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Abstract: We have developed a computationally efficient stochastic model for simulating microelectrode recordings, 
including electronic noise and neuronal noise from the local field of 3000 neurons. From this we have 
shown that for a neuron network model spiking with a stationary Weibull distribution the power spectrum 
can change from exhibiting periodic behaviour to non-stationary behaviour as the distribution shape is 
changed. It is shown that the windowed power spectrum of the model follows an analytical result prediction 
in the range of 100-5000 Hz. The analysis of the simulation is compared to the analysis of real patient 
interoperative sub-thalamic nucleus microelectrode recordings. The model runs approximately 200 times 
faster compared to existing models that can reproduce power spectral behaviour. The results indicate that a 
spectrogram of the real patient recordings can exhibit non-stationary behaviour that can be re-created using 
this efficient model in real time.  

1 INTRODUCTION 

For the treatment of progressed movement disorders, 
such as Parkinson’s disease (PD), deep brain 
stimulation (DBS) may be used. This treatment 
involves locating a target deep brain structure, such

 as the sub-thalamic nucleus (STN), inserting an 
electrode to within 1 mm accuracy, and then 
applying a pulsed electric field to the area. One of 
the tools used to locate the correct nucleus structure 
is a microelectrode recording (MER). MERs are 
performed by insterting a recording electrode, with a  

 
Figure 1: The micro-electrode recordings (MER) are acquired by inserting an electrode into a deep brain structure. The 
electrical activity of the neurons surrounding the electrode can couple to it producing a voltage time series.  
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diameter around 50 um, into the nucleus structure 
(figure 1) located via MRI and CT scans.  

To confirm the correct location of the implanted 
DBS electrodes, patients are awake to perform 
neurological tests. This gives an opportunity to 
monitor the candidate nucleus, for stimulation, while 
the patients perform tasks. Recent work has shown 
that with the correct measure, correlations between 
MER recordings and patient response to symantic 
tests has been demonstrated (P. A. Meehan & 
Bellette, 2009; Paul A. Meehan et al., 2011; 
Varghese et al., 2011).  

Currently there has also been work on 
developing a bi-directional brain-machine interface 
for DBS treatment (Rouse et al., 2011). To further 
develop these research paths appropriate methods 
for efficient real time simulations to estimate neural 
network behaviour are required. For instance 
developing a metric that can characterise the 
underlying neural behaviour from a MER, a better 
understanding of the process in DBS could be made.  

Current MER models only consider the 
behaviour of the closest neuron and reduce the 
further neurons to a local field noise (Santaniello, 
Fiengo, Glielmo, & Catapano, 2008). For feedback 
control of DBS the behaviour of the neural network 
needs to be modelled,  as it has been shown that 
analysis of the closest neuron to the electrode is 
insufficient (Rouse, et al., 2011). Using the current 
non-linear neuron models of DBS (Rubin & Terman, 
2004) for this type of feedback controller would be 
too computationally intensive, for this reason models 
that can take into account a large number of neurons 
and display markers of pathalogical states efficiently 
are needed.  

In this paper we develop numerical probabilistic 
models, using a point process (PP) in order to create 
a much more computationally efficient model of 
networked neurons. Each neuron is coupled to the 
electrode, using a non-homogenous model for the 
extracellular medium, via a filter function derived 
from a conductance based model for the STN 
extacellular current during an action potential (AP). 
We use the model to compare with real patient 
MERs and an analytical model using frequency 
based analysis. This type of numerical model could 
potentially be used in a clinical setting as part of a 
feedback controller for DBS, alleviating the clinical 
load of optimizing the device settings.    

2 METHODS 

There are several aspects to modelling and analysing  

deep brain signals. The system is a complicated 
system with many levels of dynamics required to 
create a MER. Section 2.1 contains the procedure 
used to acquire patient MERs. The factors that 
contribute to modelling a MER; modelling the 
behaviour of a single neuron, the network behaviour, 
the neuron electrode interaction and the electrical 
equipment processing the signal are detailed in the 
section 2.2. A simple analytical model is presented 
in 2.3 for comparison to the numerical model and to 
provide more insight into how the statistical 
distribution influences the expected power spectrum. 
The methods of the comparative analysis are then 
summarized in 2.4. 

2.1 Experimental Procedure - Patient 
MER Acquisition 

MERs are acquired from participants with idiopathic 
PD who were considered suitable for the 
implantation of bilateral permanent stimulators in 
the STN. Fused MRI and stereotactic CT images and 
direct visualisation of FLAIR (Fluid-attenuated 
inversion recovery) MRI images displayed by 
Stealthstation (Medtronic Inc., Minneapolis, MN) 
were used to target the STN. 

During surgery characteristic STN firing patterns 
were used to confirm the STN location by the 
neurologist and neurosurgeon. More details of the 
surgical procedure are reported in Coyne et al. 
(Coyne et al., 2006). 

MERs were acquired with a Tungsten 
microTargeting® electrode (model mTDWAR, FHC, 
Bowdoinham, ME) with a tip diameter of less than 
50µm and impedance of approximately 0.5 MΩ (± 
30%) at 1 kHz. MERs were filtered (500-5000 Hz) 
and recorded at a sampling rate of 24 kHz from 
LeadPoint™ (Medtronic Inc., Minneapolis, MN). 

2.2 Numerical Modelling 
of Micro-Electrode Recordings 

A MER is created by the activity of the neurons 
around the recording electrode. The neurons 
generate currents and hence electric fields that 
propagate through the different structures of the 
brain tissue, which can attenuate and filter the signal 
(Garonzik, Ohara, Hua, & Lenz, 2004). Finally the 
field incident on the electrode is processed by the 
electrical equipment to produce the recording. 

Models of MERs have been developed that 
consider single unit recordings, made from a 
stochastic single neuron with random noise 
(Santaniello, et al., 2008) and local field potentials 
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(LFP) created using the spike trains of 
simultaneously recorded in-vivo cells (Bedard & 
Destexhe, 2009). However neither of these models 
allow for real time simulations with dynamically 
altering network behaviour. 

To effectively model a MER which would allow 
real time simulations, there are several different 
stages that need to be taken into consideration. The 
four separate areas we are to model are the 
behaviour of the neural network, the electrical 
dynamics of individual neurons, the coupling of the 
electric fields from a neuron to the electrode and the 
processing of the signal by the electronics. 

2.2.1 Neural Networks 

For a MER a large number of neurons in the 
structure surrounding the electrode contribute to the 
signal. Dynamic models of neurons and neural 
networks are common for simulating brain 
structures(Feng, Shea-Brown, Greenwald, Kosut, & 
Rabitz, 2007; Izhikevich, 2007a, 2007b; Rubin & 
Terman, 2004; Terman, Rubin, Yew, & Wilson, 
2002). These types of models, using synaptic 
connections between neurons with dynamical neuron 
models, can be very computationally intensive 
(Long & Fang, 2010). To reduce the computational 
burden of modelling individual neurons with 
synaptic connections, the firing times of each neuron 
can be characterized by a stochastic variable. This 
variable is produced from a probability distribution 
that depends upon the behaviour of the network. 
This type of model is a point process (Perkel, 
Gerstein, & Moore, 1967a, 1967b). 

For single neurons the spiking statistics are often 
modelled by a Poisson distribution of inter spike 
interval (ISI) times. The participants for the deep 
brain MER recordings are undergoing treatment for 
a pathological state that is treated by altering STN 
function. This could imply abnormal function of the 
STN where the firing is not best described by a 
Poisson distribution in ISIs. 

A probability distribution that can give the 
common types of behaviour found in neurons, such 
as bursting, Poisson and periodic behaviour, is the 
Weibull distribution (Li, 2011; McKeegan, 2002; 
Perkel, et al., 1967a, 1967b). This type of 
distribution can reduce to a Poisson distribution if 
the shape parameter is equal to one, takes the form 
of a Rayleigh distribution if the shape parameter is 
larger than two and burst fire behaviour is produced 
as it goes below one. 

The point process simulation is performed using 
MATLAB 7.12.0 (R2011a) on a PC with a quad 

core 1.73GHz processor and 8.0 GB of RAM. A 
spatial distribution of 3000 neurons is randomly 
generated, shown in figure 2, that follows the radial 
density of neurons (ܰ(ݎ)) given in equation (1) 
using a spatial neuron density of ߩ = 10ହܿ݉ିଷ. ܰ(ݎ) =  (1) .ߩଶݎߨ4

 
Figure 2: The radial distribution of neurons used for 
simulations. The volume of tissue for the simulation 
depends on the number of neurons simulated. 

All simulations are performed over a three 
second period. Time series of Dirac pulses are 
created for each neuron by drawing interval times 
for spike occurrences from a probability distribution. 
Weibull distributions are used to generate the ISIs 
given by 

(ݐ)ܲ = ൝ቀ௧ି௧ೝఒ ቁ௖ିଵ ௖ఒ ݁ିቀ೟ష೟ೝഊ ቁ೎			ݔ > ௥0ݐ ݔ														 ≤ ௥ݐ , (2)

 is the scale parameter that controls the rate and is ߣ
set to 10 Hz. The shape parameter c is varied to 
control the neuron behaviour; with ܿ ≪ 1 generating 
bursting, ܿ = 1 Poissonian and ܿ ≫ 1 periodic 
behaviour. The parameter ݐ௥ controls the refractory 
time of the neuron and set to 5 ms, preventing 
another action potential occurring for the same 
neuron in this period. The first spike for each neuron 
uses ܿ = 1 with ݐ௥=0. Each time series is convolved 
with the EAP for an STN neuron by taking the 
product in the frequency domain. The time series 
data for each neuron are then superimposed to create 
the voltage at the electrode. 

2.2.2 Neuron Dynamics 

Using a PP model for the neural network, the 
dynamics of each neuron have been reduced to an 
‘on’ or ‘off’ state. To develop the correct response 
for a neuron when in the ‘on’ state, conductance 
models such as the Hodgkin and Huxley (HH) 
model can be used to  generate the behaviour  of  the  
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individual neuron, when an action potential occurs. 
The HH model can calculate the extracellular 

currents around a neuron which is required for 
determining the voltage seen by an electrode. It has 
previously been demonstrated STN cells can be 
simulated effectively using this type of model 
(Terman, et al., 2002). More computationally 
efficient mathematical models of neurons are not 
considered since these types of models cannot 
always reproduce the correct shape of the action 
potential waveform, and this feature is important 
when considering the windowed power spectrum. 

 
Figure 3: The extracellular current used for each neuron 
generated using equation (3). 

The STN cell is modelled using a single 
compartment conductance based model described by 
a modified version of the HH equation, based on 
(Feng, et al., 2007; Rubin & Terman, 2004; Terman, 
et al., 2002):  ܥ௠ ௗ௏ௗ௧ = −݃௅(ܸ − (௅ݒ − ݃௄݊ସ(ܸ − (௄ݒ −݃ே௔݉ଷℎ(ܸ − (ே௔ݒ − ்݃ܽଷܾଶ(ܸ − (஼௔ݒ −݃஼௔ݏଶ(ܸ − ஼௔), (3)ݒ

where ܥ௠ is the membrane capacitance and set to 1ܨ݌ ⁄݉ߤ ; ݃௅,  are the leak conductance and	௅ݒ
reversal potential (2.25	݊ܵ/݉ଶ and −60.0	ܸ݉ 
respectively); ݃௄,  ା conductance andܭ are the	௄ݒ
equilibrium potential (45	݊ܵ/݉ଶ and −80.0	ܸ݉ 
respectively); ݃ே௔,  are the ܰܽା conductance and	ே௔ݒ
equilibrium potential (37.5	݊ܵ/݉ଶ and 55.0	ܸ݉ 
respectively); ்݃ is a low-threshold T-type Ca2+  
conductance (0.5	݊ܵ/݉ଶ); and ݃஼௔, -௖௔ are a highݒ
threshold Ca2+ conductance and a Ca2+ equilibrium 
potential (0.5	݊ܵ/݉ଶ and 140.0	ܸ݉ respectively). 
The gating variables ݊, ݉, ℎ, ܽ	and ܾ follow the 
differential equations given in (Terman, et al., 2002) 
using the parameters given in their table 1. The 
dynamics of a single neuron are modelled in 
NEURON (Hines & Carnevale, 1997) using 
equation  (3)  to  generate  the   extracellular  current  

during an action potential, shown in figure 3. 	
2.2.3 Neuron/Electrode Interaction 

The electrode senses the neuron dynamics through 
the electric field that propagates from the neuron. 
This electric field is known as the extracellular 
action potential (EAP). The EAP is generated by 
ionic currents around the active neuron. As the EAP 
propagates through the extracellular space to the 
electrode it will pass through regions of space with 
different conductivity and permittivity. This will 
cause filtering effects along with attenuation of the 
field. This means that the electrode will record a 
different EAP for each neuron depending upon the 
distance from the electrode and the media in 
between. 

The complex impedance (ܼఠ(ݎ)) for the 
interaction of each neuron with the electrode over 
the range of radii is calculated by (Bedard, Kroger, 
& Destexhe, 2004), ܼఠ(ݎ) = ଵସగఙ(ோ) ׬ ଵ௥ᇱమ ఙ(ோ)ା௜ఠఢ(ோ)ఙ(௥ᇱ)ା௜ఠఢ(௥ᇱ) ஶ௥′ݎ݀ , (4) 

where ߪ is the conductivity in the extracellular 
medium, ߳ is the permittivity in the extracellular 
medium and R is the spherical radial size of each 
neuron. An exponentially decaying conductance  (ݎ)ߪ = (ܴ)ߪ ൬ߪ଴ + (1 − ିೝషೃഊ	଴)eቀߪ ቁ൰, (5) 

with a space constant ߣ = ܴ cell radius ,݉ߤ	500 = (ܴ)ߪ conductivity at the cell ,݉ߤ	10 =1.5	ܵ/݉ and a normalized low amplitude 
conductivity ߪ଴ = 2 × 10ିଽ	; and a constant 
normalized permittivity ߳ = 10ିଵଵܨ/݉ were used 
following Bedard (2004). The EAP waveform in the 
frequency domain for each neuron is calculated 
using the complex impedance and the FFT of the 
extracellular current. 

The voltage ( ఠܸ), in terms of the frequency 
components, at the electrode caused by a neuron is 
then calculated using Ohm’s law (Bedard, et al., 
2004), 

ఠܸ(ݎ) = (6) ,(ݎ)ఠܼఠܫ

where ܫఠ is the frequency component of the current 
at the neuron. 

2.2.4 Electrical Processing 

To properly analyse a MER the effects of the 
electrical equipment, on the recording, need to be 
included. These effects include the introduction of 
noise, such as that due to sampling rate, clock 
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stability and thermal noise, and any filtering that 
occurs. These issues could greatly affect the ability 
of a measure to differentiate the neuronal behaviour 
from the electrical effects.  

The first such noise source is the noise present 
from thermal fluctuation of electrons in the 
microelectrode (Akingba, Wang, Chen, Neves, & 
Montemago, 2003). This type of noise is known as 
Johnson-Nyquist noise and is characterized by 
having zero mean voltage and a variance dependant 
on the temperature, resistance and frequency 
bandwidth.  

The phase noise is not considered in this analysis 
due to the stability of the 10 MHz clock typically 
used and the comparatively small sample rate of 24 
kHz. Digitization noise can be accounted for by 
producing the final MER of the simulation with the 
same time step that the patient data is recorded at. 
Finally any filters can be added using the filter 
transfer function in the post processing of the MER 
simulation. 

Thermal noise on the electrode is added as white 
noise using 〈ܸ〉 = 0, (7)〈ܸଶ〉 = 4݇஻ܴܶΔ݂, (8)

where ݇஻ is Boltzmann’s constant, ܶ is the 
temperature, ܴ is the resistance,	Δ݂ is the bandwidth 
and 〈 〉 is the time average, it is found that for a 0.5 
MΩ resistor at body temperature (37oC) the thermal 
noise can be between 10-30% of the size of the 
neural signal. 

 The recording is filtered with a 6th order low 
pass Butterworth filter with a corner frequency of 5 
kHz and a 3rd order high pass filter with a corner 
frequency of 500 Hz. The final MER from the 
simulation is produced with a sample rate of 24 kHz 
to create the same digitization effects as present in 
the patient data. 

2.3 Simplified Analytical Model 
of Micro-Electrode Recordings 

The MER may be analytically modelled by a 
superposition of independent spike trains, equivalent 
to the numerical model using a point process. The 
PSD for a PP model will be a filtered version of the 
PSD for the EAP waveform. For independent 
overlapping pulse trains, with the same shape 
waveform for each pulse, it has been shown (Banta, 
1964) that the power spectrum (ܩ଴(߱)) for the MER 
can be written as ܩ଴(߱) = ఔீ(ఠ)ଶగ ቂܽଶതതത − 2തܽଶܴ݁ ቄ ு(ఠ)ଵିு(ఠ)ቅቃ, (9)

where ܩ(߱) is the  PSD of the waveform, ܪ(߱)  is 
the characteristic function (Fourier transform) of the 
probability distribution for the aggregate spiking 
statistics, ߥ is the number of pulses per unit time and ܽ is the amplitude of the pulses with ഥ  representing 
the ensemble average. 

Although this equation for the PSD takes into 
account the attenuation caused by the extracellular 
medium on the spike waveform it does not take into 
account the frequency filtering effects. 

This equation can however be used to see 
expected behaviour of different simulations. The 
bracketed term can be thought of as a filter, which is 
a function of the spiking probability, applied to the 
waveform PSD. By looking at this term the filtering 
effects caused by the different probability functions 
can be examined. 

2.4 Procedure for Comparison of 
Numerical and Experimental 
Results 

The most intuitive way to analyse the noise of an 
MER is to look at the PSD. This was first done by in 
1979 (McNames, 2004) using a circuit equivalent of 
a Fourier Transform (FT). In recent years analysis of 
MERs has progressed into the digital domain. The 
majority of these techniques still involve analysis of 
the PSD. 

Neuron spiking behaviour can be examined 
through MER PSDs. It was shown how ݂ିଶ  
behaviour in the PSD can arise from shot noise type 
behaviour of neurons spiking (Milstein, Mormann, 
Fried, & Koch, 2009), while ݂ିଵ behaviour may be 
due to filtering by reactive extracellular media, or 
due to complex self-organized critical phenomena 
(Bedard & Destexhe, 2009).  

Complex measures have been used to look at 
MERs, and it has been shown that some techniques, 
such as the Non-Markov parameter (NMP) relate to 
the PSD (Varghese, et al., 2011). 

The windowed PSD will not capture transient 
behaviour in the MER. To view this transient 
behaviour a spectrogram can be used. This involves 
dividing the signal into smaller time bins. The PSD 
is taken for each time bin to see the PSD as a 
function of time for the MER. 

A windowed PSD is taken of the time series data 
from the simulation using a Gaussian window with 
an ݁ିଶ width of 1/50th of the signal length. The PSD 
is then averaged of 5 trials of the simulation with the 
same firing statistics. This is compared to the 
windowed PSD of a three second signal averaged 
over 5 recordings. 
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Spectrograms are produced with the same time 
intervals used for the windowed PSD. The 
spectrograms consist of a series of instantaneous 
PSD over each time interval. The spectrograms are 
then used to compare the stationary behaviour of the 
power spectrum for different ISI probability 
distributions and the patient data. 

3 RESULTS AND DISCUSSION 

The results from the numerical simulations are 
presented in this section and are then compared to 
the experimental results and analytical predictions. 
Subsection 3.1 summarises the numerical results and 
provides a comparison with MERs acquired from 
patients. The time series, windowed power spectrum 
and spectrogram for three different simulation 
parameters are used. Subsection 3.2 includes details 
of the results from the simple analytical model, 
comparing how the power spectrum of the EAP is 
modified under the different spiking statistics used 
to produce the MERs from the numerical models. 

3.1 Numerical and Experimental 
Results Comparison 

The time series of voltage from the simulations has 
been plotted for three different firing probability 
distributions and compared to a patient recording 
(Figure 4). For ܿ ≅ 1 the time series have similar 
features to the patient data. Differences can only be 
seen for large deviations from ܿ = 1. As case 
examples for their characteristic behaviour extreme 
cases of ܿ have been used. As ܿ ≪ 1, bursting 
behaviour is visible in the time series and for ܿ ≫ 1 
periodic spiking becomes apparent.  

 
Figure 4: Comparison of a) Patient MER to simulations 
with b)	ܿ = 1  , c) ܿ ≪ 1	and d) ܿ ≫ 1. 

The simulations were calculated at a rate of 6 
milli seconds per neuron per second of 
computational time, a 200 fold increase on 
dynamical models that reproduce accurate waveform 
shapes  (Long & Fang, 2010). 

 
Figure 5: Overlap of the real patient windowed PSD over 
the windowed PSD of the simulation for ܿ = 1.  

 

Figure 6: Overlap of the real patient windowed PSD over 
the windowed PSD of the simulation for ܿ ≫ 1.  

 

Figure 7: Overlap of the real patient windowed PSD over 
the windowed PSD of the simulation for ܿ ≪ 1. 

The windowed PSD for all three simulations and 
the patient recordings, seen in figures 5, 6 & 7, have 
three main regions. The first region is the filter drop 
off above 5 kHz. This feature is present in all 4 
PSDs with good agreement between patient data and 
simulations. The thermal noise term added is white 
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noise and as such adds the same power to every 
frequency, shifting the PSD up. This effect is 
removed by normalizing the power spectrum to 
integrate to unity. The other electrical effects; high 
and low pass filtering; do however alter the 
normalized power spectrum, seen by the sharp 
falloff in power in this region. 

The second region is the behaviour at high 
frequencies (100-5000 Hz). The two simulations 
with ܿ ≤ 1 have good agreement with patient data in 
this region shown in figures 5 & 7. The simulation 
with ܿ ≫ 1 (figure 6) has structure in this region that 
can be explained as harmonics of features in the low 
frequency region. The overall shape in this region is 
dominated by the waveform of the EAP. 

The final region of interest is in the region below 
100 Hz. This region is thought to contain 
information of the Local field potential (LFP). 
Experimentally this region has an electronic filter, 
with a slow drop off.  For ܿ ≫ 1 this region has a 
sharp peak at 10 Hz, the simulated spike rate, and 
then has peaks at the harmonic frequencies of n10 
Hz, where n is an integer. The other two cases have 
anomalous peaks in this region similar to the 20 Hz 
peak in the patient data. This beta band peak (12-30 
Hz) has been seen in PD MER recordings previously 
and has been implicated in the pathological state 
(Eusebio & Brown, 2009). 

Besides the PSD for ܿ ≫ 1, the problem with 
comparing the average PSD is that they appear very 
similar between 100-5000 Hz with differences 
below 100 Hz. Another method to examine the 
spectral properties of an MER is to look at the 

spectrogram, figure 8, and to observe changes in the 
power spectrum over time. 

From the spectrogram for the typical patient 
MER recording it can be seen that the PSD changes 
in time. These recordings show the feature in the 
beta band appearing and disappearing through the 
recording. 

When the numerical simulations were performed 
with ܿ ≫ 1, the PSD appears periodic stationary. 
This behaviour can be seen in figure 8 d). When c is 
set to one or below features of the PSD appears to 
change in time in the beta band. This is similar 
behaviour to the PSD for the patient data. 

This analysis suggests that ܿ ≅ 1  qualitatively 
represents the patient data the best from the options 
tried. This supports the idea that spiking behaviour 
in a large network appears Poisson (Câteau & Reyes, 
2006; McNames, 2004; Stevens & Zador, 1998).  

3.2 Analytical Predictions 

The results from equation (5) show the effect of 
changes in the aggregate probability distribution. 
Equation (5) can be thought of as a spike waveform 
filter that is dependent on the probability distribution 
through ܴ݁ൣܪ(߱) ൫1 − ⁄൯(߱)ܪ ൧. Figure 9 shows the 
frequency behaviour of equation (5) for different 
values of ܿ, if the statistics follow a Weibull 
distribution.  

For ܿ ≫ 1 and ܿ = 1 figure 9 shows the 
frequency filtering effects due to the spiking 
statistics are flat and will not add noticeable features 
in the PSD below 100 Hz. This analytical model 
doesn’t take into account the frequency filtering of 

 
Figure 8: Spectrograms with the region displaying beta band behaviour boxed in red, a) patient MER showing transient beta 
band behaviour, b) simulations ܿ ≪ 1 showing transient beta band behaviour, c) ܿ = 1 showing transient beta band 
behaviour and d)	ܿ ≫ 1 showing periodic behaviour. 
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more distant neurons by the extracellular medium. 
Figure 9 a) shows how the extracellular medium 
model acts as a low pass filter. For these reasons this 
model is not sufficient to describe the features seen 
in the numerical simulations below 100 Hz. 

 
Figure 9: a) The filter function of the extracellular medium 
at 0.2݉ߤ. Inserts b)-d) show the comparison of the power 
spectrum of the EAP with the MER power spectrum from 
the analytical model, b) the MER PSD for ܿ = 1 modelled 
by equation (9), it can be seen that for this distribution the 
results of the MER and EAP PSDs are in agreement, c) the 
MER PSD for ܿ ≫ 1 modelled by equation (9), d) the 
MER PSD ܿ ≪ 1 modelled by equation (9). 

For ܿ ≫ 1 the 10 Hz peak with harmonic peaks 
in the numerical simulation can be   seen in the 
frequency effects from equation (9), shown in figure 
9, if the aggregate probability distribution maintains 
the single neuron ISI probability shape.  

The problem with this analysis is that we have 
assumed that the distribution controlling the ISIs is 
stationary in time. Equation (9) cannot account for 
ISI distributions that change in time. The non-
stationary nature of the real patient PSD could 
suggest that the probability distribution describing 
the neuron firing may not be stationary. This 
behaviour can alternatively be explained by the 
probabilistic nature of the simulation and the time 
period the PSD is taken over. This is demonstrated 
by the simulations using the PP model showing 
similar non stationary behaviour under the same 
analysis, even though the probability distribution of 
ISIs was stationary in time. 

4 CONCLUSIONS 

MERs were efficiently simulated using a PP model 
with a conductance model for generating the EAP, 
taking into account extracellular frequency filtering 

and attenuation; and the effects of the recording 
electronics. The simulations perform approximately 
200 times faster than using a Hodgkin and Huxley 
model for all of the neuron dynamics (Long & Fang, 
2010). With this computationally efficient model 
very good agreement was achieved when comparing 
the windowed PSD of the simulated MERs with real 
patient data for frequencies above 100 Hz. 

Below 100 Hz the PSD of patient MERs are not 
stationary, which can be reproduced using a time 
stationary probability distribution for the ISI. Since 
the model is a probabilistic model that treats the 
neurons as point sources rather than a full dynamical 
model, the neurons are either in an ‘on’ or ‘off’ 
state. This means it cannot produce neural features 
such as sub-threshold oscillations and cellular 
activity such as synaptic currents. These features 
may be critical for describing the features below 
100Hz sufficiently. 

The analytical model using the results from 
Banta (1964) showed features that were present in 
the simulations, such as the harmonic structure 
present in the windowed PSD for simulations with ܿ ≫ 1. This type of analysis could allow for 
characterization of the ISI probabilities of patient 
MERs from the windowed PSD.  

To account for the features in the beta band (10-
35 Hz) more complex models; including explicit 
network interactions and full cell dynamics, such as 
sub-threshold oscillations, may be required. 

Future work could include performing the 
inverse problem of finding the shape and rate 
parameters that best describe a patient MER. The 
results from this study could be used to find markers 
that may be applicable in the clinical environment 
for optimising DBS and potentially operating in a 
feedback controller.   
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