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Abstract: In many learning problems, an adequate (sometimes discrete) representation of the data is necessary. For in-

stance, for large number of features and small number of instances, learning algorithms may be confronted
with the curse of dimensionalityand need to address it in order to be effective. Feature selection and fea-
ture discretization techniques have been used to achieve adequate representations of the data, by selecting an
adequate subset of features with a convenient representation. In this paper, we propose static and dynamic
methods for feature discretization. The static method is unsupervised and the dynamic method uses a wrapper
approach with a quantizer and a classifier, and it can be coupled with any static (unsupervised or supervised)
discretization procedure. The proposed methods attain efficient representations that are suitable for learning
problems. Moreover, using well-known feature selection methods with the features discretized by our methods
leads to better accuracy than with the features discretized by other methods or even with the original features.

1 INTRODUCTION and Frank, 2005) for extensive reviews of many meth-
ods; regarding FS, see (Guyon et al., 2006), (Hastie
Datasets with large numbers of features and (rela- et al., 2009), and (Escolano et al., 2009) for compre-
tively) smaller numbers of instances are challenging hensive coverage and pointers to the literature.
for machine learning methods. In fact, it is often the
case that many features are irrelevant or redundantforl.1  Our Contribution
the task at hand(g, learning a classifier) (Yu et al.,
2004; Peng et al., 2005); this may be specially harm- In this paper, we propose an unsupervised method for
ful with relatively small training sets, where these ir- static FD and a new method for dynamic FD. The dy-
relevancies/redundancies are harder to detect. namic discretization method uses a wrapper approach
To deal with such dataset®ature selectiorfFS) with a quantizer and a classifier, and can be cou-
and feature discretizatior(FD) methods have been pled with any static (unsupervised or supervised) dis-
proposed to obtain data representations that are morecretization procedure. The dynamic method assesses
adequate for learning. FD aims at finding a represen-the performance of each feature as discretization is
tation of each feature that contains enough informa- carried out; if it is found that the original representa-
tion for the learning task at hand, while ignoring mi- tion is preferable to the discretized one, the original
nor (possibly irrelevant) fluctuations. FS aims at re- feature is kept.
ducing the number of features, thus directly targeting ~ The remaining text is organized as follows. Sec-
the curse of dimensionality problem, often allowing tion 2 reviews supervised and unsupervised FD and
the learning algorithms to obtain classifiers with bet- FS techniques. Section 3 presents the proposed static
ter performance. A byproduct of FD and FS is a re- and dynamic methods for FD. Section 4 reports the
duction of the memory required to represent the data. experimental evaluation of our methods in compari-
Both FD and FS are topics with a long re- son with other techniques. Finally, Section 5 ends the
search history and a vast literature; regarding FD, seepaper with some concluding remarks and directions
(Dougherty et al., 1995), (Liu et al., 2002), (Witten for future work.
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2 BACKGROUND per feature, has been shown to lead to better classifi-
cation results than EFB on different kinds of (sparse
This section briefly reviews some of the most com- and dense) data (Ferreira and Figueiredo, 2011). The
mon unsupervised and supervised FD and FS tech-key idea of using the LBG algorithm in this context
niques that have proven effective for many learning is that if we can represent a feature with low MSE,
problems. This description is hugely far from be- We have a discrete version that approximates well the
ing exhaustive, as FD and FS are two fields with continuous version of that feature, thus this represen-
a long research history. The interested reader istation should be adequate for learning. Algorithm 1
referred to the works of (Dougherty et al., 1995), presents the U-LBG1 procedure.
(Kotsiantis and Kanellopoulos, 2006), (Liu et al., . -
2002), and (Witten and Frank, 2005), for re- Algorithm 1: U-LBG1.
views of FD methods. Reviews of FS methods Input: X, nx pmatrix training set|f featuresp patterns).
were done by (Guyon and Elisseeff, 2003), (Guyon A: T:ax'm“.m EXpECteg d'Stfotr}'O”' .
et al., 2006), (Hastie et al., 2009), and (Escolano out t_q.)zt_ emax'mtjm r:;m etr(?c 'tts petr .e‘”?lture't
et al., 2009); see also the following special issue: Uiptt- 2., > P MatriX, ClSCrete 1o s S 1J 385
jmlr.csail.mit.edu/papers/special/feature03.html.

1: fori=1topdo

. . . 2. forb=1toqdo

2.1 FeatureDiscretization 3 Apply the LBG algorithm to thé-th feature to
obtain ab-bit quantizerQy(-);

FD can be performed in supervised or unsupervised 4: Compute MSE= £ 5, (Xj — Qu(Xij))%
modesj.e., using or not the class labels, and aims at 5: if (MSE < Aorb = q)then
reducing the amount of memory as well as improv- Q'()=Qu(-);  {/* Store the quantizer. ¥
ing classification accuracy (Witten and Frank, 2005). /: X = Q_'(Xi)?* {/* Quantize feature. %y
The supervised mode may lead, in principle, to better g; ené’??ak’ sNBYoceed to the next feature. /
classifiers. In the context of unsupervised scalar FD 15" o4 for

(Witten and Frank, 2005), two efficient techniques are 4. g for
commonly used:

. equal-interval binningEIB), i.e., uniform quan- It has been found that unsupervised FD methods
tization with a given number of bits per feature; tend to perform well in conjunction with several clas-
sifiers; in particular, the EFB method in conjunction
with naive BayegNB) classification produces very
good results (Witten and Frank, 2005). It has also
been found that applying FD with both EIB and EFB

. equal-frequency binnin€EFB),i.e., non-uniform
quantization yielding intervals such that, for each
feature, the number of occurrences in each inter-

\r/naiwlr? (t:;?rzan;edié?ﬁ&?% ;0 tiigr][ggmie(,uz?sglso to microarray data, in conjunction witupport vec-
Known asmgiimum entrop’yquantizatign tor machine(SVM) classifiers, yields good results
(Meyer et al., 2008).

In EIB, the range of values is divided into bins There are also many supervised approachesto fea-
of equal width. It is simple and easy to implement, ture discretization. (Fayyad and Irani, 1993) have ap-
but it is very sensitive to outliers, thus may lead to plied an entropy minimization heuristic to choose the
inadequate discrete representations. The EFB methoctut points, and thus the discretization intervals. The
is less sensitive to outliers. The quantization intervals experimental results show that the proposed method
have smaller width in regions where there are more leads to the construction of better decision trees than
occurrences of the values of each feature. the previous methods. An efficient FD algorithm

Recently, we have proposed (Ferreira and for use in the construction oBayesian belief net-
Figueiredo, 2011) an unsupervised scalar discretiza-works (BBN), was proposed by (Clarke and Barton,
tion method, based on the well-known Linde-Buzo- 2000). The partitioning minimizes the information
Gray (LBG) algorithm (Linde et al., 1980). The LBG loss, relative to the number of intervals used to rep-
algorithm is applied individually to each feature and resent the variable. Partitioning can be done prior to
stopped when the MSE distortion falls below a thresh- BBN construction or extended for repartitioning dur-
old A or when the maximum number of bitper fea- ing construction. A supervised static, global, incre-
ture is reached (settinfy to 5% of the range of each mental, and top-down discretization algorithm based
feature andj € {4,...,10} were found to be adequate on class-attribute contingency coefficiemias pro-
choices). That algorithm, nameshsupervised. BG posed by (Tsai et al., 2008).

(U-LBG 1), which produces a variable number of bits Very recently, a supervised discretization algo-
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rithm based orcorrelation maximizatior(CM) was This method exploits the same key idea as the pre-
proposed by (Zhu et al., 2011); it usesiltiple cor- vious one, that is, a discretization with a low MSE
respondence analys{(®CA) to capture correlations  will provide an accurate representation of each fea-
between multiple variables. For each numeric fea- ture, being suited for learning purposes. Algorithm 2
ture, the correlation information obtained from MCA describes the proposed U-LBG2 method.

is used to build the discretization algorithm that maxi- i
mizes the correlations between feature intervals/itemsAlgorithm 2. U-LBG2.

and classes. Input: X, nx p matrix training set g featuresn patterns).
q: the maximum number of bits per feature.
2.2 Feature Sdlection Output: X: nx p matrix, discrete feature training set.

Q1L,...,QP: set of p quantizers (all withy bits).

In this subsection, we briefly describe two FS meth- 1: fori=1topdo _ _
ods that have prove successful in many problems. For 2 f\pply tg‘?t LBG t‘"?"go“thr_“ to the-th feature to ob-
this reason, we have included them on the experimen- ain ag-bit quantizerQ(-);

tal evaluation of our methods & Q)= { Siye e quantizegd
. . . I AN % H
The well-known (supervisedjisher ratio (FiR) g'j ;('f_Q (%); {fenoe feage-y
(Furey et al., 2000) of each feature is defined as - enafor
‘Z(—D _gi(+l> As compared to U-LBG1 algorithm, the key dif-
FiR| = , (1) ferences are: now we are using more bits, since each
Vvar(X) =D 4 var(X )1 discretized feature will be given the same (maximum)

—(11) (1) ~number of bitsg; only one quantizer is learned for
whereX; ™ and vafX;)'=", are the mean and vari- each feature. Both unsupervised LBG-based proce-
ance of feature, for the patterns of each class. The dyres aim at obtaining quantizers that represent the
FiR measures how well each feature alone separategeatures with a small distortion. The proposed proce-
the two classes. dures are more complex than either EIB or EFB, thus

The (supervisedninimum redundancy maximum  may pe expected to perform better.
relevancy(mRMR) method of (Peng et al., 2005)

adopts a filter approach to the problem of FS, thus 3 5 Dynamic Discretization Wrapper
being fast and applicable with any classifier. The key

idea is to compute both the redundancy between fea- N .
tures and the relevance of each feature. The redun—The %y molivations fo propose a wrapper dynamic

dancy is computed by theutul informafion(MI) discretization method are as follows. This method,
(Cover and Thomas, 1991) between pairs of features;,by adopting a wrapper working mode in conjunction

Whereas relevance is measured by the MI betweenWith a classifier, has higher complexity than a static
y discretization method. However, it is expected that
features and class label.

the increased complexity pays off in the sense that
we should be able to choose a more adequate number
of bits per feature, as compared to static discretiza-
3 PROPOSED METHODS tion methods. As a consequence, we may hope to
attain better classification accuracy with the dynam-
This section presents our proposals for FD. Subsec-ically discretized features.
tion 3.1 presents a static unsupervised FD method,  The proposed approach for dynamic discretization
whereas Subsections 3.2 and 3.3 detail our dynamicrelies on the use of a static unsupervised or supervised
wrapper methods for FD and joint FS/FD, respec- FD algorithm (such as EIB, EFB, U-LBG1, or U-

tively. LBG2) which is applied sequentially to the set of fea-
_ _ o tures. The key idea is to discretize each feature with
3.1 Static Discretization an increasing number of bits and to evaluate how the

classification accuracy evolves with the discretization
We address static discretization with a new unsuper- of each feature. The classification accuracy is com-
vised proposal. The first new proposal for FD is pared against the accuracy obtained with the feature
named U-LBG2, and it is a minor modification of in its original representation. The number of bits that
previous method U-LBG1, described as Algorithm 1 leads to the maximum accuracy is chosen to discretize
in Subsection 2.1. The proposed modification is to the feature.
use a fixed, rather than variable, number of bits per  Before giving the details of our algorithm, we
feature,q, according to the MSE distortion criterion. show some experimental results that motivate the de-
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_ Testerror of each feature on WBCD with 4 bits we compare the test set error rate of each feature with
its U-LBG2 discretized version with € {1,...,10}.

Fig. 3 and Fig. 4 show the test set error rate of fea-
tures 17 and 25, again with the naive Bayes classifier,
respectively, for the WBCD dataset.
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Figure 1: Test set error rate of naive Bayes using only a
single feature, discretized witlh= 4 bit by the U-LBG2

algorithm, on the WBCD dataset. The horizontal dashed
line is the test set error rate obtained with the full set of
p=30 features. 1

2 4 5 K, 8 10
q (1 to 10) bits / feature ; 0 = Original feature

Test error of each feature on WBCD with 8 bits Figure 3: Test set error rate of naive Bayes using solely

feature 17 of the WBCD dataset (original feature and U-
LBG2 discretized withg € {1,...,10}).
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Figure 2: Test set error rate of naive Bayes using only a
single feature, discretized witlh= 8 bit by the U-LBG2 Cary
algorithm, on the WBCD dataset. The horizontal dashed
line is the test set error rate obtained with the full set of Figure 4: Test set error rate of naive Bayes using solely
p=30 features. feature 25 of the WBCD dataset (original feature and U-
LBG2 discretized withg € {1,...,10}).
tails of the method. Fig. 1 and Fig. 2 show the test
set error rate of each feature obtained for the WBCD Inthe case of feature 17, discretization never leads
dataset using the naive Bayes classifier, on discreteto a lower test set error rate, as compared to the orig-
features with the static U-LBG2 procedure with- 4 inal representation. On the other hand, for feature
andg = 8, respectively. We observe that the test set 25, the use of a larger number of bits leads to an im-
error rates achieved individually by several features provement in the accuracy. These experimental re-
are quite close to the error attained with the full set of sults show typical situations that we observe with dif-
features (for example, features 8, 23, or 28 in Fig. 1). ferent types of data and depend on the statistics of
Another interesting remark about Figs. 1 and 2 is that each feature, leading us to the following observations:
increa_tsing the number ofbits_ perfeature_does notnec- 4 some features are worth to be discretized up to
essarily lead to a decrease in the classification error; mber of bitsy;
again, if we look into the individual test set error rates

5

2 3 4 7 8 9 10
q (1 to 10) bits / feature ; 0 = Original feature

of features 8, 23, and 28, now with= 8 bits (Fig. 2) o for other features, it is preferabf®t to discretize
we observe an increase in the test set error rates with €M
respect tay = 4 bits (Fig. 1). Algorithm 3 details ourdynamic wrapper dis-

In order to gain insight into how the test set er- cretization (DWD) method. We use the following
ror rate of each feature evolves during discretization, notation: @lasgX,y) denotes a function that learns
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some classifierd.g, support vector machineyaive
Bayes K-nearest-neighbors) from the training set in
matrix X with labelsy and returns the obtained er-
ror rate; @uant(-, b) denotes any of the unsupervised
(or supervised) scalar static discretization algorithms,
such as those mentioned above or any other, Wwith
bits. This algorithm performs its actions solely on the
training set portion of the data; it does not require the
existence of a separate hold-out test set.

Algorithm 3: DWD - Dynamic Wrapper Discretiza-
tion.

Input: X, nx p matrix training set p featuresn patterns).
y: n-length vector with class labels.
g: the maximum number of bits per feature.
@quant a static discretizer.
@class a supervised classifier.
Output: X: nx p matrix, discretized version oX.
Q1,...,QP: set of p quantizers (one per feature).

1: fori=1topdo
2:  errp« @clasgX;,y): training error rate using only
thei—th feature;
3: forbj=1toqdo
4 X =@quantX,b);
5 erp < @clasgX;,y);
6: endfor
7: end for
8: Findbj = ar min _erfj, fori=1,....p.
1A g g S o P
9: fori=1topdo
10:  if bj=0then
11: Xi =X;; {/* Don't discretize tha-th feature *}
12:  dse.
13: Q'(-) = @quant-,b;);  {/* Store quantizerf
14: Xi = Qﬁ)i (Xi);
15:  endif
16: end for

In line 2, @classprovides the baseline error, that
is, the training error rate with the original represen-
tation of each feature. A similar idea is applied in
line 5, where the classifier is applied to each dis-
cretized feature. Notice that if a discretized feature
never reaches a training error below the baseline, the
original representation is kept. We thus haveya
namic wrapper discretizatioprocedure that produces
a hybrid dataset in the sense that it may contain both
discretized and non-discretized features. As a final
note on DWD (Algorithm 3), notice that the for loop
in line 3 does not need to startlat= 1; we can set
the minimum number of bits per feature to some small
value, such as 3 or 4, thus computing fewer quantizers
and performing fewer evaluations.

3.3 Optimized Dynamic Discretization

For medium to high-dimensional datasets, the pro-

posed DWD method, as detailed in Algorithm 3, be-
comes computationally demanding. The need dis-
cretize each feature several times, and evaluate the
corresponding classification accuracies, can make this
method prohibitive for higher dimensions (as it hap-
pens with many wrapper methods). The efficiency of
both the quantizer and the classifier is a key point to
avoid this computational burden. In order to decrease
the running time of our DWD algorithm, we have con-
sidered that:

e the evolution of the test set error rates shown in
Fig. 1 and Fig. 2 suggest that for some features
there is no improvement on the classification per-
formance if we use a larger number of bits; more-
over, some (irrelevant) features will always lead
to low accuracy, regardless of the number of bits
we use for discretization;

the results in Fig. 3 and Fig. 4, show that for some
features, there is no gain in discretizing them.

Combining these two ideas we propose the fol-
lowing optimization in order to delete the irrelevant
features as a pre-processing stage: after computing
the error of each feature, ere— @clasgX;,y) in line
2 of Algorithm 3, we keep only a fraction of the
top rank features. We thus avoid the discretization of
many irrelevant features, saving execution time while
simultaneously improving the classification accuracy
and reducing the amount of memory needed to repre-
sent the dataset. This optimization can been seen as
wrapped FS process acting as a pre-processing stage
for the DWD algorithm; for this reason, we name
this optimized version of DWD as DWD-FS, being
a wrapper for both discretization and selection.

4 EXPERIMENTAL EVALUATION

This section reports experimental results obtained by
our FD techniques on several public domain datasets.
We use lineasupport vector maching$VM), naive
Bayes(NB), and K-nearest-neighbors (KNN) (with

K = 3) classifiers, implemented in the PRTddlsol-

box (Duin et al., 2007). We start by assessing the
behavior of static discretization methods in Subsec-
tion 4.1 and proceed to the analysis of the dynamic
discretization methods in Subsection 4.2. In Subsec-
tion 4.3, we perform a running time analysis of these
methods. Finally, in Subsection 4.4, we apply FS
methods on the original and on the discretized fea-
tures to check if the discrete features lead to an in-
crease in the classification performance. The experi-

Ihttp://www.prtools.org/prtools.html
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Table 1: 11 UCI datasets and 5 microarray datasets used . MSE distortion on Hepatitis by U-LBGL
in the experimentsp, ¢, andn are the number of features, T T T == Featret ||
classes, gnd patter%s, respectively.
[DatasstName | p| c| n] o
Phoneme 5| 2| 5404
Pima 8] 2| 768 |
Abalone 8| 2| 4177 2
Contraceptve 9 2| 1473 100
Wine 13 3 178
Hepatitis 19| 2 155 sof
WBCD 30| 2] 569
lonosphere 34| 2] 351 o P S S S
SpamBase 54| 2| 4601 23 Y e 0 g 2
Lung 5| 3 32 Figure 5: MSE evolution as a function of the number of bits
Arrhythmia 2791 16 | 452 qe {1,...,10}, for the features 1 and 18 of the Hepatitis
gglgg'r 3288 ‘21 gg dataset, using the U-LBG1 algorithm.
Lymphoma 4026 | 9 96 L . . r
Leukemia 1 5327 3 75 despite its simplicity; however, on microarray data
9-Tumors 5726 | 9O 60 which we have a large number of features and a small

number of patterns (large smalln) as well as multi-

ments were carried out on a common laptop computer class problems, the U-LBG methods tend to perform

with 2.16 GHz CPU and 4 Gb of RAM. better. Moreover, on the micoarray datasets, the naive
Table 1 briefly describes the public domain bench- Bayes classifier performs poorly, so we don’t even re-

mark datasets from the UCI Repository (Frank and port those results.

Asuncion, 2010) that were used in our experiments.

We chose several well-known datasets with different 4 2 Dynamic Discretization

kinds of data. We have also included public domain

microarray gene expression dataets We now compare static discretization versus DWD

) o 4 and its optimized version DWD-FS, as described in
4.1 Analysisof Static Discretization Subsection 3.3. Table 4 shows a comparison of the
static FD methods, EFB and U-LBG1 with their dy-
Fig. 5 shows the typical MSE decay obtained by the namic versions incorporated into our DWD method
U-LBG1 algorithm using up tg = 10 bits, when dis- (Algorithm 2), with linear SVM classifiers for wrap-
cretizing features 1 and 18 of the Hepatitis dataset. ping and evaluation.
This plot shows that even for features that startwitha  The results in Table 4 suggest that the DWD
high distortion (with a single bit), the MSE drops fast method tends to produce better results for datasets
(roughly exponentially fast). with higher number of features. For low-dimensional
Table 2 shows a comparison of three static FD datasets, (roughly witip < 20), the additional com-
methods, namely EFB, U-LBG1, and U-LBG2 for plexity of the dynamic wrapper method does not lead
some standard datasets, using ugjte 7 bits. The to better results as compared to the static versions.
EIB method is not considered here, since it usually The DWD method tends to produce discrete repre-
attains poorer performance than the EFB method. Forsentations with a smaller number of bits, as compared
each FD method, we show the average test set errofto the static counterparts. For the higher-dimensional
rate of the naive Bayes classifier for ten runs with dif- datasets in Table 4, the use of the DWD algorithm
ferent training/test replications and the total number generally improves the performance of the wrapper
of bits allocated for the set of quantizers. Table 3 static discretizer for both EFB an U-LBG1. The
shows a similar set of results, using linear SVM clas- Phoneme and Abalone datasets exhibit a behavior
sifiers. Comparing the results in Table 2 and Table 3, such that the use of the original features is preferable;
we see that on these datasets, the linear SVM classi-none of the static or dynamic versions attains better
fiers attain better results than the naive Bayes classi-results.
fiers. In some cases, the linear SVM classifiers attains ~ Table 5 shows the test results of static, DWD, and
better performance on the original features than on the DWD-FS U-LBG2 discretization witlg = 7 bits. For
discretized ones. The EFB method has good results,the DWD-FS algorithm we keep the percentagef
the top rank features; the choicerpfeads to selean
2http://www.gems-system.org/ features. In these tests, we use the KNN classifier.
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Table 2: Total number of bits per pattern (T. Bits) and TestEBeor Rate (Err, average of ten runs, with different random
training/test partitions) for the static discretizatioetimods, with up ta@ = 7 bits, using the naive Bayes classifier. The best
test set error rate is in bold face (in case of a tie, the besirisidered the one with fewer bits).

EFB U-LBG1 U-LBG2

Dataset Original Err | T. Bits Err | T. Bits Err | T.Bits Err
Phoneme 21.30 30 | 22.30 9 | 22.80 30 | 20.60
Pima 25.30 48 | 25.20 30 | 25.20 48 | 25.80
Abalone 28.00 48 | 27.60 15 | 27.20 48 | 27.70
Contraceptive 34.80 54 | 31.40 15 | 38.00 54 | 34.80
Wine 3.73 78 | 4.80 27| 320 78 | 3.20
Hepatitis 20.50 95 | 21.50 32 | 21.00 39 | 18.00
WBCD 5.87 180 | 5.13 60 | 5.87 180 | 5.67
lonosphere 10.60 198 | 9.80 49 | 17.40 198 | 11.00
SpamBase 15.27 324 | 13.40 54 | 15.73 324 | 15.67
Lung 35.00 318 | 35.00 74 | 35.83 318 | 35.00
Arrhythmia 32.00| 1392 | 51.56 553 | 30.22 1392 | 41.56

Table 3: Total number of bits per pattern (T. Bits) and TestEBeor Rate (Err, average of ten runs, with different random
training/test partitions) for the static discretizatioetimods, with up ta = 7 bits, using the linear SVM classifier. The best
test set error rate is in bold face (in case of a tie, the besirisidered the one with less bits).

EFB U-LBG1 U-LBG2

Dataset Original Err | T. Bits Err | T. Bits Err | T. Bits Err
Phoneme 22.60 30 | 24.00 8 | 21.80 30 | 22.70
Pima 27.50 48 | 28.50 27 | 29.30 48 | 27.60
Abalone 24.30 48 | 23.20 16 | 27.80 48 | 23.70
Contraceptive 36.50 54 | 34.60 15 | 39.80 54 | 37.20
Wine 4.80 78 | 1.87 25| 5.33 78 | 133
Hepatitis 14.50 114 | 16.00 33 | 16.00 114 | 13.00
WBCD 4.67 180 | 3.07 59 | 280 180 | 2.80
lonosphere 16.60 198 | 19.60 43 | 13.80 198 | 16.00
SpamBase 12.93 324 | 16.73 54 | 20.40 324 | 18.53
Lung 18.33 330 | 17.50 85| 19.17 330 | 20.83
Arrhythmia 33.33| 1392 | 31.78 550 | 32.89 | 1392 | 33.33
Colon 14.44 | 12000 | 11.11| 9723 | 12.78 | 12000 | 10.56
SRBCT 0.00 | 13848 | 0.53| 2793| 0.20 | 13848 | 0.37
Lymphoma 0.57 | 24156 | 0.57| 5910 0.00 | 24156 | 0.57
Leukemial 11.43 | 26635 | 10.48 | 24306 | 571 | 26635| 7.62
9-Tumors 22.22 | 28630 | 14.67 | 24906 | 12.00 | 28630 | 14.22

Table 4: Total number of bits per pattern (T. Bits) and TestEBBeor Rate (Err, average of ten runs, with different random
training/test partitions) for the static and dynamic ditimation methods for EFB and U-LBG1, with upda= 7 bits, using
linear SVMs. The best test set error rate is in bold face (seaH a tie, the best is considered the one with fewer bits).

Static DWD Algorithm
EFB U-LBG1 EFB U-LBG1

Dataset Original Err | T. Bits Err | T. Bits Err | T. Bits Err | T.Bits Err
Phoneme 21.17 35| 23.33 8 | 23.33 29 | 24.33 7 | 21.50
Pima 27.67 56 | 27.33 28 | 28.67 28 | 26.83 25 | 28.50
Abalone 23.00 56 | 24.67 16 | 27.67 26 | 25.33 13 | 26.00
Contraceptive 34.00 63 | 31.67 15 | 36.67 22 | 34.50 14 | 34.00
Wine 2.40 65| 053 25 | 4.27 55| 1.60 20 | 1.87
Hepatitis 20.50 95 | 21.50 32 | 21.00 39 | 18.00 29 | 19.00
WBCD 4.22 210 | 3.22 50 | 211 125 | 2.78 52 | 4.56
lonosphere 13.40 165 | 20.00 43 | 13.00 126 | 18.40 40 | 12.40
SpamBase 14.20 260 | 15.87 52 | 17.73 82 | 11.87 52 | 14.20
Lung 22.22 371 | 23.61 76 | 25.00 81 | 22.22 65 | 22.22

These results show the adequacy of the DWD-FS ity of these tests, it attains the lowest test set error rate
algorithm as compared to the other two. In the major- using fewer features and fewer bits per feature; it thus
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Table 5: Total number of bits per pattern (T. Bits) and TestEBeor Rate (Err, average of ten runs, with different random
training/test partitions) for the static, DWD, and DWD-FiSatetization methods for U-LBG2, with up tp= 7 bits, using
the KNN (K = 3) classifier.n is the percentage of the top rank features arid the average number of features for the ten
runs. The best test set error rate is in bold face (in caseief the best is considered the one with less bits).

StaticU-LBG2 | DWD U-LBG2 DWD-FSU-LBG2

Dataset Original Err | T. Bits Err | T. Bits Err n m | T.Bits Err
Phoneme 22.15 35| 22.35 35| 2215 0.8 | 4.0 28 | 21.90
Pima 26.10 56 | 26.10 50 | 26.00 | 0.8 | 6.0 40 | 27.00
Abalone 26.20 56 | 24.60 49 | 26.50| 0.8 | 6.0 42 | 24.20
Contraceptive 44.60 63 | 45.30 13| 4550| 08| 7.0 11 | 43.60
Wine 27.20 91| 6.13 84 | 14.67| 0.8 10.0 65 | 12.27
Hepatitis 29.50 133 | 29.00 42 | 30.00| 0.8 | 15.0 38 | 29.50
WBCD 7.07 210 | 3.93 209 | 6.93| 0.8 | 24.0 167 | 3.80
lonosphere 18.40 231 | 18.80 215| 16.00 | 0.8 | 26.0 174 20.80
SpamBase 16.07 378 | 17.20 186 | 23.00| 0.8 | 424 169 | 26.47
Lung 23.33 378 | 28.33 63 | 24.17| 0.8 | 42.8 52 | 22.50

Table 6: Total time (in seconds) taken to discretize feature Table 7: Time (in seconds) taken to discretize features by
by the three static FD methods, namely EFB, U-LBG1, and EFB, DWD and DWD-FS methods (wrapped with EFB dis-
U-LBG2, using up tag = 7 bits. The fastest discretization  cretization and naive Bayes classifier), using umte 7

method is in bold face. bits. We show the average time for ten runs.

Dataset EFB | U-LBG1 | U-LBG2 Dataset EFB | DWD EFB | DWD-FSEFB
Phoneme 0.20 0.27 0.79 Phoneme 0.04 1.94 3.04
Wine 0.09 0.05 0.14 Wine 0.10 5.30 6.97
Hepatitis 0.10 0.05 0.10 Hepatitis 0.09 7.01 9.80
WBCD 0.24 0.29 0.86 WBCD 0.20 11.40 21.94
SpamBase | 0.32 0.07 0.40 SpamBase | 0.34 19.92 28.13
Arrhythmia | 1.23 0.96 1.55 Arrhythmia | 1.26 141.27 175.56
Colon 11.66 2181 18.12 Colon 12.11 725.51 962.57
SRBCT 32.60 23.57 52.57 SRBCT 33.95 1270.97 1621.65
Lymphoma | 32.17 18.72 49.25 ) ] ] )
Leukemia 1| 3156 24739 38.74 dynamic versions take much more time than the static
9-Tumors | 43.49 64.85 55.77 version. The choice of the classifier also influences

] the time taken for the discretization. For medium to
leads to an improvement on the results of the KNN high-dimensional datasets ¢ 200), the implementa-
classifier on both the original and U-LBG2 features. tjons (without optimizations) of DWD and DWD-FS
The only test in which there are no benefits from the are too time-consuming for practical applications.
discretization is on the sparse data SpamBase dataset;

in this case, the original features are preferable forthe 4 4 | everaging Feature Selection
KNN classifier.

) . ; In order to asses the quality (informativeness) of the

4.3 Running Time Analysis discretized features, we run a few tests using FS on
the original and on the discretized features. The key
Table 6 shows a comparison of the time taken to dis- idea of these tests is to show how the use of FS on the
cretize features by the three static FD methods, EFB, discretized features can have benefits, as compared to
U-LBG1, and U-LBGZ2, using up tgq = 7 bits. The the original ones.
U-LBG1 (Algorithm 1) also useA = 0.05rangé€X;). In Fig. 6, we report naive Bayes classifier test set
These results show that the EFB and U-LBG2 tend error rates with the features selected by the mrMR
to take roughly the same time, allocating a maximum method; we compare the original features with the
of q bits per feature. The U-LBG1 algorithm usually discretized versions obtained with the static and dy-
is faster since it stops before reaching the maximum namic U-LBG1 methods. We observe that the use
g bits; in fact, many features are discretized with a discretized features seems to help the FS criterion,
number of bits much smaller than since lower test error rates are achieved when com-
Table 7 shows a similar comparison of the time pared with the original ones.

taken to discretize features by the DWD and DWD- In Fig. 7 and Fig. 8, we report naive Bayes test
FS methods (withh = 0.8) using EFB discretization set error rates with the features selected by the FiR
and naive Bayes classifier, using ugte: 7 bits. The method, for the Hepatitis and the lonosphere datasets,
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Figure 6: Test set error rate (average of ten runs, with dif- rigre 8: Test set error rate (average of ten runs, with dif-
ferent training/test partitions), as functions of the nemb  erent training/test partitions), as functions of the nembf
of features, for the naive Bayes classifier, using FS by the featyres, for the naive Bayes classifier, using FS by the FiR
mrMR method, for the WBCD dataset on original, static, method, for the lonosphere dataset on original, static, and
and dynamically discretized features. dynamically discretized features.

Test set error rate on Hepatitis
T

each feature as discretization is carried out; if the orig-

---Ba‘seline

23] =~ Original + FiR_ | inal representation is preferable to the discrete fea-
—6—EFB Static + FiR . &k . .

0 —o—EFB DWD + FiR || ture, then it is kept. An optimized version of this dy-

namic method uses a pre-processing stage which con-
sists in a wrapper feature selection process.

20f ] The proposed methods, equally applicable to bi-
101 ] nary and multi-class problems, attain efficient repre-
---------------------------------- sentations, suitable for learning problems. Our exper-
| imental results, on public-domain datasets with dif-

Error [%]

17y ] ferent types of data, show the competitiveness of our
16} ] technigues when compared with previous approaches.
‘ ‘ ‘ ‘ ‘ ‘ ‘ The use of the features discretized by our methods
6 8 10 12 14 16 18 . I .
m (# features) lead to better accuracy than using the original or dis-
Figure 7: Test set error rate (average of ten runs, with dif- cretized features by other methods.
ferent training/test partitions), as functions of the nemb As future work, we plan to optimize the imple-

of features, for the naive Bayes classifier, using FS by the mentation of our dynamic discretization method, and
FIR method, for the Hepalitis dataset on original, statidl 8, yevise ts filter version, suitable to tackle dynamic
dynamically discretized features. . . . . .

discretization on (very) high-dimensional datasets.
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