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Abstract: It is well known that sedentary life style lead to conditions such as obesity and diabetes. In recent years, 
there has been increasing interest in devices capable of measuring activity energy expenditure (AEE) and 
physical activity intensity (PAI) without disrupting the activities of daily living. In this paper we introduce a 
portable and light-weight device based on our SensiumTM technology. Unlike existing commercially 
available devices, the latter can measure both AEE and PAI in a real-time basis and convey the resultant 
calculations wirelessly to a remote PC and/or sever. Such calculations are carried out by means of a 
mathematical model, which combines heart rate and accelerometer information to produce PAI and AEE 
estimations. The model was calibrated against a reference indirect calorimetry system. In particular, 
simulated annealing was used to adjust the model parameters so as to allow a closer match between the 
predicted and reference values. The resulting model was tested using a separate dataset with reference to 
indirect calorimetry. The 95% prediction interval and the Spearman’s correlation coefficient (r) for PAI 
were found to be [-0.1307, 0.171] kJ/kg/min and 0.903 (p<0.001) respectively. In addition, the results 
revealed that there is agreement between SensiumTM and a similar reference (validated) device.   

1 INTRODUCTION 

Sedentary individuals are more susceptible to a wide 
range of diseases. Different studies have made 
associations between the lack of physical activity, 
diabetes as well as obesity and heart conditions 
(Marchand et al., 1997). 

Consequently, there has been substantial interest 
in affordable and portable devices to enable accurate 
estimations of Physical Activity (PA) on a routine 
basis. An example of such a device is the 
Actiheart®. It comprises a portable, light-weight 
device that measures activity energy expenditure 
using a group-calibrated set of equations. This 
mathematical approach is known as the Branch 
Equation Model (Brage et al., 2004). It has been 
validated against a number of well-established 
techniques, including direct and indirect calorimetry 
(Brage et al., 2005, Brage et al., 2004). The 
Actiheart® is mounted on the chest region of the 
subject, and data that is acquired from the subject is 
stored locally. Unfortunately, the Actiheart® is a 
data-logger that has to be removed from the subject 

to download the data for analysis. This restricts the 
possibility of continuous monitoring and feedback 
by medical experts in real-time, which is desirable in 
some clinical and sports contexts.  

In contrast, the wireless device proposed here is 
capable of processing the acquired data and 
streaming it wirelessly in real-time to a base station. 
Thus, the results can be relayed to a central server 
that can be accessed by medical professionals, who 
can potentially provide information to subjects to 
allow changes to lifestyles at any time. 

Therefore, the aim of this work was to adapt the 
branched equation model to our system, and 
evaluate its performance against two valid reference 
devices – an indirect calorimetry system and the 
Actiheart® when tested in normal individuals.  

2 RELATED WORK 

In 2004, Brage and colleagues developed and 
evaluated a method (Branched Equation Model - 
BEM) for measuring levels of PA and EE by 
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combining accelerometry with HR monitoring, 
demonstrating improved estimation of these 
parameters when tested in 12 male normal subjects. 
The approach relies on a set of rules, regression 
equations and thresholds to estimate the PA or EE. 
Thus, these parameters are estimated by means of the 
selected piecewise function (i.e. one out of the four 
available in the branched model) which best suit to the 
level and intensity of the activity currently performed.  

Later, the BEM approach was implemented in 
the ActiHeart® (CamNTech, Cambridge, UK). This 
device was shown to be reliable in estimating PA 
intensity reliably in several studies (Brage et al., 
2005, Crouter et al., 2007), particularly for activities 
such as walking and running. However, one 
important drawback of this device is its inability to 
transmit data in real time. The latter has a negative 
impact on different aspects. First of all, the device 
may need to be applied to and removed from the 
patient several times until downloaded data reflects 
the adequacy of electrode placement. Secondly, the 
data logging capability is limited. For these reasons, 
this device is neither an option for long-term follow-
up studies requiring several weeks or months; nor for 
a final product intended for continuous real-time 
feedback of physical activity and calorie expenditure. 

3 SENSIUM PA-EE ESTIMATION 

The approach adopted for PA-EE estimation can be 
explained from Figure 1 as follows:  

 
Figure 1: Block diagram of the Sensium™ PA-EE 
algorithm. 

Raw ECG and tri-axial accelerometer data are 
collected by the SensiumTM body worn device at 
sampling frequencies of 250 and 50 Hz respectively, 
whereas patient information (i.e. age, gender, weight 
and height) is manually entered by the user into the 
system. The ECG and accelerometer data are fed to 
the HR and AAC modules in fixed epoch durations 
of 15 seconds.  

The HR module was based on the Open Source 
ECG Algorithm (OSEA) (Hamilton and Tompkins, 
1986, Pan and Tompkins, 1985). The authors of 
OSEA have reported high reliability and accuracy of 
OSEA when tested using ECG data from the MIT-
BIH database. Nevertheless, a number of 
modifications were necessary to adapt the algorithm 
to the Sensium™. Firstly, the Sensium™ is 
positioned at a non-standard position (lower chest 
region, parallel to the Lead 1 position). 
Subsequently, the threshold that is used in QRS peak 
detection has been adjusted accordingly. Secondly, 
extra rules have been included to reject signals 
corrupted by motion artefacts. A preliminary 
evaluation indicated that these changes did not affect 
the efficacy of this algorithm. These results are 
available on request to the authors.  

The AAC algorithm is based on previous work 
by Bouten and colleagues. Firstly, the signal is 
filtered using a Butterworth fourth-order band-pass 
filter (0.25-6Hz), designed for rejecting spurious 
noise without distorting the information 
corresponding to physical activities associated with 
the intended user population. Of particular interest, 
the upper limit of the filter bandwidth was chosen to 
attenuate high frequency disturbances occurring 
when the swinging foot impacts the ground during 
walking at initial contact. This frequency band is in 
the region of 15 Hz (Antonsson and Mann, 1985). 
After filtering, the accelerometer data corresponding 
to each axis is individually rectified and integrated 
over 15 seconds to obtain AAC. 

In the final stage of the algorithm, the HR and 
AAC information are used to estimate the physical 
activity intensity. As discussed above, such 
estimation is possible by means of a rule-based 
algorithm that relies on a set of pre-defined 
thresholds, regression equations and weights, 
expressing the existing relationship between the 
duple HR/AAC and energy expenditure derived 
from oxygen consumption (VO2). 
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4 EXPERIMENTAL METHODS 
AND CALIBRATION 

To calibrate the BEM, and to assess the reliability of 
this model, experiments were conducted to collect 
two separate datasets. In both experiments, the 
activities undertaken by the subjects include 
stepping exercises, cycling on a stationary bicycle, 
walking and running on a treadmill. These 
experiments have been approved by the Toumaz 
internal ethics committee. 

In the calibration dataset, the accelerometer, 
ECG and VO2 data were simultaneously collected 
from 8 healthy participants (6 males and 2 females; 
age 26.11 ± 11.45 years old; weight 72.01 ± 9.35 
Kg; and height 157.72 ± 59.47 cm) using the 
SensiumTM and a indirect calorimeter (CPX-express, 
Medgraphics, USA). The indirect calorimeter 
automatically converts the VO2 data into normalised 
PAI units (cal/kg/min) using the widely accepted 
Weir formulation (Weir, 1949). 

The calibrated Sensium™ algorithm was tested 
using a dataset collected from three systems: 
SensiumTM, Actiheart®, and indirect calorimetry. 
The experimental subjects involve 6 additional 
healthy volunteers (1 female, 5 male), of weight 
69.62 ± 11.25 Kg, height 174.95 ± 9.36 cm, and 
26.67 ± 4.32 years old.  

4.1 Calibration Process 

In the calibration process, four piece-wise functions 
together with a set of thresholds and coefficients are 
required to determine PAI at low-moderate and 
moderate-high intensities using the BEM approach. 
These regression functions describe the relationships 
between the PAI and HR, as well as between PAI 
and AAC. Data from only treadmill activity was 
used to obtain the equations, as treadmill exercise is 
the best controlled part of the experiment. 

First, the transition points between piece-wise 
functions were selected by means of visual 
inspection. Specifically, this was performed by 
manually adjusting the value of the transition point 
thresholds for both HR and AAC data; and then re-
running the regression procedure repeatedly to 
generate the curves that best fit to the treadmill data. 
The resultant HR-PAI polynomials for low-moderate 
(PHL) and moderate-high PAI (PHH) are shown in 
(1) and (2). 

20376.02475.0 HsHsPHL +−=    (1) 

2588.431364.1 += HsPHH    (2) 

‘Hs’ corresponds to the HR above sleeping, and it 
was obtained by subtracting 10 bpm from the resting 
heart rate (RHR), as shown in (3). This is consistent 
with the procedure found in (CamNTech, 2009). 

  10−= RHRHs     (3) 

Likewise, the AAC-PAI expressions for low-
moderate (PAL) and moderate-high (PAH) levels of 
activity are found using (4) and (5). 

 AACPAL 167.0=        (4)
 9311294.811921572.020002832.0 +−= AACAACPAH  (5) 

Subsequently, the HR flex-points for low-moderate 
and moderate-high activity levels were determined 
by applying regression analysis over all the data 
points collected from different types of exercises 
except resting, since HR is not a reliable parameter 
for estimation of EE at low activity levels (Andre 
and Wolf, 2007). The heart rates (above sleeping) 
corresponding to 3.5 and 5.5 METs were then 
derived as initial HR flex-points. Likewise, the 
initial AAC flex-point between moderate and high 
levels of activity was found using regression, 
involving only the cycling data. This made possible 
the selection of a threshold value which was low 
enough to reject the majority of noise, but 
sufficiently high to account for the low ground-
impact of some strenuous activities such as cycling, 
rowing and cross training.  

The initial weights towards the AAC-PAI and 
the HR-PAI relationships were chosen from (Brage 
et al., 2004). Further refinement to the model is 
carried out by Simulated Annealing (Bertsimas and 
Tsitsiklis, 1993). Using this technique, the weights, 
and threshold values were adjusted to minimize the 
absolute error of the model. The optimized model is 
shown in Figure 2.  

 
Figure 2: Branch equation model after the application of 
simulated annealing. 
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Figure 3: Activity energy expenditure results for different activity types, derived from Actiheart®, Sensium™, and indirect 
calorimetry. 

4.2 Discussion 

Inferential statistics using ANOVA (Analysis of 
Variance) was carried out on the experimental 
datasets. Table 1 shows the results. These results 
indicate that the differences between the Indirect 
Calorimetry, Actiheart, and Sensium measurements 
are statistically significant. 

Table 1: ANOVA and t-test results from indirect 
calorimetry, Sensium™, and the Actiheart®. 

F-test Mean sum of 
squares p-value 

16.96 0.801 <0.001 
t-test results from Sensium™ and Actiheart® 

Degrees of 
freedom 

95% CI 
(kJ/kg/min) 

Difference of the 
means (kJ/kg/min)

2209 [0.0170, 0.0234] 0.0202 (p<0.001) 

The Bland-Altman plot corresponding to the 
SensiumTM and indirect calorimetry (Figure 4) 
reflects a bias and the 95% PI of 0.0179 kJ/kg/min 
(0.26 MET) and  [-0.134, 0.170] kJ/kg/min ([-1.922, 
2.438] METs) respectively. These results indicate 
that the differences for the SensiumTM and 
Actiheart®, with reference to indirect calorimetry, 
are similar. Also, by comparing the Actiheart® with 
the indirect calorimeter, the 95% PI was found to be 
[-0.170, 0.246] kJ/kg/min. This range is consistent 
with the a previous study done by (Brage et al., 
2004). In addition, a two-tailed t-test was carried out 
between the Actiheart® and Sensium™, in order to 
confirm the similarity between these two devices. 
The results of this test are summarised in Table 1, 

and revealed statistically significant (although small) 
differences.  

Finally, the results from the second experiment 
were grouped into different categories of activities, 
as shown in Figure 3. From the chart, it can be 
observed that the average activity expenditure for 
the SensiumTM and Actiheart are similar for most of 
the activities. For the step test and cycling activities, 
the Sensium™ algorithm produced results closer to 
indirect calorimetry than the Actiheart®.  Overall, 
the results from the SensiumTM were found to be 
closer to the ones obtained from Indirect 
Calorimetry system. This can be expected as the 
SensiumTM algorithm was calibrated with data 
obtained from this particular reference system.  

 
Figure 4: Bland-Altman plot of indirect calorimetry vs 
Sensium™. 

5 CONCLUSIONS 

This paper reported on the incorporation of an 
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algorithm for estimation of physical activity 
intensity and energy expenditure as part of a 
wireless body-worn device. The algorithm was 
calibrated for a SensiumTM device, embedded with a 
triaxial accelerometer and ECG sensors. 

The results for the evaluation of the algorithm 
revealed that statistically significant differences 
between indirect calorimetry, Actiheart, and the 
Sensium™. However, these differences were small 
and similar to those found in a separate study 
(Crouter et al., 2007). In addition, it was found that 
with reference to indirect calorimetry, the mean 
error for the SensiumTM was lower for certain 
activities, including the step test exercise and 
cycling on a stationary bicycle. 

In this work, the authors found that the use of 
simulated annealing was successful in adapting the 
Branch Equation Model to the Sensium™ platform, 
indicating the generality of this model. Future work 
include the use of automatic activity classification, 
to reduce the errors caused by different activity 
types. Another limitation of this investigation is the 
limited scope of activities considered. Therefore, 
future directions will consider the inclusion of 
further and more representative activities of daily 
living and exercise. 
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