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Abstract: Most approaches to classifier learning for structured objects (such as images or sequences) are based on proba-
bilistic generative models. On the other hand, state-of-the-art classifiers for vectorial data are learned discrim-
inatively. In recent years, these two dual paradigms have been combined via the use of generative embeddings
(of which the Fisher kernel is arguably the best known example); these embeddings are mappings from the
object space into a fixed dimensional score space, induced by a generative model learned from data, on which
a (maybe kernel-based) discriminative approach can then be used.

This paper proposes a new semi-parametric approach to build generative embeddings for classification of mag-
netic resonance images (MRI). Based on the fact that MRI data is well described by Rice distributions, we
propose to use Rician mixtures as the underlying generative model, based on which several different generative
embeddings are built. These embeddings yield vectorial representations on which kernel-based support vector
machines (SVM) can be trained for classification. Concerning the choice of kernel, we adopt the recently
proposed nonextensive information theoretic kernels.

The methodology proposed was tested on a challenging classification task, which consists in classifying MRI
images as belonging to schizophrenic or non-schizophrenic human subjects. The classification is based on
a set of regions of interest (ROIs) in each image, with the classifiers corresponding to each ROI being com-
bined via boosting. The experimental results show that the proposed methodology outperforms the previous
state-of-the-art methods on the same dataset.

1 INTRODUCTION the goal of taking advantage of the best of both
paradigms (Jaakkola and Haussler, 1999; Lasserre
Most approaches to learning classifiers belong to oneet al., 2006). In this context, the so-called generative
of two paradigms: generative and discriminative (Ng Score space methods (or generative embeddings) have
and Jordan, 2002; Rubinstein and Hastie, 1997). Gen-stimulated significant interest. The key idea is to ex-
erative approaches are based on probabilistic classploit a generative model to map the objects to be clas-
models anda priori class probabilities, learnt from  sified into a feature space, where discriminative tech-
training data and combined via Bayes law to yield niques, namely kernel-based ones, can be used. This
posterior probability estimates. Discriminative learn- is particularly suitable to deal with non-vectorial data
ing methods aim at learning class boundaries or pos-(strings, trees, images), since it maps objects (maybe
terior class probabilities directly from data, without of different dimensions) into a fixed dimension space.
relying on generative class models. The seminal work on generative embeddings is
In the past decade, several hybrid generative- arguably the Fisher kernel (Jaakkola and Haussler,
discriminative approaches have been proposed with1999). In that work, the features of a given object
- are the derivatives of the log-likelihood under the as-
We acknowledge financial support from the FET pro- symed generative model, with respect to the model

g‘gpg‘ﬁ%gm EU FP7, under the SIMBAD project (Con-  harameters, computed at that object. Other examples

C. Carli A., A. T. Figueiredo M., Bicego M. and Murino V. (2012). 1 13
GENERATIVE EMBEDDINGS BASED ON RICIAN MIXTURES - Application to Kernel-based Discriminative Classification of Magnetic Resonance

Images.

In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods, pages 113-122

DOI: 10.5220/0003790801130122

Copyright ¢ SciTePress



ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods

of generative embeddings have been more recently A finite mixture of Rician distributions, wittg
proposed (Bosch et al., 2006; Perina et al., 2009). = components, is thus

In this paper, we exploit generative embeddings g
to tackle a challenging classification task: based on a fly,W) = erq fr (y;vi,oiz) , (3)
set of regions of interest (ROIs) of a magnetic res- i=
onance image (MRI), classify the patient as suffer- where thery's, i = 1,...,g, are nonnegative quanti-

ing, or not, from schizophrenia (Cheng et al., 2009a). ties that sum to one (the so-called mixing proportions
We build on the knowledge of the fact that MRI data or weights),8; = (vj,0?) is the pair of parameters of
is well modeled by Rician distributions (Gudbjarts- component, and¥ = (m,...,Ty-1,61,...,6q) is the
son and Patz, 1994), and propose several generativerector of all the parameters of the mixture model.
embeddings based on Rician mixture models. Con-  LetY = {yi,...,yn} be a random sample of size
cerning the kernels used in the obtained feature spacen, assumed to have been generated independently by
we adopt the nonextensive information theoretic ker- a mixture of the form (3) and consider the goal of ob-
nels recently proposed by (Martins et al., 2009). An taining an MLE of¥, that is, P — argmax L(W),
SVM classifier is learnt for each ROI. Finally, an op- \where
timal combination of these SVM classifiers is learnt n n g
via the AdaBoost algorithm (Freund and Schapire, L(W,Y) :z log f(yj; W) :Z log Zn’ifR (yj;vi,oiz).
1997). The experimental results reported show that =1 - =
the proposed methodology outperforms the previous (4)
state-of-the-art on the same dataset. As is common in EM, letzj € {0,1}9 be ag-
The paper is organized as follows. Section 2 ad- dimensional hidden/missing binary label vector asso-
dresses the problem of estimating Rician finite mix- Ciated to observatioy;, such that;; = 1 if and only
tures using the expectation-maximization (EM) algo- if ¥j was generated by thieth mixture component.
rithm. In Section 3, we propose several generative The so-called complete data {$y1,z1),...,(Yn,Zn)
embeddings based on the Rician mixture model. Sec-and the corresponding complete loglikelihood %r
tion 4 briefly reviews the information theoretic ker- 10gLc(¥), is given by

nels proposed by (Martins et al., 2009), while Section n g
5 described SVM combination via boosting. Finally, Le(W.Y.Z)= 5 5 z; {logm +log fr(y;;81)} (5)
Section 6 reports the experimental results on the mag- I=1i=

netic resonance (MR) image categorization problem. whereZ = {zy,...,z,}.
The EM algorithm proceeds iteratively in two
steps. The E-step computes the conditional expec-

2 RICIAN MIXTURE FITTING tation (with respect to the missing labed$, of the
VIA THE EM ALGORITHM complete loglikelihood given the observed datand

the current parameter estima&

2.1 The EM Algorithm QW) :=E; [Lc(WvY,Z)IY, @(k))} . (8

) _— ] Since the complete-data log likelihood is linear in the
The expectation-maximization (EM) algorithm ,nopservable data; (as is clear in (5)), this reduces
(Dempster et al., 1977) is the most common approachts computing the conditional expectation of hidden
for computing the maximum likelihood estimate \4riaples and plugging these into the complete log-
(MLE) of the parameters of a finite mixture. In |ielihood. These conditional expectations are well
this section, we briefly review how EM is used 10 known and equal to the posterior probability that the
estimate a mixture of Rician distributions. A Rician j-th sample was generated by th component of

Frobability density function (Rice, 1944) has the ine mixture; denoting this quantity ag;, we have
orm

_ y 22 gy mif(y;; 6
o). w o
for y > 0, and zero fory < 0, wherev is the mag- . Z,h:l 380 )
nitude parameteq is the noise parameter, afs(z) fori=1,....,gandj=1,..,n Itfollows that the
denotes the 0-th order modified Bessel function of the conditional expectation of the complete loglikelihood
first kind (Abramowitz and Stegun, 1972) (6) becomes
g n
1 2n cosp Q(LP Lp(k)) = Wiji {IOQT[i + |ng(y-'9')} (8)
= -_— . ! JI J, I ’
o) = o [ €% @ 2,2

114



GENERATIVE EMBEDDINGS BASED ON RICIAN MIXTURES - Application to Kernel-based Discriminative

Classification of Magnetic Resonance Images

The M-step obtains an updated parameter estimatepixel of thes-th image) belongs to theth component

Wkt py maximizingQ(Ww; W) with respect tow

over the parameter spaﬁe The updated estimates of

the mixing proportlonsrq ) are well-known to be

given by
Tq(k+l _}
n

2.2 Updating the Parameters of the
Rician Components

(9)

WMD

Updating the estimate & = (v, c?) requires solving

n

9
ZL Z wijiOglog fr(y;;0) =0, (10)
i=1j=1

wherellg denotes the gradient with respect&o In

the following proposition (proved in the appendix),
we provide an explicit solution of (10) for the Rician

mixture.

Proposition 2.1. The updated estimat®*"™ =

@ Y (G2)(+D), that s, the solution of10), is

1 n . (k)
/<Ik+l) ZJ w; Z Wji Yj (P(%) (12)
and
(0.)‘k+1))
(k+1)2 (k+1) (YiV
ZJ 1WJ| ZW“ <y2-|—v +1) 2yvI + (P( li2<k> )>
(12)
where 14(0)
0
ou) = o) (13)

3 GENERATIVE EMBEDDINGS
BASED ON RICIAN MIXTURES

This section introduces several generative embed-
dings for images based on the Rician mixture model.

Let Xs = {y5,.--, W} }, fors=1
images, each belonging to one Rfclasses.
image Xs is modeled simply as a bag of strictly
positive pixelsy; € Ry, for j =1,...,Ns. Eachim-

.,S, be a set of

age is mapped into a finite-dimensional Hilbert space
(the so—calledeature spaceusing the Rician mixture

generative model, as explained next.

Based on &-components Rician mixture with pa-

rameters¥, the posterior probability thqﬁ' (the j-th

Each

of the mixture is
s TEH6)
“Mw*iﬁmﬂwwf

as used in the E-step (7). Based on (14), different
generative embeddings can be defined, as shown in
Definitions 3.1, 3.2, and 3.3.

Definition 3.1. If a single Rician mixturéd is esti-
mated for the S images, the embedding of an image
X ={y1,...,yn} is a K-dimensional vector given by

r single(x; l.|J) _
[Zwl yi ¥ ZWK Vi W

Definition 3.2. If a set of R Rician mixtures (one per
class) is estimated,¥s, ..., Wr}, each with K com-

(14)

2
(15)

ponents, the embedding of an image=Xyi,...,yn}
is a (KR)-dimensional vector given by
é(X;LIJl,...,kPR) =
‘ s . 17
i [(é smgle(X;LPl)) - (é smgle(X;LPR)) ]
S
(16)

Other possible embeddings and their generalizations
are introduced in the following definition.

Definition 3.3. We will also consider the two follow-
ing K-dimensional embeddings, defined for an arbi-

trary image X= {y1,...,yn} as
smgle . T
X LIJ — Z|:T[lf yjael 7T[Kf(ijeK)i|
and
a smgle 1 < T
069 = 3 [, flin]

as well as theif KR)-dimensional generalizations to
the case in which a Rician mixture is estimated for
each of the R classes,

e(X;Wy,...,WR) =

|: smgle X Yy )T, e (ésingle(x; LPR))T:| T

é(X;Wl,...

[(@ single(x; q”l)) T, . (é single(X; LPR))T} T .

anR) =
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4 NONEXTENSIVE
INFORMATION THEORETIC
KERNELS ON MEASURES

This section briefly reviews the information theoretic
kernels proposed in (Martins et al., 2009), introducing
notation which will be useful later on.

4.1 Suyari’'s Entropies

Begin by recalling that both the Shannon-Boltzmann-
Gibbs (SBG) and the Tsallis entropies are particular
cases of function§; o following Suyari's axioms (Su-
yari, 2004). LetA"1 be the standard probability sim-
plex andg > 0 be a fixed scalar (thentropic inde).
The functionS; ¢ : A" — R has the form

[ g (A-3lap) ifa#l
Sw(ply",pn){ i(iq()z{‘:lpiln pi ifg=1
17)

where@: R, — R is a continuous function with prop-
erties stated in (Suyari, 2004), akd- 0 an arbitrary
constant, henceforth set ko= 1. Forq= 1, we re-
cover the SBG entropy,

Z pi In pi,

Sre(p1,
q — 1vyields the Tsallis entropy

(1 Zp) _ip?lnqpi,

is theg-logarithmic function.

apn):H(pL 7pn

while settingg(q) =

%(pla' : apn

(x1 1)
1q

4.2 Jensen-Shannon (JS) Divergence

where Iy (x) =

Consider two measure spacest, s ,v), and
(7,7,1), where the second is used to index the first.
Let H denote the SBG entropy, and consider the ran-
dom variablesI € 7 andX € x, with densitiest(t)
and p(x) £ [, p(x|t)m(t). The Jensen divergence
(Martins et al., 2009) is defined as

J%(p) = Ji(p) =H(E[p]) ~EH(p).  (18)
When x and 7 are finite with |7| = m,
Ji(p1,---,pm) is called theJensen-Shannon (JS)
divergenceof pi,---,pm, With weightsty,--- T
(Burbea and Rao, 1982), (Lin, 1991). In partic-
ular, if |7] =2 and m= (1/2,1/2), p may be
seen as a random distribution whose value on
{p1, p2} is chosen tossing a fair coin. In this case,

J(3/21/2) — 39(py, p2), where
A + H(p1) +H
Js(pl,pz):H(plZPZ)_ (p1>2 (P2)

which will be used in Section 4.4 to define JS kernels.
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4.3 Jensen-Tsallis (JT—Differences

Notice that Tsallis’ entropy can be written as

&(X) = —Eq[Ing p(X)],
where Eq denotes theunnormalized g—expectation

which, for a discrete random variabl € x with
probability mass functiop : x — R, is defined as

EqX] = 5 xp(x)%;
Xex
(of courseE;[X] is the standard expectation).
As in Section 4.2, consider two random variables
T € 7 andX € x, with densitiesti(t) and p(x) =
J7 p(x|t)T(t). The Jensen-difference (nonextensive
analogue of (18)) (Martins et al., 2009) is

Tq'(p) = S(E[p]) — Eq[Sy(p)]-

If x andT are finite with|7 | =m, Tg'(pa,-- -, Pm)
is called the Jensen-Tsallis (JT) qg-differencef

P, , Pm, With weightsty,--- , T, In particular, if
|T| =2 andm= (1/2,1/2), defineTy = T3>/

To(Pp2) = S ( plz Dz) _ S](pl);FSQ(pZ)7

which will be used in Section 4.4 to define JT kernels.
Naturally, T; coincides with the JS divergence.

4.4 Jensen-Shannon and Tsallis Kernels

The JS and JT differences underlie the kernels pro-
posed in (Martins et al., 2009), which can be defined
for normalized or unnormalized measures.

Definition 4.1 (Weighted Jensen-Tsallis kerneltet
t and p be two (not necessarily probability) mea-
sures; the kernely is defined as

kg (b, 2) 2 (Sy(m) — T3H(pa. p2)) (cor + o0p)°

where p = L and p = {2 are the normalized coun-
terparts of |4 and b, with corresponding total masses

wp andwy, and = (w; + wy) [0y, wp]. The kernel
kq is defined as
Ka (b1, M2) = S(1) — T (p1, P2)

Notice that ifwy = wp, kg andkq coincide up to
a scale factor. Fog= 1, kq is the so-called Jensen-
Shannon kernek;s(p1, p2) =In2—J3Sp1, p2).

The following proposition characterizes these ker-
nels in terms of positive definiteness, a crucial aspect
for their use in support vector machines (SVM).

Proposition 4.1. The kernelk, is positive definite
(pd), for ge [0,2]. The kernel kis pd, for ge [0, 1].
The kernel ksis pd.
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5 COMBINING SVM with o > 0 andy; > 0. By minimizingLp with re-
CLASSIFIERS VIA BOOSTING spect tof3, PBo, & andy, i =1,...,S the Lagrange

dual problem results
The final building block of our approach to MR image max ¥2,0ai—3 5P cicjyiyik(X, X)) (21)
classification is a way to combine the classifiers work- a '
ing on each of the several regions of interest (ROI). S.t. 0<ai < pC
For that end, we adopt the Adaboost algorithm (Fre- zis‘zlaiyi =0.
und and Schapire, 1997), which we now briefly re- Notice that each;

view. In the description of AdaBoost in Algorithm ;. rather tharC while the objective function in
5.1, each (weak) classifie@n(x), m=1,...,M,each  (51)is the same as the original 1-norm dual problem
corresponding to one of thd regions. (Cristianini and Shawe-Taylor, 2000), (Scholkopf and
Smola, 2002). As a consequenceyifs close to zero,

so isaj, thus contributing very weakly to the defini-

is constrained to be less or equal

Algorithm 5.1: AdaBoost (Freund and Schapire, 1997).

1. Initialize weightspi =1/Si=1,...,S tion of the optimal hyperplane, which is still given by
2. Form=1toM: S
(a) Learn classifieGm(x) with current weights. f(X,a*,Bo) = Zyi o k(Xi, X) + Bp- (22)
(b) Compute weighted error rate: i=

321 P lyGnx)

Soap 6 EXPERIMENTS
(c) Computey = log(1—erim) - I_og(errm) X Let us begin this section with a summary of the pro-
(d) pi < pi-explymliysomixy): =1, S posed approach. The training data consists of set of
3. OutputG(x) = sign[Fm_1 YmGm(¥)] images, each containing a setMfregions of inter-

est (ROI) and labeled as belonging to a schizophrenic
or non-schizophrenic patient. For each ROI of the
set of training images, either a single Rician mixture
or two Rician mixtures (one for each class) are esti-
mated and used to embed the data on a Hilbert space,
as described in Section 3. On the Hilbert space for
each ROI, one of the information theoretic kernels de-
scribed in Section 4 is used. Finally, a set\df(one

per ROI) SVM classifiers is obtained by the AdaBoost
algorithm described in Section 5; the final classifier is
the one resulting at the last step of Algorithm 5.1.

The baselines against which we compare the pro-
posed approach are SVM classifiers with linear ker-
nels (LK) and Gaussian radial basis function kernels
(GRBFK) built on the same generative embeddings.
SVM training is carried out using the LIBSVM pack-
age (http://www.csie.ntu.edu.twtjlin/libsvm). The

Each boosting step requires learning a classifier by
minimizing a weighted criterion, that is, with weights
p1,--.,Ps corresponding to each training observa-
tions (yi, %), i=1,...,S In our case, the classi-
fier Gy, is a weighted version of the SVM classifier
corresponding to thetrth RO, i.e, the SVM clas-
sifier whose kernel function is built on the Rician
mixture estimated for that ROI. To take into account
these weights, the optimization problem solved by the
SVM learning algorithm requires a modification: the
penalty on the slack variablg corresponding to the
exampleX; is set to be proportional to the weigpit
The corresponding modified 1-norm SVM optimiza-
tion problem (Cristianini and Shawe-Taylor, 2000),
(Scholkopf and Smola, 2002) is

min (B,B) +CZiS:1 pi&i (19) underlying Rician mixtures were estimated using the
&B:Po EM algorithm described in Section 2, witk (the
st Vi((B, X)) +Po)>1-¢&, i=1,...,S number of components) selected using the criterion
§>0, i=1,...,S. proposed in (Figueiredo and Jain, 2002); this leads to
- numbers in thé4, 6] range. We tested the generative
The Lagrangian for problem (19) is embedding®, e andé proposed in Section 3, both in
1 s the single-mixture an&-mixtures versions.
Lp(B,Bo,&, 0, 1) = —|H3||2+C leiai The dataset contains 124 images (64 patients and
2 i= 60 controls), each with the following 14 ROIs (7

s s pairs): Amygdala (1-Left, 2-Right), Dorso-lateral
- ZLO(i Vi ((@(Xi), B) + Bo) — (L —&)] — Zlufi PreFrontal Cortex (3-Left, 4-Right), Entorhinal Cor-

i i= tex (5-Left, 6-Right), Heschl's Gyrus (7-Left, 8-
(20) Right), Hippocampus (9-Left, 10-Right), Superior
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Table 1: Mean accuracy for the best valuegj@ndC for the SVM classifiers learnt on ROI 2, 4, 6 respectivelyngsine
Rician mixture per class wit = 4,5,6 components and embeddings andé.

ROI 2 4 6

No. of components 4 5 6 4 5 6 4 5 6
Embedding

Linear 5484 5306 5339 6Q16 60 60 5726 5823 5823
RBF 5952 6Q16 6226 60.81 6081 6113 6532 6516 6448
Jensen-Shannon By 5839 5984 6081 5855 6032 6742 6661 6548
Jensen-Tsallis 595 60 6097 6242 5984 6242 6758 6742 6597
Weighted JTk, 5935 5984 6097 6113 6032 6194 67.74 6726 6629
Weighted JTkq 5935 5919 5984 6242 5984 6242 6758 6694 6597
Embeddinge

Linear 5306 5194 5194 5887 5823 5774 5645 5855 5774
RBF 6194 6226 6339 59.84 6048 6097 64.03 6339 6355
Jensen-Shannon 60 a5 6032 5774 5774 5726 6484 6548 6581
Jensen-Tsallis 645 6145 629 6048 60.16 60 671 6758 6661
Weighted JTk, 6258 6226 621 579 5806 5887 6613 6597 65
Weighted JTkq 6177 6145 6323 56.94 5806 5709 6645 6694 67.74
Embeddingg

Linear 5274 5355 5565 5839 5806 5855 571 5726 571
RBF 6194 621 6339 60.32 6065 60.32 6581 6484 6516
Jensen-Shannon 8B 6032 6097 5774 5774 579 65 6645 6597
Jensen-Tsallis 607 6113 6339 5952 6016 5952 6676 6806 66.29
Weighted JTk, 621 6258 6242 5839 579 5855 6408 65 6565
Weighted JTkq 6145 6145 6242 5774 5774 5984 6532 6613 6774

Temporal Gyrus (11-Left, 12-Right), Thalamus (13- sifiers with the AdaBoost algorithm are shown in

Left, 14-Right). To evaluate the classifiers, the dataset Table 4 for the generative embeddingse and €.

was split 50%-50% into training and test subsets and These results show that the proposed approach out-

10 runs were performed. performs state-of-the-art methods for ROIs intensity
SVM classifiers were trained for each individual histograms for this dataset, see (Cheng et al., 2009a),

ROI (without the boosting-based combination), and (Cheng etal., 2009b), (Ulas et al., 2010), (Ulas et al.,

the conclusion was that ROI 10 leads to the best accu-2011).

racy (see Tables 1, 2, 3). The accuracy is robust to the

number of components of the mixture. The best per-

formances oveqandC are reported. For the GRBFK,

the best performance over the width parameter and7 CONCLUSIONS

overC are reported. Mean accuracies are plotted in

Figure 1 as a function af for the best value of and In this paper, we have proposed a new approach

as a function o€ for the best value o, for the gen- for building generative embeddings for kernel-based

erative embeddingg e andeg, with 2 (one per class) classification of magnetic resonance images (MRI) by

Rician mixtures each with 4 components. The results exploiting the Rician distribution that characterizes

with a single mixture are very similar, thus omitted. MR images. Using generative embeddings, the im-

Forqg > 1, the results shown for the weighted JT ker- ages to be classified are mapped onto a Hilbert space,

nel (which is positive definite only fay € [0, 1]) cor- where kernel-based techniques can be used. Concern-

respond tog = 1. These results show that the pro- ing the choice of kernel, we have adopt the recently

posed generative embeddings lead to comparable perproposed nonextensive information theoretic kernels.

formances. The information theoretic kernels outper- The proposed approach was tested on a challenging

form the LK and GRBFK. Namely, the best perfor- classification task: classifying subjects as suffering,

mances are obtained with the JT and weighted JT ker-or not, from schizophrenia on the basis of a set of re-

nels, for all ROIs. The standard error of the mean is gions of interest (ROIs) in each image. To this pur-

less than MO6. pose, an SVM classifier for each ROI is learnt. Fi-
Results obtained by combining the SVM clas- nally, we propose to combine the SVM classifiers via

118



GENERATIVE EMBEDDINGS BASED ON RICIAN MIXTURES - Application to Kernel-based Discriminative

Classification of Magnetic Resonance Images

2r 75 T
—»— Linear
RBF
O Jensen—Shannon
or ~ % = Jensen-Tsallis
0 WJensen-Tsallis tilde
—+— WJensen-Tsallis
68
66
|
i
64 i
|
1
P
62 11
T
[
60 ‘\
—— Linear i
RBF °
L| O Jensen-Shannon
S8 - # — Jensen-Tsallis .
¢+ WJensen-Tsallis tilde
—+— WJensen-Tsallis
56 T T L L L L L L 1501 ‘D ‘1 L ‘3 L ‘5 ‘6 ,
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2 10 10 10 10 10 10 10 10 10
Entropic index q C
@ (b)
70 70 T T
—— Linear &%
N RBF * 7 M
x A N 68 O Jensen-Shannon »7 ° o 1
8 @ 0.0,0~0_.@~& 0 0@ 00 Q 00000 00 — #* — Jensen-Tsallis / .
W * Se L ®e g ¢+ Wlensen-Tsallis tilde
* N « —+— WJensen-Tsallis
N X
\
66 g . \
- “o *
R . \
¢ 0. '
p \
641 O y
° 1
62 -
o
<
60 o
—>»— Linear
RBF
58 O Jensen-Shannon
— % — Jensen-Tsallis
¢+ WJensen-Tsallis tilde
—+— WJensen-Tsallis
56 T T 0 T 0 0 0 T % ey ‘D ‘1 L ‘3 ‘4 ‘5 ‘6 ,
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2 "0 10 10 10 10 10 10 10 10
Entropic index q C
© (d)
70 70 T R
’(\ —— Linear N
RBF o %
\ * 7
o 0 00 0,0"Q-& 0 ©:0:0 00 00 0 00 0 68 O Jensen-Shannon e R0 N ]
68 =L ¥ | NIRRT L ~ % - Jensen-Tsallis
e e N i 5 ¢+ WJensen-Tsallis tilde
S - \ 66| —— WJensen-Tsallis
\
< e \
66 < o - * 64
4 5 N ,‘
LRSI 62
64 i
R
R 60
'1
621 !
Al 58
\
i
i 56
60 B
il
—%— Linear | 54
RBF *
58 Q' Jensen-Shannon
— % = Jensen-Tsallis < 524
O+ WJensen-Tsallis tild
—+— WJensen-Tsallis
56 ; y ; ; ’ ' y ) 505 5 o - o - = " 7
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2 10 10 10 10 10 10 10 10 10
Entropic index q C
(e) ®

Figure 1: Mean accuracy on 10 runs as a functioq (festC) and as a function df (bestq) for the SVM classifier learnt on
ROI 10 using one Rician mixture per class with= 4 components and embedding&a), (b)),e ((c), (d)) ande ((e), (f)).
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Table 2: Mean accuracy for the best valuesjahdC for the SVM classifiers learnt on ROI 8, 12, 14 respectivebing one
Rician mixture per class wit = 4,5,6 components and embeddings andé.

ROI 8 12 14

No. of components 4 5 6 4 5 6 4 5 6
Embeddinge

Linear 6258 6032 5952 5839 6065 5935 5532 55 5548
RBF 6548 6532 6403 6597 6532 6371 6194 6274 6113
Jensen-Shannon & 65 6484 6435 6484 6452 6242 6145 6016
Jensen-Tsallis 685 6613 6565 6613 66.94 64.68 6258 621 6145
Weighted JTk, 67.26 66.77 6565 6613 6629 65 62.74 6194 6145
Weighted JTk, 66.45 6565 6565 6613 66.94 64.68 6258 621 6145
Embeddinge

Linear 5935 6016 5919 5823 5903 5726 55 5484 5484
RBF 6371 6468 6323 6242 629 629 621 6355 6306
Jensen-Shannon 63 6468 6323 6065 6194 621 6661 6598 6532
Jensen-Tsallis 668 6484 6468 6258 64.84 6371 679 6661 6629
Weighted JTk, 6516 6419 6323 6387 6419 629 6548 6484 6387
Weighted JTk 64.84 6403 6403 6403 6387 6323 65 6419 6371
Embeddinge

Linear 5919 6048 5887 6048 6016 60 5565 5565 5613
RBF 6403 6387 6306 6403 6452 6274 6323 6355 6306
Jensen-Shannon 64.84 6371 6097 6274 6226 6661 6613 6435
Jensen-Tsallis 688 6484 64.03 6274 6274 6387 6806 671 6548
Weighted JTk, 64.84 6403 6339 6435 6355 6339 6548 65 6387
Weighted JTk, 6452 6435 6387 6435 6565 6306 6468 6468 6323

Table 3: Mean accuracy for the best valuegj@hdC for the SVM classifier learnt on ROI 10 using one Rician migtper
class withk = 4,5,6 components and embeddings andeé.

ROI 10
No. of components 4 5 6
Embeddinge
Linear 5839 5823 5742
RBF 6613 6726 6742

Jensen-Shannon B 6871 6806
Jensen-Tsallis 7113 70.32 6887

Weighted JTk, 70.65 7097 6919
Weighted JTk, 7113 70.32 6887
Embeddinge

Linear 5629 5613 5581
RBF 6565 6742 67.26
Jensen-Shannon (5] 6855 6968
Jensen-Tsallis 603 6968 70.48
Weighted JTk, 67.1 6758 6839
Weighted JTk, 67.26 6726 6919
Embeddinge

Linear 5694 571 57.9
RBF 679 66.94 6742
Jensen-Shannon (653 6839 6952
Jensen-Tsallis 684 70 70.48
Weighted JTk, 66.94 6726 6855
Weighted JTk, 67.9 67.26 6903
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Table 4: Mean accuracy for the best valueg ahdC for the set of SVM classifiers obtained by the boosting atharij using
one Rician mixture per class with = 4,5,6 components and embeddings andé. Results with state-of-the-art methods
for ROIs intensity histograms using leave-one-out are adported.

Boosting State-of-the-art methods
No. of components 4 5 6 Methodology Accuracy
Embedding SVM Best Single ROI
Jensen-Shannon B 7823 7774 (Cheng et al., 2009a) 73.4
Jeqsen-TsaWs 88 80.16 79.03 Dissimilarity representations
Weighted JTkg 80 7903 7839 (yjasetal., 2011) 78.07
Weighted JTkq 79.68 80.16 79.03

o SVM Multiple ROIs
Embedding Constellation probab. model + Fisher kernel
Jensen-Shannon 75 B3 7742 (Cheng et al., 2009b) 80.65
Jensen-Tsallis 78.71 78.06 7984 _ R _
Weighted Jqu 78.23 7806 7758 Combined dissimilarity representations
Weighted JT; 7871 7839 7855  (Ulasetal.,2010) &
Dissimilarity representations

Embedding (Ulas et al., 2011) 76.32
Jensen-Shannon B0 7694 7661
Jensen-Tsallis 795 7839 7839
Weighted JTﬁq 8177 78.39 7806
Weighted JTkq 80.48 7790 7839

a boosting algorithm. The experimental results show Figueiredo, M. and Jain, A. K. (2002). Unsupervised learn-

that the proposed methodology outperforms the pre
vious state-of-the-art methods on the same dataset.
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APPENDIX

Proof of Proposition 2.1

Proof. First of all, let us note thaf (y;;6;) can be
written in factorized form as

fi (yj;8i) = A(yj; 6i) - B(yj; 61) (23)
where 2o
AW;8) = e *F (24)
and
B(yj;6i) =1lo (yc’yv‘) (25)

It follows that the partial derivatives of the log-
likelihhod with respect t&; ando? result

dlogf(y;;6) 1 9f(y;;6)
ov; f(yj;6i) ovi
el A )
—s 2 (26)
e L L

The partial derivative oA (yj; 6;) with respect tos is

i
OAY:8) _ Vi (1
v, 02 207

: 2vi> (28)

Moreover, recalling that the higher order modified

Bessel function$,(z), defined by the contour integral

In(2) = zimfe(%)(%rnfldt (29)
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kind (Abramowitz and Stegun 1972)

t n-1
————dt
Tn( 4Tu 1 2tz+t2
with the contour enclosing the origin and traversed
in a counterclockwise direction, and in particular that
Ti(2) = z, then the partial derivative & results

(31)

0B(y;;61) _ 6Io( ) A, y]VI 24 (32)
ov; ovi 2y} a?
Substituting (28) and (32) in (26) we get
. 1 (L3
Ologf(y;:6) _ v | 1(0?)& (33)

ov; O'2 lo (X(J’%) 0i2
which, substituted in (10) yields (11).

The same considerations hold for the partial
derivatives with respect toiz, yielding to the follow-
ing expressions for the partial derivative AfandB
(with respect ta?)

R a2
0A(Y;:8) _ i i Wi e BV
00?7 04 o? 204
(34)
0B (y;;6i) <iji) YjVi
GBIy, (Y)Y 35

Substituting (34) and (35) in (27), the partial deriva-
tive of logf (y;; 6;) with respect ta? results

ologf(y;;8) _ 1 (, ¥i+w
l a2\ 207

i YiVi
- g (36)
o(%)
which, plugged in (10) yields (12). O



