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Abstract:  Real-time modelling techniques could be valuable to continuously evaluate individual critically ill patients 
and to help the medical staff with estimation of prognosis. This preliminary study examines the possibilities 
to distinguish survivors from non-survivors on the basis of instabilities in the dynamics of daily measured 
variables. A data set, containing 140 patients, was generated in the intensive care unit (ICU) of the 
university hospital of Leuven. First and second order dynamic auto-regression (DAR) models were used to 
quantify the stability of time series of three physiological variables as a criterion to distinguish survivors 
from non-survivors. The best results were found for blood urea concentration with true negative fractions of 
45/72 (63%) and true positive fractions of 43/68 (62%). The results indicate that the dynamics of time series 
of laboratory parameters from critically ill patients are indicative for their clinical condition and outcome. 

1 INTRODUCTION 

Physicians have for long recognized the importance 
of considering the temporal dimension of illness for 
arriving at a diagnosis and deriving treatment 
strategies (Belair et al., 1995). The study of disease 
dynamics, or how disease states change with respect 
to time, is providing a key to understanding 
abnormalities in underlying physiologic control 
mechanisms (Goldstein et al., 2003). For monitoring 
purposes, especially changes in dynamic 
characteristics seem to be relevant in distinguishing 
health from disease (Glass, 2001; Buchman, 2004; 
Van Loon et al., 2010). This indicates the potential 
of approaches that aim at quantifying dynamic 
characteristics of individual patients on-line during 
their stay in the intensive care unit (ICU). Several 
attempts to take the time-varying aspect of the health 
status of critically ill patients into account have been 
reported (e.g. Chang et al., 1988; Clermont et al., 
2004; Toma et al., 2007, 2008).  

In most of these studies, the available 
information at a certain instance in time was 
summarised in one score and the calculation of this 
score was repeated in time. Afterwards, a 
classification or prediction model was built using 

these summary variables. Instead of using repeated 
scores, it is also possible to extract dynamically 
relevant features from the commonly measured 
physiological data itself. A large number of 
variables are continuously monitored and stored in 
the ICU environment.  

A candidate approach for monitoring individual 
patients in the ICU is time series analysis. A few 
investigations have employed the use of time series 
analysis in the field of intensive care medicine (e.g. 
Lambert et al., 1995). It has been shown that time 
series analysis techniques are suitable for 
retrospective analysis of physiological variables. A 
computationally similar, but more challenging task 
is the on-line analysis of intensive care monitoring 
data (Imhoff et al., 1999).  

The objective of the reported research was to 
explore whether recursive time series analysis can 
be used to monitor individual patients in the ICU. 
More specifically, the aim was to test if the 
occurrence of temporal instabilities in the dynamics 
of time series of continuously measured 
physiological data contains valuable information for 
distinguishing between survivors and non-survivors. 
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2 MATERIALS AND METHODS 

2.1 Patient Database 

The database was derived from a larger database 
(1200 patients) created for a clinical study with a 
similar setup and purpose in a group of critically ill 
patients from a medical ICU (Van den Berghe et al., 
2006).  In order to have enough data points for time 
series analysis we had to select patients with a 
length of stay of at least 20 days because in the 
existing data sets, most of the stored data were 
available only once daily. A second selection 
criterion was that we only accepted patient data with 
no missing measurement values. A set of 140 
patients fulfilled both criteria. 

An overview of the used data set is depicted in 
Table 1. The protocol of this trial was approved by 
the ethical commission of our hospital. 

Table 1: Characteristics of the database. 

Number of patients 140 
Age (mean ± std) 62 ± 14 

Sex M: 95, F: 46 
BMI 25 ± 5 

We used daily measurements of three variables, 
namely:  maximum body temperature (Tmax, °C), 
white blood cell count (WBC, 109/L) and urea 
concentration (Uconc, mg/dl).  

2.2 Recursive Modelling 

Since the physiological patient responses are time 
variant, most of the measured physiological 
variables are non-stationary, in the sense that the 
statistical properties of the signal are changing 
slowly over time in relation to the rates of change of 
the stochastic state variables in the system under 
study. When the system is non-stationary, models 
with time varying parameters should be used for the 
analysis (Pedregal et al., 2007). In this study we 
used a Dynamic Auto-Regression (DAR) model 
which can be formulated as: ݕ௧ = ,ଵିݖ)ܣ1 (ݐ ݁௧ (1) 

in which ିݖ)ܣଵ, (ݐ = 1 + ܽଵ௧ିݖଵ + ܽଶ௧ିݖଶ + ⋯+ܽ௣௧ିݖ௣ is a time variable parameter polynomial in 
the backward shift operator ିݖଵ; yt is the considered 
physiological variable; et is zero mean white noise.  

Here, the adjective ‘dynamic’ means the model 
has time variable parameters and not that the DAR 
model is dynamic in a systems sense. A random 

walk model was specified and a time domain 
maximum likelihood estimation was applied to find 
the optimal parameter estimates. 

By multiplying equation (1) throughout by ିݖ)ܣଵ,  the DAR model in the time series (ݐ
formulation is obtained: ݕ௧ = −ܽଵ௧ݕ௧ିଵ − ⋯− ܽ௣௧ݕ௧ି௣ + ݁௧ (2) 

From this equation it can be seen that ݕ௧ is 
calculated from previous samples of itself plus a 
random component in the form of the white noise ݁௧. 
For more details, reference can be made to Taylor et 
al. (2006) and Pedregal et al. (2007).  

In a first step, first and second order DAR 
models were computed for the three variables of the 
development data set,  since in preliminary analysis 
these model orders led to the best results in terms of 
the Akaike’s Information criterion (AIC). The first 
and second order model structures were as follows: ݕ௧ = −ܽଵ௧ݕ௧ିଵ + ݁௧ (3a) ݕ௧ = −ܽଵ௧ݕ௧ିଵ − ܽଶ௧ݕ௧ିଶ + ݁௧ (3b) 

On the basis of the correlation coefficients between 
the measured variables and the one-step-ahead 
predictions, the best performing variables were 
selected for further analysis in the second step. 
Average correlation coefficients < 0.70 were 
considered as not sufficient in order to have an 
accurate model. 

A further selection in the variables and model 
orders was made considering the uncertainty of the 
parameters in the calculated models. The average 
standard error (SE) on the parameters was calculated 
and used as a measure for the reliability of the 
model. In the recursive algorithm, for all 
consecutive estimations of the model parameters, the 
relative standard error (RSE) of the parameters was 
calculated using following equation: ܴܵܧ = ݎ݁ݐ݁݉ܽݎܽ݌|ܧܵ |݁ݑ݈ܽݒ 	× 100	(%) (4) 

The average of the relative standard errors was taken 
from day 15 until the end of the data set for each 
patient. The recursive algorithm needed about 14 
data points to result in a reliable model, so the 14 
first values were not considered.  

2.3 Model-based Classification of 
Survivors vs. Non-survivors 

The hypothesis of this work was that a patient that 
becomes unstable at least once during his/her stay in 
the ICU, will not survive. When measured variables 
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become unstable, this does not imply an increase in 
the variability or the irregularity of the signal. A 
higher variability often even corresponds to more 
healthy conditions (Lipsitz, 2002). 

To have a stable system, in this case the patient, 
it is required that all poles of the transfer function lie 
inside the unit circle. For a first order system, this 
means that the following criterion should be met for 
the a1-parameter in equation (3a) (Box et al., 1994): −1 < ܽଵ < 1 (5) 

The time course of the measured urea concentration 
values (as an example) and the calculated stability 
criterion (equation 5) for two example patients are 
shown in Figure 1 for a survivor and a non-survivor.  

For a second order model, the criteria for 
stability can be expressed in terms of the two model 
parameters in the following way (Box et al., 1994): ܽଵ + ܽଶ > −1  ܽଶ − ܽଵ > −1 (6) −1 < ܽଶ < 1  

where ܽଵ and ܽଶ are the model parameters as 
described in equation (3b). When one of these 
criteria is not met, the system is unstable. 

On the basis of the stability criteria, the 
classification between survivors and non-survivors 
was made and quantified in terms of true positive 
fractions (sensitivity) and true negative fractions 
(specificity). The true positive fraction (TP) was 
defined as the fraction of patients that becomes 
unstable at least once during the stay in the ICU and 
died. The true negative fraction (TN) was defined as 
the fraction of patients that did not become unstable 
and survived. Because the recursive parameter 
algorithm needed about 14 data points (days) of past 
data to produce reliable parameter estimates, the 
stability test was performed from day 15 on. This is 
a drawback of the used methodology, but the aim of 
this preliminary study was to investigate whether the 
stability of measured physiological variables of the 
patients gives valuable information about the 
patients’ survival when they have a long ICU stay 
and not to predict the outcome as soon as possible 
after arrival in the ICU. 

3 RESULTS AND DISCUSSION  

In the first step, first and second order models were 
calculated for the three variables and the correlation 
coefficients between the measured variables and the 
one-step-ahead predictions were analysed.  Table 2 

gives an overview of the average correlation 
coefficients for each variable for the first as well as 
for the second order models. The results indicate 
that the variable Tmax could not be modelled 
accurately (average correlation coefficients < 0.70). 
Consequently, only the variables Uconc and WBC 
were selected for further analysis.  

Table 2: The correlation coefficients between the 
measured variables and the one-step-ahead predictions of 
the first and second order dar models calculated on the 
variables tmax, uconc and wbc. 

 Tmax Uconc WBC 
1st order 0.51 0.86 0.73 
2nd order 0.54 0.85 0.77 

Secondly, the reliability of the parameters was 
examined in terms of their relative standard errors. 
The average errors are given in Table 3 for the first 
and second order models of the two remaining 
variables. From this table it can be seen that the 
errors on the parameters of the second order models 
were always larger than those of the first order 
models. Therefore it was decided to disregard the 
second order models from this step on. 

Table 3: The mean relative standard errors (MRSE) on the 
parameters of the first and second order DAR models 
calculated on the variables Uconc and WBC of the 
development data set (%). 

Model Parameters 
MRSE 
Uconc 

(%) 

MRSE 
WBC 
(%) 

1st order a1 43.15 39.16 
2nd order a1 486.24 386.72 

 a2 1036.58 909.44 

The recursively calculated parameter estimates were 
tested against the stability criteria (equation (5)) in a 
third step. Table 4 summarizes the calculated true 
positive fractions and the true negative fractions for 
the first order models of the two remaining 
variables.  

Table 4: The TN and TP values for Uconc and WBC. 

 Uconc WBC 
TN 45/72 (63%) 61/72  (85%) 
TP 43/68 (62%) 22/68 (32%) 

If we were to base clinical decisions upon a model, 
it would be clinically more acceptable to classify a 
non-survivor erroneously as a survivor than to 
classify a survivor as a non-survivor. So, preferably 
the TN is at least as big as the TP and both the TP 
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and TN should be as close to 100% as possible. 
Considering this, the best result was obtained for 
Uconc with a TN of 45/72 (63%)  and a TP of 43/68 
(62%). This signal was consequently considered as 
the most indicative variable for outcome prediction, 
although these results are not good enough to be 
useful in clinical practice.  

Uconc turned out to be the best choice for the 
classification of survivors versus non-survivors. The 
TN for WBC was better than in the case of Uconc, 
but the TP was a lot worse. When looking at the 
reliability of the parameters, the relative standard 
errors on the parameters of the models WBC were 
lower than the errors for Uconc, but the former have 
a very low TP. Consequently, Uconc is the best 
option for the given study purpose.  

All selected variables are used in the clinical 
setting as markers of inflammation or organ function 
and therefore it is not surprising that they are 
predictive for mortality in this subset of patients 
with a prolonged stay in the ICU. The blood urea 
concentration was found to be a prognostic marker 
in several types of patients (Beier et al., 2011). In 
the study of Jackson et al. (2008) it is shown that an 
elevated urea concentration is more powerful than 
the estimated glomerular filtration rate at predicting 
an increased risk of early mortality following 
admission with heart failure. In this study a Cox-
proportional hazard model of log[urea] (per unit 
change) resulted in a hazard ratio for risk of death of 
1.79 (± 95% CI 1.08-2.97, P = 0.003). An increased 
postoperative serum urea concentration is also 
associated with an increase in 30-day mortality in 
patients undergoing emergency abdominal surgery 
(odds ratio 4.79, ± 95% CI 2.37-9.70, P = 0.003; 
Harten et al., 2006). The relevance of blood urea 
nitrogen (BUN) as a marker for length of stay and 
mortality at the intensive care unit for patients with 
acute necrotizing pancreatitis was investigated by 
Faisst et al. (2010). In their study, these authors used 
thresholds on absolute values of BUN as a predictive 
value. When using a threshold (cutoff) value of 33 
mg/dl, high BUN levels correctly predicted a 
prolonged length of stay in 89% of the cases 
(positive predictive value, PPV) and the negative 
predictive values (NPV) for BUN on admission and 
in the course of the disease was 62% and 77%. With 
the same threshold, mortality could be correctly 
ruled out in 82% of the cases on admission and in 
92% of the cases in the course of the disease (NPV). 
The PPVs were lower with 67% on admission and 
56% in the course of the disease. In addition to these 
studies, our results indicated that not only the 
absolute steady state levels of Uconc, but also its 

dynamics, can be predictive for survival in the ICU. 
To the authors’ knowledge no studies have been 
performed using time series dynamics of urea 
concentration in critically ill patients at the ICU in 
relation with mortality.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1: Time courses of the daily measured urea 
concentration values for a survivor (a) and non-survivor 
(c) as well as the corresponding time-varying a1-parameter 
values for a survivor (b) and non-survivor (d). The vertical 
dashed line in (b) and (d) indicate the end of the period of 
the first 14 data points (days) that are needed for reliable 
parameter estimation. The horizontal line indicates the 
threshold of a1 = -1.  
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The occurrence of instabilities in the measured 
biological signals of (most) non-survivors might be 
explained by the fact that, in critical care patients 
before dying, the complex closed-loop responses 
that operate to keep the organism in equilibrium may 
not be evolved to produce a healthy response to 
stress, and thus respond in a maladaptive way. This 
fits with the work of Lipsitz (2002) who connects 
the proper working of physiological systems with 
the stability of its dynamic response. However, it 
can be expected at one hand that some patients 
become dynamically unstable but recover from this 
situation or on the other hand that some patients can 
die due to very acute problems (e.g. brain 
haemorrhage) which are not preceded by periods of 
instability in the measured dynamics. Therefore, the 
findings in our study need to be validated and 
confirmed in a larger sample of patients to evaluate 
the concept thoroughly. 

In ICU's worldwide, attempts to improve data 
processing have centered on computerized systems 
and several patient data management (PDMS) 
systems have been developed (Toma et al., 2007).  
This is software where virtually all patient and 
therapy related information is stored on a high 
resolution basis. Consequently, there is a great need 
for integrating the data and automating the 
recognition of several diagnoses, since the quality of 
health care systems depends on making the right 
decisions at the right time and place (Fonseca et al., 
2009). Without automated systems, clinicians have 
to manually extract the necessary information, 
which is a time-consuming work that distracts them 
from critical tasks and increases the risk of making 
mistakes (Spencer et al., 1997). In combination with 
recursive modelling techniques, such systems might 
allow to model the patients’ dynamic responses in 
real-time as a basis for improving personal health 
status monitoring.  

4 CONCLUSIONS 

We found that the patients’ dynamics contains 
interesting information when distinguishing between 
survivors and non-survivors. A data set of 140 
patients was used for the analyses. On the basis of 
stability measurements calculated from the 
parameters of recursive time series models on 
physiological data, we were able to separate 
survivors form non-survivors. The best results were 
obtained when using blood urea concentration which 
gave a true negative fraction of 45/72 (63%). The 
true positive fraction was 43/68 (62%). The results 

of this study need to be validated and afterwards 
confirmed in larger trials, before the described 
methodology could be considered in the future in 
combination with patient data management systems 
to support the physician in on-line monitoring and 
decision taking for individual patients.   
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