consider the market risk of a main

i 1A= . . . spread to be its maintenance margin requirement.
the |nde>_<|_ will be dropped if the main spread is Moreover, we consider only maintenance margin
not specific; or _ _ requirements. Details related to a justification of the

e asacolumn oA, i.e., as a column vector of size  market risk as a measure of maintenance margin re-
2d, that is denoted b, if the main spread isthe  quirements and discussions on the relationship be-
ith column ofA, or byb if the main spread is not  tween maintenance and initial margin requirements

specific (a presentation in tispread space for main spreads can be found in (Matsypura and
These forms are obviously related by the equation ~ Timkovsky, 2011). In what follows, the term “mar-
Ag = b gin” will stand for a maintenance margin requirement.
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3 COMPLEX SPREADS a, which is also a debit spread. Therefore, the mar-
gin of the complex spread 6 is also zero. Thus, itis
The regulatory amendment of December 14, 2005, not an offset, and there is no advantage of using it
initiated by the CBOE, was motivated by the obser- for margin reductions. Itis not hard to verify that all
vation that some combinations of main spreads havecomplex spreads in Table 4 are not offsets. However,
the same risk profile as single main spreads. This cantheir negations are offsets.
be explained by the fact that the summation of main For example, since the bear call spread is a
spreads in such a combination turns out to be also acredit spread, the margin of the negation of the com-
main spread that is a resulting spread. These combi-plex spread 6 isv, while the total margin ob —a,
nations were namecbmplex spreadsThe margin of ~ ¢—b and —c, which are all credit spreads, isv3
a complex spread is exactly the margin of its resulting Thus, the negation of the complex spread 6 is an offset

spread (CBOE, 2003). with advantage &.
In general, if a complex spread with the resulting
3.1 Table of Complex Spreads debit or credit spread is an offset, then it reduces the

total margin of its components iy or (k— 1)w, re-

Ten of the complex spreads are presented in Ta- spectively, where is th_e number of credit compo-
ble 4. The other ten are their transpositions, where the "€Nts. Thus, the negations of the complex spreads 1
names of the components have the words “call” and through 5, 6 through 9 and 10 reduce the margin by
“put” interchanged. Negations of these 20 produce W 2 and 3, respectively.
another 20, where the names of the components have
the words “long” and “short” interchanged. Thus, Ta-
ble 4 defines a total of 40 complex spreads. Ascom-4 BEYOND COMPLEX SPREADS
plex spreads 1 and 2, 4 and 5, 7 and 8 are isomorphic,
there exist only seven types of the complex sprefds.  Complex spreads are constructed as summations of

Note that there are no complex spreads of width pyj/bear spreads, long/short butterfly spreads and
more than 1 and dimension 4 because otherwise theYjong/short box spreads; cf. Table 4.

would involve as components butterfly spreads of peyeloping the idea of complex spreads, we give

width more than 1, which do not exist. in this section definitions of other multi-leg spreads as
more general combinations of main spreads that we
3.2 Advantage of Complex Spreads call centipedesindmillipedes ’

The margins of complex spreads are exactly the mar-4.1 Centipedes
gins of their resulting spreads, cf. (CBOE, 2003); and
a complex spread is affsetif its margin is less than  pefinition 4. A centipede is a set of main spreads
the total margin of its components. Hence, not all gych that their linear combination with nonegative
complex spreads are offsets. _ integer coefficients is a nonzero multiple of a main
For example, the complex spread 6 in Table 4 has gpread, which is the resulting spread of the centipede.
three components: the 1st long call butterfly spreads . . .
b — ¢, the 2nd long call butterfly spread- b and the A nonzero multlp_le of a main spread, Ob.V'OUSIY’
3rd bull call spreaat. All the three are debit spreads. generates aivial centipedeby itself. T_he marginrule
By formula (1), the market risks for these spreads are for cgmplex spreads we.formulate.d in the preamble of
zeros. The resulting spread is the 1st bull call spread Section 3 natura_lly appl!es to cent!pedes l_:)ecause they
have the same risk profiles as their resulting spreads.
The regulatory definitions given in SEC Release 34- Let a be a positive intege be a zero vector of
52738, the CBOE Regulatory Circular and NYSE Rule 431 sizen, and letb be a main spread. Then centipedes
imply only these seven types. The CBOE gave someof —
complex spreads the same names as those of their result- “Centipedes, as all other creatures, have even number of
ing main spreads. To avoid confusions, we do not use theselegs (one pair of legs per body segment), and this number
names. We should also emphasize that this paper presentgan reach 200 and more. Centipedes usually do not bite hu-
our mathematical interpretation of CBOE's informal defini- mans but a few species, when provoked, can bite inflicting
tions of complex spreads in a text form. Our goal was to painful wounds. Millipedes are creatures with number of
follow the idea given in the definitions as close as possible legs multiple of four (two pairs of legs per body segment).
and, at the same time, avoid inconsistencies that we found Some species have over 400 legs. Millipedes are not preda-
in them. Any omission that someone may find in our math- tors as centipedes: Wikipedia(terrestrial animals). It can
ematical interpretation of CBOE’s complex spreads will be be observed that multi-leg spreads introduced in this@ecti
our responsibility. have similar properties.
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Table 4: CBOE's complex spreads, their components andtiegsipreads.

[ complex spread:component sum = resulting spread || calls I puts [ net ]
1.b+(a—b)=a: 5 legs
2nd bull call 1|1 dr
+ 1st long call butterfly 1| -2 1 dr
| =1stbullcall | 1] -1] | I | | | [ dr ]
2.c+(b—-c)=hb: 5 legs
3nd bull call 1|1 dr
+ 2st long call butterfly 1] -2 1 dr
| =2nd bull call || [ 1]1] I | | | [ dr ]
3. (b—c)+(a—b)=a—c: 6 legs
2nd long call butterfly 1|-2 1 dr
+ 1st long call butterfly 1| -2 1 dr
| =longecallcondor [ 1 [-1[-1] 1] [ [ [ [ dr]
4. (a—b)+(e—a)=e—b: 7 legs
1st long call butterfly 1(-2 1 dr
+ 1st shortbox || -1 1 1|1 cr
| =1stlongputironbutterfly | [ -1 [ 1] [ 1[-2] [ [ cr]
5 (b—c)+(f—b)=f—c: 7 legs
2nd long call butterfly 1] -2 1 dr
+ 2nd short box -1 1 1|1 cr
| = 2nd long put iron butterfly ]| | [-1] 1] [ 1]-1] [ cr ]
6.c+(b—c)+(a—bh)=a: 8 legs
3rd bull call 1|1 dr
+ 2nd long call butterfly 1] -2 1 dr
+ 1st long call butterfly 1] -2 1 dr
| “istbulical | L] 1] | [ 1 | [ 1 o |
7.b+(a—b)+(e—a)=e: 9 legs
2nd bull call 1|1 dr
+ 1st long call butterfly 1| -2 1 dr
+ 1st shortbox || -1 1 1] -1 cr
| =astbutput | ] ] [ [[1]-1] [ [ oer]
8.c+(b—c)+(f—b)=f: 9 legs
3rd bull call 1]-1 dr
+ 2nd long call butterfly 1] -2 1 dr
+ 2nd short box -1 1 1]-1 cr
| =ondbultput | [ [ [ [ [ 1] [ oer]
9.(b—c)+(a—b)+(e—a)=e—c: 10 legs
2nd long call butterfly 1] -2 1 dr
+ 1st long call butterfly 1| -2 1 dr
+ 1st shortbox || -1 1 1|1 cr
| = long put iron condor ]| | [A] 1 1]-1] | [ cr ]
10. c+(b—c)+(a—b)+(e—a) =e: 12 legs
3rd bull call 1]-1 dr
+ 2nd long call butterfly 1] -2 1 dr
+ 1st long call butterfly 1| -2 1 dr
+ 1st shortbox || -1 1 1|1 cr
| sGstbwipu | | | [ [ I[A] [ o]

with resulting spreadb can be identified with integer  ing spreadab can be considered as synthetic coun-

solutions to the systerAx = ab, x > 0, where com-  terparts ofab that are possible to build from main

ponents ofk represenmultiplicities of main spreads  spreads. We will relate centipedes to the sappe

in the centipede. b if their resulting spreads are multiples of the same
If mis the margin ob, then the margin of isam main spread.

Note that multiplicities of main spreads involved in

complex spreads are 1 or 0. Centipedes with a result-
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centipedes and millipedes does not affect the gener-
ality of these multi-leg option spreads because nega-

Now we consider combinations of main spreads that tions of main spreads are also main spreads. Thus,
are market risk-free. They are based on the concepta main spreadh with negative coefficient-c can be

of a horizontal spreadi.e., a long option combined
with a short option on the same underlying security
of the same type and exercise price. It is well-known

replaced by-b with positive coefficient.
As mentioned in Section 2.2, the matix de-
fines alinear transformationof vectors in the port-

that such a spread is invariant to underlying security folio space to vectors in the spread space.

market price changes and therefore market risk-free.
Lemma 1. A horizontal spread is market risk-free.

Proof Let us consider &orizontal call spreadvhere
the long position in a call optiol€ and the short posi-
tion in a call optiorsC have the same exercise price
Each option contracts, say, 100 underlying units.

If sCis exercised, then the spread holder is obliged

to sell 100 underlying units to the holder «i at the
pricee. In this case, the spread holder can exeri€ise

i.e., buy 100 underlying units at the same price, and

deliver them to the holder afC with no loss. IfsC is
not exercised antf is out-of-the-money, thel€ can
be kept unexercised. Aorizontal put spreadhas the

Itis important to observe that the set of millipedes
is thekerne] the set of centipedes with the same re-
sulting spread is aequivalence classhe set of linear
combinations of main spreads is thmage and the
set of coefficient vectors of these combinations is the
coimageof this transformation.

5 USING CENTIPEDES AND
MILLIPEDES

As we show in this section, centipedes, as synthetic
counterparts of main spreads, can increase their profit

same hedging mechanism except that exercising putif the set of options with the same expiration date is

options triggers the sell of underlying units. O

Definition 5. A millipede is a set of main spreads
such that their linear combination with nonegative in-
teger coefficients is a zero spread.

Thus,0 is a trivial millipede. This definition im-

plies that millipedes can be found as integer solutions

to the systemAx = 0, x > 0, wherex is the same
variable vector as in Section 4.1. gubmillipedeis

a subset of a millipede which is also a millepede. A
submillipedey of a millipedex is properif 0y # x.

Theorem 2. A millipede is market risk-free.

Proof Using induction on the number of components
of a millipede and Lemma 1, it is easy to verify that
the set of legs of a millipede can be partitioned into
pairs such that each pair is a horizontal call or put
spread. Therefore a millipede is a market risk-free
option combination. O

Thus, the margin of a millipede is zero. There ex-

ists a simple relationship between centipedes and mil-

lipedes: ifx is a centipede with the resulting spread
abj, whereb; is theith column ofA, andAg = b;,
thenx — ag is a millipede.

Definition 6. A millipede is minimal if it does not
contain proper submillipedes. A centipede is minimal
if it does not contain nontrivial millipedes. A cen-

mispriced; while millipedes represent “white holes”
of option portfolios, i.e. a group of positions whose
margin is zero because, as shown in Section 4.2, mil-
lipedes are market risk-free option combinations.

5.1 Maximizing Option Arbitrage
Opportunities

Let p be the column vector of the prices of main
spreads including the transaction costs. Assume that
a main spread is chosen for trading with quantisy
Then a solution to

min{p'x : Ax = ab} 2)

answers the guestion whether there exist a synthetic
counterpark of ab that is less expensive thab.

If the answer is positive, then it is probably better
to trade the synthetic counterpart. Note thattifis a
credit spread, then its synthetic counterpart can give
an advantage only if the minimum (2) is negative.

If ab is a multiple of a box spread, then solving
the above integer program, as we show in this section,
can maximize an option arbitrage opportunity. We
should note here that known arbitrage strategies in-
volving only options are based on box spreads which
are market risk-free; cf. (Cohen, 2005).

A long box spread is a debit spread because its

tipede obtained from another centipede by deleting a long (buy) side is more expensive than its short (sell)

nontrivial millipede is a subcentipede.

We should notice that the absence of linear combi-

nations with negative coefficients in the definitions of

side. The difference between the prices of these sides
is the long box spread price. An arbitrage opportunity
appears when the long box spread price is lower than
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we "™ wherew is the box spread width. i.e., the

the margin of main spreaid thenmg; is the margin

amount that can be invested in a risk-free asset payingof theith component of the portfolio, where<i < n.

interestr, wheret is the expiration date of the options
involved in the long box spread, ands the present
date; cf. (Ronn and Ronn, 1989; Bharadwaj and Wig-
gins, 2001; Benzion et al., 2005). Therefore, catching
the arbitrage opportunity implies finding a long box
spread in the options market witmanimumprice.

A short box spread is a symmetrical image of a
long box spread in relation to adjectives “long” and
“short”. Therefore, a short box spread is a credit

We assume thatg; > 0 implies that the portfolio
has a position in main spreadvith quantity g; and
thatg; = O implies that the portfolio has no position
in the main spreai

Let us introduce the following constant vectors:

m = ( m m m )
ad = ( ;1 @ O )
17 (1 1 1)

spread, i.e. of a negative price, and hence gives a risk-

free profit right on entering into it. Thus, catching an
arbitrage opportunity by a short box spread implies
finding a short box spread in the options market with
also aminimumbut negativeprice.

The box spread arbitrage has been well studied.
A recent study and literature review can be found
in (Benzion et al., 2005). It is well-known that a box
spread is a synthetic position in a short position in a
stock and a long position in the same stock. A box
spread can also be viewed as a synthetic position in
other option spreads as follows:

Definition 7. A synthetic box spread is a centipede
whose resulting spread is a multiple of a box spread.

Let pp be the price of a box spredd We assume
that pp > 0 and therb is a long box (debit) spread,
or pp, < 0 and therb is a short box (credit) spread.
We exclude the casg, = 0 which means an obvious
error in pricing of options.

Letx* be the synthetic box spread with the result-
ing spreada*b that is found by solving the integer
program (2) with variables and 1< a < amax, Where
amax IS @ chosen multiplicity upper bound.

As a multiple of a box spread is a trivial synthetic
box spreadp’'x* < a‘pp. We assume thai*p, > 0
implies p'x* > 0; otherwise we have again an obvi-
ous error in pricing of options. Thus, &b gives
an arbitrage opportunity, then its synthetic counter-
part X* gives a better arbitrage opportunity only if
p'xX* < a*pp.

While a box spread can find an arbitrage opportu-
nity by capturing only four mispriced options, a syn-
thetic box spread is a much more powerful tool be-
cause it captures mispriced options in the whole op-
tion chain.

5.2 Decompositions of Option Portfolios

Let us recall that, according to the definition given in
Section 2.2, a portfolio of main spreads is an in-

teger column vector of size whose components

represent quantities of main spreads. Thusnifs
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and the following nonnegative integer variable vectors

a = ( a a an )
X' = (. X1 X2 Xin )
i = ( yi1 i Yir )
7 = (. zaa =z 2 o

where components @fare associated with multiplic-
ities of main spreads that are not necessarily in the
portfolio, components of; andy; are associated with
multiplicities of main spreads in centipedes and milli-
pedes, respectively, that are in the portfolio, and com-
ponents ofz are 0-1 variables for counting minimal
millipedes in the portfolio. We assume that |n/2|
because a nontrivial millipede involves at least two
main spreads, hence<lj <r.

We also consider the nonnegative integer variable
vector

y' ( )
instead of the vectong; in portfolio decompositions
with a single millipede.

Now we show how theno-offsetmarginm’ q of
the portfolioq can be reduced to obtain affset mar-
gin of this portfolio using centipedes and millipedes
as offsets. As we show in this section, the reduction
follows from a decomposition of the portfolio into
centipedes and millipedes.

Let b be a main spread. We say that the portfo-
lio g contains a centipede or millipectewith the re-
sulting sprea@db, wherea > 0 ora = 0, respectively,
if Ax=ab andx < g. Centipedes and/or millipedes
X1,X2,...,Xs generate a decomposition of the portfo-
lio qif Xg+X2+4...+Xs=0.

If i denotes the margin of théh component of
this decomposition, wheng = 0 if x; is a millipede,
thenpy + 2+ ... + Ps is thedecomposition margin

Y1 ¥z Yr

Lemma 2. Any decomposition of an option portfo-
lio into centipedes and millipedes can be transformed
into a decomposition with at most n nonzero compo-
nents, at most one centipede of each type, and the
same decomposition margin.
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Proof We can sum up centipedes of each type, arbi- Proof Leta' be a main representativeaf for the de-
trarily add to these sums all nontrivial millipedes, if compositionx},x5,...,X,. Obviously,m’a < m'a*.

any, and thus obtain a decomposition with at most
nonzero components. The margin of the sym x|

is Y + j, therefore the new decomposition has the
same margin. O

To obtain a maximum reduction of the margiiq

using centipedes and millipedes as offsets we can de-main representative of

compose the portfoliq as follows.

Let b; be theith main spread, i.e., thi¢h column
of A, and let{a,x1,X2,...,Xn, } be the variable set.
Then the set of solutions to the system

AXi =abj, 1<i<n
n

21

defines a set of decompositions of the portfajithat
contains, by Lemma 2, a decomposition with a mini-
mum margin. Note that settireg= q andx; = gjg for

all i gives a trivial solution to this system.

Itis important to observe that a solution to the sys-
tem (3) defines a portfolia from the coimage of the
transformation by the matriA. The no-offset mar-
gin of a, i.e.,m'a, is the offset margin of|. Sincea
carries the same risk profile gsve call it arepresen-
tative of q for the decompositiory, X2, ..., Xp.

Note thata is not always a subportfolio af be-
cause the inequalitg < g may not hold. If it holds,
then we calla a proper representativef g.

Lemma 3. If ais a representative df, thenqg—ais
a millipede.

Proof Multiplying the lower equation in (3) byA
from the left and using the upper equation we obtain

3)

n
Aa= Y ab; =Aq
2,50

which impliesA(g—a) = 0. O

Obviously, ifais a proper representative@gfthen
the millipedeq— a is a subportfolio ofy.

Definition 8. A solutiona®,xj,x3,...,X; to the inte-

ger program of minimizing the objective
m'a

(4)

under the constrainté3) defines a main decomposi-
tion xj, x5, ...,x5 of the portfoliog and a main repre-
sentativea* of q for this decomposition.

The following theorem establishes that the mar-

gin of a main decomposition cannot be reduced using

centipedes and millipedes as offsets.

Theorem 3. A main representative of a main repre-
sentative ofj is also a main representative qf

Then it is not hard to verify tha' is also a represen-
tative ofq for the decompositior/, x5, ..., x;, where

X =X +x-ae

for all i. Thereforem'a = m'a*, and hence! is a
O

A main decomposition contains millipedes not
only among its own millipedes but also inside its cen-
tipedes which, therefore, may not be minimal. How-
ever, solving the following modified version of the
problem (3)(4) we can extract all millipedes from the
centipedes that are not minimal and collect all milli-
pedes in a single subportfolio we calhéite hole

Let {a,x1,X2,...,Xn, Y} be the variable set. Then
the set of solutions to the system

Axi=abj, 1<i<n, Ay=0
n

.in+y=q
=

defines a set of decompositionsagpthat contains all
main decompoaositions.

()

Definition 9. A solutiona®, x3,x3,...,Xn,Y° to the in-
teger program of minimizing the objective
1y

Tq
under the constraintg5) defines a white-hole de-
composition of the portfolig into centipedes, which
are nonzero vectors amomng, x5, ..., Xp, and a milli-
pedey’, which is a white hole im.

As the following lemma and theorem state, a
white-hole decomposition is just an extension of a
main decomposition by one component collecting all
millipedes; hence, a white-hole decomposition has
only one millipede and only minimal centipedes.

m'a—

(6)

Lemma 4. The vectorxj, x3, ..., X5 are either mini-
mal centipedes or zero vectors.

Proof Let a centipede; be not minimal, and let be
a nontrivial millipede inx?. Then movingv from x?
toy® adds value
17q

to the objective (6). Ad'v > 0, the objective would
decrease, which is a contradiction.

Letx? > 0 be not a minimal centipede. Then it is
a nontrivial millipede that could be added yo and
decrease the objective again. O
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Theorem 4. m'a® = m'a*, i.e., X},X3,...,X5 is a nonzero vectors among;,xs,...,x3, and 1’z non-
main decomposition, and heneé is a main repre- trivial millipedes, which are nonzero vectors among
sentative of}, whereq— a°+ y* is a millipede. RV

_ i T80 . i . . .
Proof If y* =0, then the equatiom'a® = m a" is The following theorem establishes that a prime de-
evident. Assume thaf > 0. composition of an option portfolio is a finest decom-

Let y* be the sum of all millipedes inside and  position that completely reveals its structure in terms
amongxy, X, .., X,. Note thayy” > 0 impliesy* > 0 of centipedes and millipedes.
and thatx{,x3,...,Xy +Y° is a decomposition with

marginm'a® > m'a*; otherwisex:,x5,...,x% is not Theorem 5. All centipedes and millipedes in a prime

a main decomposition. decomposition are minimal.
If m'a® > m'a*, then Proof Lemma 4 implies that all centipedes in a prime
17y decomposition are minimal. Let us show that all non-

ma*<ma’—1<m'a’— trivial millipedes in there are also minimal.

1N ., . -

. g Let a nontrivial mllllpedeyl be not minimal.
because® < q. Asm'a* — 1y < m'a*. we have Thenyl contains a proper submillipedeand hence
B 1'q u= yl —Vis also a proper submillipede.

1y 1P Besides, there exists a positive integer r such
ma' - = <m'a — = t t : -
1q 1q thaty, = 0 and hence; = 0; otherwise each milli-

Tt oo i .
Thus,x{,X5,...,Xq,Y° is not a white-hole decomposi- perie awonr]tgl’?ﬁ' n7\)//\; IS mr:nlmre]ll ;clrndtconr':a:/csdtwo m
tion, which is a contradiction. components. enwe can construct a new decom-

s it — I i i,
By Lemma 3,q— @ is a millipede, therefore ~POSitionreplacing)., y; andz withy, =u, yj =V,
g—a°+y’ is a millipede because it is a sum of two andq* =1, whereyhyf = yl. This replacement de-
millipedes,q— a° and+y°. O creases the number of nontrivial millipedes by one,

. . " . which is a contradiction. O
A white-hole decomposition partitions a given

portfolio into two subportfolios that can be indepen- - .
dently closed without affecting the risk profiles of ©-3 Decompositions with Proper

each other. A white hole can be closed because the Representatives
residual portfolio can be more attractive for returns
or, vice versa, because the white hole is risk-free. It is not hard to verify that all results obtained in Sec-

Providing the finest partition of the residual port- tion 5.2 remain valid if the systems (3) and (5) are
folio into minimal centipedes (that can also be closed complimented by the inequalitg < g. Thus, there
independently), a white-hole decomposition leaves exjst counterparts of main, white-hole and prime de-
the structure of the white hole unclear. Solving the compositions with proper representatives. The option
following integer program, however, decomposes a trader can be interested in this kind of decomposi-

white hole into minimal millipedes. tions because the conversion of the portfajiato its
Letyy,ys,...,¥r, zbe the variable set. Thenthe set proper representativerequires only selling the sub-
of solutions to the system portfolio g— a. While the conversion into a represen-
Ay; =0, 1Tyj >z, 1<j<r tative, which is not proper, requires s_eIIing qua_tr_nities
r ) g — @& from pos_lt_lons_wn_h g > &, buying quantities
Z yj =y aj — q; for positionsj with aj > qj > 0 and open-
=1 ing new positionk with quantitiesay if ax > qx = 0.

defines all decompositions of the white hgtanto at Considering only proper main representatives, how-

mostr millipedes. ever, can reduce savings on margin; see Section 6.
A solutiony!y}. ...y, to the integer program

of maximizing the scor&'z under the constraints (7)

defines a decomposition of the white hgle into 6 COMPUTATIONAL
1'z nontrivial millipedes, which are nonzero vectors EXPERIMENT

Tt
amongys,ys, ...,V

Definition 10. a°, X{,X3,...,Xn, yI,y;...,yI, Z' de- Now we are conducting the computational study on
fine a main representativ@ and a prime decompo- finding option arbitrage opportunities by synthetic
sition of the portfoliog into centipedes, which are  box spreads and the estimation of margin reductions
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Figure 1: The percentage of average savings on margin by
main (M) and proper main (P) representatives of over 500
portfolios of main spreads of each size from 3 to 32. All the
main spreads were on the exercise domain of size 10 and ex-
ercise differential of $5USD. The portfolios were genedate
by proportional random sampling with replacement based
on the trading volume of options on NASDAQ:AAPL ex-
piring on 22-OCT-2011. The options data were taken from
www.google.com/finance on 04-AUG-2011 when the under-
lying security price was at $377.37USD.

7 CONCLUSIONS

This paper takes only the first step in studying combi-
nations of option spreads and demonstrates how these
combinations can be used in trading and margining
practice. An important consequence of this study is
a sketch of a combinatorial theory of option port-
folios that we believe will be useful for developing
new techniques for high-frequency trading and new
margining methodologies.

Our next step will be devoted to computational ex-
periments for detecting option arbitrage opportunities
using live option price quotes and estimating margin
reductions for portfolios of main spreads with differ-
ent underlying stocks.
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