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Abstract: A Silent Speech Interface (SSI) aims at performing Automatic Speech Recognition (ASR) in the absence of 
an intelligible acoustic signal. It can be used as a human-computer interaction modality in high-background-
noise environments, such as living rooms, or in aiding speech-impaired individuals, increasing in prevalence 
with ageing.  If this interaction modality is made available for users own native language, with adequate 
performance, and since it does not rely on acoustic information,  it will be less susceptible to problems 
related to environmental noise, privacy, information disclosure and exclusion of speech impaired persons.   
To contribute to the existence of this promising modality for Portuguese, for which no SSI implementation 
is known, we are exploring and evaluating the potential of state-of-the-art approaches. One of the major 
challenges we face in SSI for European Portuguese is recognition of nasality, a core characteristic of this 
language Phonetics and Phonology. In this paper a silent speech recognition experiment based on Surface 
Electromyography is presented. Results confirmed recognition problems between minimal pairs of words 
that only differ on nasality of one of the phones, causing 50% of the total error and evidencing accuracy 
performance degradation, which correlates well with the exiting knowledge.  

1 INTRODUCTION 

Since the dawn of mankind, speech communication 
has been and still is the dominant mode of human 
communication and information exchange and, for 
this reason, spoken language technology has 
suffered considerable evolution in the last years, in 
the scientific community. However, conventional 
automatic speech recognition (ASR) systems mostly 
use a single source of information – the audio signal. 
When this audio signal becomes corrupted in the 
presence of environmental noise or assumes 
unexpected patterns, like the ones verified in elderly 
speech (Wilpon and Jacobsen, 1996), speech 
recognition performance degrades, leading users to 
opt for a different modality or give up using the 
system at all. These types of systems have also 
revealed to be inadequate for users without the 
ability to create an audible acoustic signal because 
of speech impairments (e.g. laryngectomy) or in 
situations where privacy or non-disturbance is 
required (Denby et al., 2010). In public 
environments where silence is often necessary such 

as, talks, cinema or libraries, someone talking is 
usually considered annoying, thus providing the 
ability to communicate or execute commands in 
these situations has become a point of common 
interest. Likewise, disclosure of private 
conversations can occur by performing a phone call 
in public places, which may lead to embarrassing 
situations from the caller point of view or even 
regarding information leaks.  

To tackle these problems in the context of ASR 
for Human-Computer Interaction (HCI), a Silent 
Speech Interface (SSI) in European Portuguese (EP) 
is envisioned. By acquiring sensor data from 
elements of the human speech production process – 
from glottal, muscles and articulators activity, their 
neural pathways or the central nervous system itself, 
an SSI produces an alternative digital representation 
of speech, which can be recognized and interpreted 
as data, synthesized directly or routed into a 
communications network. Informally, one can say 
that a SSI extends the human speech production 
model, with signal data sensed by ultrasonic waves, 
computer vision or other sources. This provides a 
more natural approach than currently available 
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speech pathology solutions like, electrolarynx, 
tracheo-oesophageal speech and cursor-based text-
to-speech systems (Denby et al., 2010). 

Currently, to our knowledge, no SSI system 
exists for European Portuguese, leaving, for 
example, speakers of this language with speech 
impairments unable to interact with HCI systems 
based on speech. Furthermore, no study or analysis 
has been made regarding the adoption of a new 
Romance language with distinctive characteristics to 
this kind of systems, and the specific problems that 
may arise from applying existing work to EP 
remains unknown. A particularly relevant 
characteristic of EP are the nasal sounds (Strevens, 
1954), which are expected to be a challenge to 
several SSI techniques (Denby et al., 2010). The 
adoption of SSIs to a new language and the 
procedures involved constitute by itself an extension 
to the current scientific knowledge in this area. 
Using the techniques described in literature and 
adapting them to a new language will provide novel 
information towards language independence and 
language adoption techniques. Considering the 
particular nasal characteristics associated with EP, it 
is expected to see performance deterioration in terms 
of recognition rates and accuracy using existent 
approaches. If this occurs, the root cause of the 
system performance deterioration needs to be 
identified and new techniques based on that 
information, need to be thought, for example, by 
adding a sensor that is able to capture the missing 
information. This will allow concluding the 
particular aspects that influence language expansion, 
language independency and limitations of SSIs for 
the EP case. 

To achieve our goals of developing a SSI for 
Portuguese we have previously selected a set of 
modalities (Surface Electromyography, Visual 
Speech Recognition and Ultrasonic Doppler sensing) 
(Freitas et al., 2011) based on their non-invasive 
characteristics, cost and technological availability. 
For this work we will focus on the SSI approach 
based on Surface Electromyography (sEMG), which 
has achieved promising results in last years, for 
languages such as English and Japanese. The sEMG 
modality collects myoelectric activity information of 
the neck and facial muscles generated before 
articulation of speech. This SSI modality is able to 
collect information from audibly uttered speech, 
murmurs or silent speech, being consequently robust 
do adverse environments such as public places, 
information disclosure and disturbance of 
bystanders.  

The remainder of this document is  structured  as  

follows: In section 2, relevant background 
knowledge concerning the human speech production 
process is presented; Section 3 describes the related 
work and the state-of-the-art in EMG-based 
recognition; Section 4 describes and discusses the 
EMG-based recognition experiment in European 
Portuguese, including the observation and accuracy 
impact of the nasality phenomena; Finally, the 
conclusions and possible solutions for the appointed 
problems are presented in section 5. 

2 BACKGROUND 

The following section presents a brief description 
the speech production process, focusing on the 
muscles and articulators involved in this process. It 
also presents a brief description of the European 
Portuguese characteristics and related work for this 
language. 

2.1 Speech Motor Control 

Speech production requires a particularly 
coordinated sequence of events to take place, being 
considered as the most complex sequential motor 
task performed by humans (Seikel et al., 2010). 
After an intent or idea that we wish to express have 
been developed and coded into a language, we will 
map it into muscle movements. This means that the 
motor impulse received by the primary motor cortex 
is the result of several steps of planning and 
programming that already occurred in other parts of 
the brain such as, Broca’s area, supplementary motor 
area and pre motor area. The motor neuron then 
sends the signal from the brain to the exterior body 
parts. When the nerve impulse reaches the 
neuromuscular junction, the neurotransmitter 
acetylcholine is released. When a certain threshold is 
hit, the sodium channels open up causing an ion 
exchange that propagates in both directions along 
the muscle fiber membranes. The depolarization 
process and ion movement generates an 
electromagnetic field in the area surrounding the 
muscle fibers, which is referred in literature as the 
myoelectric signal (De Luca, 1979). These electrical 
potential differences generated by the resistance of 
muscle fibers, leads to voltage patterns that occur in 
the region of the face and neck that when measured 
at the correspondent muscles, provide means to 
collect information about the resultant speech. This 
myoelectric activity occurs independently of the 
acoustic signal, i.e. occurs either the subject 
produces normal, silent or murmured speech. A 
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detailed overview about the physiology of 
myoelectric signals and speech motor control can be 
seen in Seikel et al. (2010) and Gerdle et al. (1999). 

2.1.1 Muscles and Articulation 

Articulation in phonetics describes how humans 
produce speech sounds and which speech organs are 
involved in this process. The articulators may be 
mobile or passive and the mobile articulators are 
usually positioned in relation to a passive articulator, 
through muscular action, to achieve different 
sounds. Mobile articulators are the tongue, lower 
jaw, velum, lips, cheeks, oral cavity (fauces and 
pharynx), larynx and the hyoid bone and the 
immobile articulators are the alveolar ridge of the 
upper jaw, the hard palate and teeth (Seikel et al., 
2010). 

Facial and neck muscles represent a vital role in 
positioning the articulators and in shaping the air 
stream into recognizable speech. Muscles related 
with lip movement, tongue and mandibular 
movement will then be the most influent in speech 
production.  Below, the main muscles of the face 
and neck used in speech production are described 
(Hardcastle, 1976): Orbicularis oris: This muscle 
can be used for rounding, closing the lips and 
pulling the lips against the teeth or adducting the 
lips. Since its fibers run in several directions, many 
other muscles blend in with it; Levator anguli oris: 
This muscle is responsible for raising the upper 
corner of the mouth and may assist in closing the 
mouth by raising the lower lip for the closure phase 
in bilabial consonants; Zygomaticus major: This 
muscle is used to retract the angles of the mouth. It 
has influence in the labiodental fricatives and in the 
production of the [s] sound; Platysma: The platysma 
is responsible for aiding the depressor anguli oris 
muscle lowering the bottom corners of the lips. The 
platysma is the closest muscle to the surface in the 
neck area; Tongue: The tongue plays a fundamental 
role in speech articulation and is divided into 
intrinsic and extrinsic muscles. The intrinsic muscles 
(Superior and Inferior Longitudinal; Transverse) 
mostly interfere with the shape of the tongue, aiding 
in palatal and alveolar stops, in the production of the 
[s] sound by making the seal between the upper and 
lower teeth and in the articulation of back vowels 
and velar consonants. The extrinsic muscles 
(Genioglossus; Hyoglossus; Styloglossus; and 
Palatoglossus) are responsible for changing the 
position of the tongue in the mouth as well as shape 
and are important in the production of most of the 
sounds articulated in the front of the mouth, in the 
production of the vowels and velars, in the release of 

alveolar stop consonants, and contributes to the 
subtle adjustment of grooved fricatives; Anterior 
Belly of the Digastric: this is one of the muscles 
used to lower the mandible, to pull the hyoid bone 
and the tongue up and forward for alveolar and high 
frontal vowel articulations and raising pitch. 

For a sound to be perceived as nasal the soft 
palate must be positioned in a way that the opening 
for the nasal cavity is larger than the airway opening 
for the oral cavity. This relation in the oral/nasal 
opening will enable resonance in the nasal cavity 
and consequently produce nasal sounds (Teixeira, 
2000). The described movement of the soft palate is 
supported by the following muscles (Hardcastle, 
1976): Levator veli palatini: This muscle main 
function is to elevate and retract the soft palate; 
Superior pharyngeal constrictor: This is a muscle of 
the pharynx and when it contracts it narrows the 
pharynx upper wall, also elevating the soft palate; 
Tensor palatini: This muscle tenses and spreads the 
soft palate when elevating; Palatoglossus: Along 
with gravity, previous muscles relaxation and the 
Palatopharyngeous, this muscle is responsible for 
the lowering of the soft palate. 

2.2 European Portuguese Characteristics 

According to Strevens (1954), when one first hears 
EP, the characteristics that distinguish it from other 
Western Romance languages are: “the large amount 
of diphthongs, nasal vowels and nasal diphthongs, 
frequent alveolar and palatal fricatives and the dark 
diversity of the l-sound”. Although, EP presents 
similarities in vocabulary and grammatical structure 
to Spanish, the pronunciation significantly differs. 
Regarding co-articulation, which is “the articulatory 
or acoustic influence of one segment or phone on 
another” (Magen, 1997), it is shown by Martins et 
al. (2008) that European Portuguese stops, are less 
resistant to co-articulatory effects than fricatives. 

2.2.1 Nasality 

Although nasality is present in a vast number of 
languages around the world, only 20% have nasal 
vowels (Rossato et al., 2006). In EP there are five 
nasal vowels ([ĩ], [ẽ], [ɐ̃], [õ], and [ũ]); three nasal 
consonants ([m], [n], and [ɲ]); and several nasal 
diphthongs [wɐ̃] (e.g. quando), [wẽ] (e.g. aguentar), 
[jɐ̃] (e.g. fiando), [wĩ] (e.g. ruim) and triphthongs 
[wɐ̃w] (e.g. enxaguam). Nasal vowels in EP diverge 
from other languages with such type of vowels, such 
as French, in its wider variation in the initial 
segment and stronger nasality at the end (Trigo, 
1993). Doubts still remain regarding tongue 
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positions and other articulators during nasals 
production in EP, namely, nasal vowels (Teixeira et 
al., 2003). Differences at the pharyngeal cavity level 
and velum port opening quotient were also detected 
by Martins et al. (2008) when comparing EP and 
French nasal vowels articulation. In EP, nasality can 
distinguish consonants (e.g. the bilabial stop 
consonant [p] becomes [m]), creating minimal pairs 
such as [katu]/[matu] and vowels, in minimal pairs 
such as [titu]/[tĩtu]. 

2.3 SSIs for European Portuguese 

The existing SSI research has been mainly 
developed for English, with some exceptions for 
French (Tran et al., 2009) and Japanese (Toda et al., 
2009). As mentioned, there is no published work for 
European Portuguese in the area of SSIs, apart from 
an initial and recent contribution of the authors with 
an experiment of an SSI for EP, using Visual Speech 
Recognition and Ultrasonic Doppler sensing 
techniques (Freitas et al. 2011), which also tackles 
nasality, although there is previous research on 
related areas, such as the use of Electromagnetic 
Articulography (Rossato et al., 2006), 
Electroglotograph and MRI (Martins et al., 2008) for 
speech production studies, articulatory synthesis 
(Teixeira and Vaz, 2000) and multimodal interfaces 
involving speech (Dias et al., 2009). There are also 
several studies on lip reading systems for EP that 
aim at robust speech recognition based on audio and 
visual streams (Pêra et al., 2004; Sá et al., 2003). 
However, none of these addresses European 
Portuguese distinctive characteristics, such as 
nasality. 

3 RELATED WORK 

The process of recording and evaluating this 
electrical muscle activity is called Electromyography 
(EMG). Currently, there are two sensing techniques 
to measure EMG signals: invasive indwelling 
sensing and non-invasive sensing. The work here 
presented will focus on the second technique, which 
is when the myoelectric activity is measured by non-
implanted electrodes. These are usually attached to 
the subject on some adhesive basis, which may 
obstruct movement, especially when placed on facial 
muscles. By measuring facial muscles, the surface 
EMG (sEMG) electrodes will measure the 
superposition of multiple fields (Gerdle et al. 1999) 
and for this reason the resulting EMG signal should 
not be attributed to a single muscle and should 

consider the muscle entanglement verified in this 
part of the human body. The sensor presence can 
also cause the subject to alter his/her behaviour, be 
distracted or restrained, subsequently altering the 
experiment result. The EMG signal is not affected 
by noisy environments, however differences may be 
found in the speech production process in the 
presence of noise (Junqua et al., 1999). Muscle 
activity may also change in the presence of physical 
apparatus, such as mouthpieces used by divers, 
medical conditions such as laryngectomies, and local 
body potentials or strong magnetic field interference 
(Jorgensen and Dusan, 2010).  

Surface EMG-based speech recognition, 
overcomes some of the major limitations found on 
automatic speech recognition based on the acoustic 
signal such as: non-disturbance of bystanders, 
robustness in acoustically degraded environments, 
privacy during spoken conversations and constitutes 
an alternative for speech-handicapped subjects 
(Denby et al., 2010). This technology has also been 
used for solving communication in acoustically 
harsh environments, such as the cockpit of an 
aircraft (Chan et al., 2001) or when wearing a self-
contained breathing apparatus or a hazmat suit (Betts 
et al., 2006). 

3.1 State-of-the-Art 

Relevant results in this area were first reported in 
2001 by Chan et al. (2001) where five channels of 
surface Ag-AgCl sensors were used to recognize ten 
English digits. In this study accuracy rates as high as 
93% were achieved. The same author (Chan, 2003) 
was the first to combine conventional ASR with 
sEMG with the goal of robust speech recognition in 
the presence of environment noise. In 2003, 
Jorgensen et al. (2003) achieved an average 
accuracy rate of 92% for a vocabulary with six 
distinct English words, using a single pair of 
electrodes for non-audible speech. However, when 
increasing the vocabulary to eighteen vowel and 
twenty-three consonant phonemes in later studies 
(Jorgensen and Binsted, 2005) using the same 
technique the accuracy rate decreased to 33%. In this 
study problems in the alveolars pronunciation and 
subsequently recognition using non-audible speech 
were reported and several challenges identified such 
as, sensitivity to signal noise, electrode positioning, 
and physiological changes across users. In 2007, Jou 
et al. (2007) reported an average accuracy of 70.1% 
for a 101-word vocabulary in a speaker dependent 
scenario. In 2010, Schultz and Wand (2010) reported 
similar average accuracies using phonetic feature 
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bundling for modelling coarticulation on the same 
vocabulary and an accuracy of 90% for the best-
recognized speaker. 

In the last year’s several issues of EMG-based 
recognition have been addressed such as, investi-
gating new modeling schemes towards continuous 
speech (Jou et al., 2007; Schultz and Wand, 2010), 
speaker adaptation (Maier-Hein et al., 2005; Wand 
and Schultz, 2009) and the usability of the capturing 
devices (Manabe et al., 2003; Manabe and Zhang, 
2004). Latest research in this area has been focused 
on the differences between audible and silent speech 
and how to decrease the impact of different speaking 
modes (Wand and Schultz, 2011a); the importance 
of acoustic feedback (Herff et al., 2011); EMG-
based phone classification (Wand and Schultz, 
2011b); and session-independent training methods 
(Wand and Schultz, 2011c). 

4 FIRST EXPERIMENTS  
WITH A SEMG-BASED 
SSI FOR PORTUGUESE 

In our research we have designed an experiment to 
analyse and explore the sEMG silent speech 
recognition applied to European Portuguese. In this 
section an important research question is addressed: 
“is the sEMG SSI approach for European portuguese 
capable of distinguishing nasal sounds from oral 
ones?”. To address this research problem, we have 
designed two scenarios where at first, we try to 
recognize arbitrary Portuguese words in order to 
validate our system and, in a second scenario, we 
want to recognize/distinguish words differing only 
by the presence or absence of nasality in the 
phonetic domain. 

4.1 Acquisition Setup 

The used acquisition system hardware from Plux 
(2011) consisted of 4 pairs of EMG surface 
electrodes connected to a device that communicates 
with a computer via Bluetooth. These electrodes 
measure the myoelectric activity using bipolar 
surface electrode configuration, thus the result will 
be the amplified difference between the pair of 
electrodes, using a reference electrode located in a 
place with low or none muscle activity. As depicted 
on Figure 1, the sensors were attached to the skin 
using adhesive surfaces and their position followed 
some recommendations from previous studies found 
in literature (Jou et al., 2006), considering also a 

2cm spacing between the electrodes centre and some 
hardware restrictions regarding unipolar 
configurations. The 4 electrodes pairs and their 
corresponding muscles are presented on Table 1. A 
reference electrode was placed on the mastoid 
portion of the temporal bone. 

 
Figure 1: Surface EMG electrodes positioning. 

Table 1: Electrode pair/muscle correspondence based on 
the configuration proposed by Jou et al. (2006). 

Electrode pair Muscle 
1 Tongue and Anterior belly of the digastric 
2 Zygomaticus major 
3 Lower orbicularis oris 
4 Levator angulis oris 

The technical specifications of the acquisition 
system include sensors with a diameter of 10.0 mm 
and 3.95 mm of height, a voltage range that goes 
from 0.0V to 5.0V and a voltage gain of 1000.0. The 
recording signal was sampled at 600Hz and 12 bit 
samples were used. 

In Figure 2 and Figure 3, observations of the raw 
EMG signal in the four channels for the minimal 
pair cato/canto are presented. Based on a subjective 
analysis we can see that the signals present similar 
temporal patterns where the tongue movement is 
first evidenced on channel 1 followed by the 
remaining muscles movement on the other channels. 

 
Figure 2: Surface EMG signal for the word cato. 
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Figure 3: Surface EMG signal for the word canto. 

4.2 Corpora 

For this experiment two corpus - PT-EMG-A and 
PT-EMG-B – containing respectively 96 and 120 
observation sequences like the ones depicted on 
Figure 2 and Figure 3, were created from scratch. 
All observations were recorded by a single speaker 
on a single recording session (no electrodes 
repositioning was considered). The PT-EMG-A 
consisted of 8 different European Portuguese words, 
4 words that are part of a minimal pair where the 
presence or absence of nasality in one of its phones 
is the only difference and 4 digits, are described in 
Table 2. The PT-EMG-B corpus consisted also of 8 
different words in European Portuguese, with 15 
different observations of each word. However, for 
this corpus, the words represent four minimal pairs 
of words containing oral and nasal vowels (e.g. 
cato/canto) and sequences of nasal consonant 
followed by nasal or oral vowel (e.g. mato/manto). 
Table 3 lists the pairs of words used in the PT-EMG-
B corpus and their respective phonetic transcription.  

Table 2: Words that compose the PT-EMG-A corpus and 
their respective phonetic transcription. 

Word List Phonetic Transcription 
Cato [katu] 
Peta [petɐ] 
Mato [matu] 
Tito [titu] 
Um [ũ] 
Dois [dojʃ] 
Três [tɾeʃ] 

Quatro [kwatɾu] 

Table 3: Minimal pairs of words used in the PT-EMG-B 
corpus and their respective phonetic transcription. 

Word Pair Phonetic Transcription 
Cato/ Canto [katu] / [kɐ̃tu] 
Peta / Penta [petɐ] / [pe ̃tɐ] 

Mato / Manto [matu] / [mɐ̃tu] 
Tito / Tinto [titu] /[ti ̃tu] 

4.3 Feature Extraction 

For feature extraction we have used a similar 
approach to the one described by Jou (2006) based 
on temporal features instead of  spectral ones or a 
combination of spectral plus temporal features, since 
it has been shown in previous studies (Jou et al., 
2006) that time-domain features present better 
accuracy results. The extracted features are frame-
based and for any given sEMG signal s[n] frames of 
30ms and a frame shift of 10ms is considered. 
Denoting x[n] as the normalized mean of s[n] and 
w[n] as the nine-point double-averaged signal, a 
high-frequency signal p[n] and r[n] can be defined 
as: ݎ[݊] =  (1) |[݊]݌|

[݊]݌ = [݊]ݔ −  (2) [݊]ݓ

[݊]ݓ = 19 ෍ ସ[݊]ݒ
௡ୀିସ  (3) 

[݊]ݒ = 19 ෍ ସ[݊]ݔ
௡ୀିସ  (4) 

A feature f will then be defined as: 

f = [ݓഥ , ௪ܲ, ௥ܲ, zp, ̅ݎ	(5) [ 

where	ݓഥ , and ̅ݎ represent the frame-based time-
domain mean, ௪ܲ and ௥ܲ the frame-based power, and 
zp the frame-based zero-crossing rate as described 
below. 

ഥݓ = 1ܰ ෍ ேିଵ[݊]ݓ
௡ୀ଴ 	 (6) 

௪ܲ = 1ܰ ෍ ଶேିଵ|[݊]ݓ|
௡ୀ଴  (7) 

௥ܲ = 1ܰ ෍ ଶேିଵ|[݊]ݎ|
௡ୀ଴  (8) 
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௣ݖ = zero-crossing of (9) [݊]݌ 

ݎ̅ = 1ܰ ෍ ேିଵ[݊]ݎ
௡ୀ଴  (10) 

The feature vector also considers the 
concatenation of k adjacent frames as formulated 
below: ܸܨሺ݂, ݇ሻ = [ ௜݂ି௞, ௜݂ି௞ାଵ, … , ௜݂ା௞ିଵ, ௜݂ା௞] (11) 

where i is the current frame index. Most recent 
studies (Schultz and Wand, 2010) show that k =15 
yields the best results. 

In the end, the final feature vector is built by 
stacking the frame-based features of the four 
channels.  In order to address the dimensionality of 
the resultant feature vector, PCA is applied reducing 
it to 32 coefficients per frame. 

4.4 Classification 

For this initial stage of research, the Dynamic Time 
Warping (DTW) classification technique was used 
to find an optimal match between the observations. 
DTW was chosen considering the relatively small 
number of observations and also because it 
addresses very well one of the characteristics of our 
problem: it provides temporal alignment to time 
varying signals that have different durations. This is 
precisely our case, since even observations of the 
pronunciation of the same word will certainly have 
different elapsed times.  

In order to classify the results an algorithm, 
already applied to Visual Speech Recognition in 
Freitas et al. (2011), was used: (1) Randomly select 
K observations from each word in the selected 
corpus that will be used as the reference (training) 
pattern, while the remaining ones will be used for 
testing; (2) For each observation from the test group, 
compare the representative example and select the 
word that provides the minimum distance in the 
feature vector domain; (3) Compute WER, which is 
given by the number of incorrect classifications over 
the total number of observations considered for 
testing; (4) Repeat the procedure N times. 

4.5 Results 

Regarding the classification results for the corpus 
PT-EMG-A, the achieved values, using 20 iterations 
and K varying from 1 to 11, are listed on Table 4. 

Table 4: Surface EMG WER classification results for the 
PT-EMG-A corpus considering 20 trials (N = 20). 

K Mean σ Min Max 
1 47.73 6.34 32.95 59.09 
2 40.50 6.90 27.50 51.25 
3 34.24 5.56 27.78 48.61 
4 30.70 6.21 20.31 40.63 
5 26.61 4.33 16.07 35.71 
6 26.67 6.33 18.75 39.58 
7 25.25 6.43 15.00 35.00 
8 22.50 7.42 9.38 37.50 
9 25.62 6.38 12.50 37.50 

 

Based on Table 4, we find the best result for K = 8 
having an average WER of 22.50%. The best run 
was achieved for K = 8 with a 9.38% WER. 

The classification results for the PT-EMG-B 
corpus are described in Table 5. For this corpus we 
find the best result for K = 10 with an average WER 
of 42.29% and the best run for K=11 with a WER of 
31.25%. 

Table 5: Surface EMG WER classification results for the 
PT-EMG-B corpus considering 20 trials (N = 20). 

K Mean σ Best Worst 
1 64.10 5.55 50.89 75.00 
2 56.87 5.97 44.23 65.38 
3 53.38 6.09 43.75 63.54 
4 51.19 5.10 43.18 61.36 
5 50.50 6.89 36.25 66.25 
6 50.06 6.50 40.27 61.11 
7 47.89 4.33 39.06 53.12 
8 47.14 6.61 35.71 57.14 
9 45.72 5.42 33.33 54.16 

10 42.29 4.53 35.00 52.50 
11 43.13 6.92 31.25 56.25 
12 42.88 6.66 33.33 54.17 

 
By analysing the WER values across K on both 

corpus, the verified trend (WER decreases when K 
increases), indicates that increasing the amount of 
observations in the training set might be beneficial 
to the applied technique.  Regarding the difference 
in the results with the two corpora, an absolute 
difference of almost 20.0% and a relative difference 
of 46.80% are verified between the best mean 
results. If we compare the best run results, then an 
absolute difference of 21.87% and a relative 
difference of 70.0% are verified. Results indicate a 
major discrepancy between the results from both 
corpora, hence an error analysis was also performed. 
If we examine the error represented by the confusion 
matrix of the best run for the PT-EMG-B corpus 
(depicted in Figure 4), we verify that most of the 
misclassifications will occur in the nasal pairs. In 
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this case errors can be found between the following 
pairs: [kɐ̃tu] as [katu] and vice-versa; [pẽtɐ] as 
[petɐ]; [mɐ̃tu] as [matu]; and [titu] as [tĩtu]. In Table 
6, the average error percentage for all minimal pairs 
in Table 3, is presented for each value of K. These 
results show that 25.4% of the results, 50.8% of the 
total error, occur between the analysed minimal 
pairs. This result, leads us to conclude that the 
current techniques for silent speech recognition 
based on sEMG, will present a degraded 
performance when dealing with languages with 
nasal characteristics like EP. 

Table 6: Error analysis for the several values of K. The 
“Correct” column contains the percentage of correct 
classifications, e. g. observation cato was classified as 
cato. The “Minimal Pair Error” column represents the 
percent of observations classified as its pair, e. g. 
observation cato was classified as canto. The “Remaining 
Error” column presents the remaining classification errors. 

K Correct 
(%) 

MP Error 
(%) 

Remaining 
Error (%) 

1 35.89 21.42 42.67 
2 43.12 24.18 32.69 
3 46.61 24.58 28.80 
4 48.80 26.07 25.11 
5 49.50 27.31 23.18 
6 49.93 27.29 22.77 
7 52.10 26.01 21.87 
8 52.85 26.69 20.44 
9 54.27 26.25 19.47 

10 57.12 25.00 17.87 
11 56.87 24.53 18.59 

Mean 49.74 25.40 24.87 

 
Figure 4: Confusion matrix for the best run (K=11 and 
N=6). 

 
 

4.6 Discussion 

The results from the PT-EMG-A corpus (average 
WER of 22.50% and best WER of 9.38%) show a 
slightly worst accuracy when compared with the 
latest state-of-the-art results for EMG-based 
recognition (Schultz and Wand, 2010), considering 
that a much larger vocabulary was used. This may 
be explained by the low number of observations as 
demonstrated by the improvement verified when K 
increases and by hardware limitations in terms of 
unipolar configurations and used pairs of sensors. In 
the results from the PT-EMG-B corpus we verify a 
relative difference towards the WER results from the 
first corpus that in the best run case reaches the 70%. 
Considering that the first four words of the PT-
EMG-A corpus were repeated and that the only 
difference for the remaining words is the presence of 
nasality in one of the phones, it all points to 
inadequate handling of the nasality phenomena by 
sEMGs, as a potential error source. Additionally, the 
error analysis also indicates that 50.8% of the total 
error occurs in the minimal pairs, confirming what 
was stated before.  

It´s interesting to mention that the results verified 
in this experiment in terms of nasality detection, 
were similar to the ones achieved for Visual Speech 
Recognition (Freitas et al., 2011) using the same 
corpora and similar circumstances. 

These results suggest that all stages of the SSI 
recognition process should be reviewed in order to 
overrun the challenge presented by the nasality 
phenomena verified in European Portuguese. It 
needs to be analysed if the muscles involved in the 
nasal process can be detected by the surface EMG 
sensors and if the features that characterize the 
signal correctly, represent this process well. In terms 
of classification, increasing the number of 
observations would also allow us to use a more 
robust classification method such as, Hidden 
Markov models. 

5 CONCLUSIONS 

In this paper we have analysed the adoption of 
existent state-of-the-art techniques in terms of silent 
speech recognition for the case of a Western 
Romance language: European Portuguese. We began 
by describing the current research status in this 
topic, exposing the present-day challenges and the 
relation of these challenges with the adoption to a 
new Romance language. We have also presented the 
most relevant characteristics of the considered 
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language, giving emphasis to nasality, one of the 
present challenges in SSIs. In view of these facts, an 
experiment towards silent speech recognition in 
European Portuguese was built. The experience 
focused on the identification of nasality, and two 
separate corpora were used. The first corpus, 
composed of 8 European Portuguese words, allowed 
us to validate the used framework. The verified 
results were similar to state-of-the-art (Schultz and 
Wand, 2010) (best WER 9.38%), if we consider the 
low number of observations used and some 
hardware restrictions. The second corpus, was 
composed by 4 minimal pairs, where the presence or 
absence of nasality in one of its phones was the only 
difference. Results from the second corpus show a 
relative difference towards the results from the first 
that, in the best run case, reaches 70%. Error 
analysis from these results indicates that 50.8% of 
the total error is verified in the nasal pair. These 
results allow us to conclude that when considering a 
language with strong nasal characteristics, such as 
European Portuguese, for a SSI based on sEMG, 
performance degradation will be verified due to 
difficulties of the technique in distinguishing nasal 
phones from oral ones, motivating further research 
on this topic. 

5.1 Future Work 

Regarding future work we can identify several main 
research paths to explore. One of them is, of course, 
nasality. Although the behaviour of the articulators 
during nasals is not yet clear for EP, we believe that 
its detection is not impossible. For this reason, we 
intent to analyse if it is possible to identify nasality 
in sEMG signals, by sensing specially selected set of 
muscles, with a stronger association to nasal sounds, 
or if we can extract nasality information from the 
current signals, considering other features beyond 
the time-domain analysis. Another path to consider 
is the use of parallel modalities appropriate for SSI, 
which could improve the detection of nasality in 
European Portuguese, such as Visual Speech 
Recognition and Ultrasonic Doppler sensing. 
Particularly, the non-invasive characteristics and the 
promising results seen in previous works of the 
Ultrasonic Doppler sensing (Srinivasan et al., 2010) 
modality open the possibility of a multimodal SSI 
that addresses the nasality detection problem. A 
solution for this issue would enable language 
expansion for this type of interfaces. 
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