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Abstract: The histogram of forces is a generic relative position descriptor with remarkable properties, and it has found 
many applications, in various domains. So far, however, the applications involve objects in raster form. The 
fact is that several general algorithms for the computation of force histograms when dealing with such 
objects have been developed; on the other hand, there is no general algorithm available for objects in vector 
form, and the algorithms for raster objects cannot be adapted to vector objects. Here, the first general 
algorithm for calculating force histograms using vector data is presented. 

1 INTRODUCTION 

The histogram of forces is a generic relative position 
descriptor with high discriminative power and 
remarkable properties. It was introduced by Matsakis 
and Wendling (1999) with the aim of developing 
new models of directional relations (such as right, 
left, above, below) between 2-D objects. The spatial 
organization of 2-D objects is a subject of interest in 
many disciplines (e.g., computer science, cognitive 
science, linguistics, geography), with applications in 
various domains (e.g., medical imaging, robot navi-
gation, content-based image retrieval, geographic 
information systems). The histogram of forces has 
been used, e.g., in a geospatial information retrieval 
and indexing system (Shyu et al., 2007); for scene 
matching (Sjahputera and Keller, 2007); to interpret 
human-to-robot commands and generate robot-to-
human feedback (Skubic et al., 2004); along with a 
land cover classification system (Vaduva et al., 2010). 
Many other applications are mentioned in a recent 
paper by Matsakis et al. (2011): the classification of 
skull orbits and sinuses; the recognition of graphical 
symbols in technical line drawings; the translation of 
hand-sketched route maps into linguistic descrip-
tions; etc. The above-mentioned applications deal 
with 2-D objects in raster form. These objects can be 
crisp or fuzzy, connected or disconnected, with or 
without holes, disjoint or overlapping. The fact is 
that several general algorithms for the computation 

of force histograms when dealing with such objects 
have been developed. The traditional algorithm 
(Matsakis and Wendling, 1999) runs in O (Kk2N√N) 
time, where K is the number of directions in which 
forces are considered, k is the number of nonzero 
membership degrees and N is the number of pixels 
in the image. A variant runs in O (KkN√N) time. 
Another runs in O (KN√N) (Wang et al., 2004). A 
completely different algorithm is in O (N logN) (Ni 
and Matsakis, 2010). Which algorithm or variant 
performs better under which conditions is an issue 
discussed by Ni and Matsakis (2010). As these 
authors acknowledge, however, the algorithms 
above cannot be adapted to objects in vector form, 
and there is no general algorithm for the compu-
tation of force histograms in the case of vector 
objects (Matsakis et al., 2011). The present paper 
fills this important lacuna. The concept of the 
histogram of forces is described in Section 2. The 
new algorithm is introduced in Section 3. 
Experimental results follow in Section 4, and 
Section 5 concludes the paper. 

2 BACKGROUND 

2.1 Objects 

Consider a fuzzy subset A of the Euclidean plane. 
Every point p of the plane has therefore a grade of 
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membership in A. This grade, A(p), is 0 if p does not 
belong to A at all; it is 1 if p totally belongs to A; it is 
a value between 0 and 1 otherwise, and the greater 
A(p) the more p belongs to A. The α-cut of A, where 
0<α≤1, is the (crisp, ordinary) set of points p such 
that A(p)≥α. In this paper, an object is a fuzzy subset 
A of the Euclidean plane such that any A(p) belongs 
to the set {α1,α2,…,αk+1}, with 1=α1>α2>…>αk+1=0, 
and the intersection between any αi -cut of A and any 
straight line has a finite number of connected 
components. 

2.2 Force Histograms 

Consider two distinct infinitesimal particles p and q 
of mass m and n. According to Newton’s law of 
gravity, p exerts on q the force  

mn / | |3, (1)

where →qp  is the vector from q to p and |→qp | its 
length. This force tends to move q towards p, and its 
magnitude is mn / |→qp |2. Now, consider two objects 
A and B. They can be seen as flat metal plates of 
constant and negligible thickness: the area mass 
density of A at point p is the grade of membership 
A(p), and the area mass density of B at q is B(q). 
Every point p of A exerts on every q≠p of B an 
infinitesimal gravitational force, and the vector sum 
of all these forces, i.e., the resultant force exerted by 
A on B, can be found using integral calculus. 
Instead, consider a real number r and a direction θ,  
replace (1) with (2), or with (3), and calculate the 
magnitude ϕr

AB (θ)  of the vector sum of all the 
infinitesimal forces in direction θ (Fig. 1). The 
function ϕr

AB  so defined is called a force histogram. 
It is one possible representation of the position of A 
relative to B. 

mn / | |r+1 (2)

min{m, n} / | |r+1 (3)

 
 
 
 
 
 
 
 

Figure 1: Every point of A exerts on every point of B an 
infinitesimal force. Using integral calculus, find the vector 
sum of the forces in direction θ. Its magnitude is ϕr

AB (θ) . 

2.3 Properties 

The interest in force histograms lies in the fact that 
they are relative position descriptors with high 
discriminative power and remarkable properties. 

Consider a real number r and two objects A and 
B. Equation (4) holds for any θ. 

 (4)

Let rot be a ρ-angle rotation and let sca be a uniform 
scaling with positive scale factor λ. The force 
histograms ϕr

rot (A) rot (B)  and ϕr
sca(A) sca(B)  can be 

expressed in terms of ϕr
AB . Equations (5) and (6) 

hold for any θ. 

 (5)

 (6)

Actually, any ϕr
aff (A) aff (B) , where aff denotes an 

invertible affine transformation, can be expressed in 
terms of ϕr

AB . See (Matsakis et al., 2011) (Ni and 
Matsakis, 2010) for details. Note that the grade of 
membership of a point p in the object aff(A) is, by 
definition, aff(A)(p)=A(aff −1(p)); likewise, 
aff(B)(p)= B(aff −1(p)). Now, let Ai denote the αi -cut 
of A and let B j denote the αj -cut of B. If the forces 
are as in (2), then (7) holds; and if they are as in (3), 
then (8) holds. 

(7)

 (8)

Assume A and B are crisp, i.e., all grades of 
membership are in {0,1}. Consider a tuple (A1, A2, 
…, Aa) of crisp objects, where a is a positive integer. 
Assume the interior of Ai ∩ Aj is empty for any i≠j 
and the closure of A is equal to the closure of ∪i Ai. 
We then say that (A1, A2, ..., Aa) is a partition of A. 
Likewise, assume (B1, B2, ..., Bb) is a partition of B. 
Equation (9) holds for any θ.  

 (9)

r has an interesting impact on the histogram. When r 
is zero, ϕr

AB  responds equally to changes in the 
closest parts and in the farthest parts of A and B. 
When r< 0, it responds more to changes in the 
farthest parts, and the greater | r | the more 
asymmetric the response. When r > 0, it responds 
more to changes in the closest parts; so much so that 
the histogram values are infinite if, e.g., r ≥1 and the 
objects overlap (i.e., the interior of their intersection 
is not empty). Finally, note that the relative position 
descriptor ϕr

AB  becomes a powerful shape descript-

→qp →qp

→qp →qp
→qp →qp

ϕr
BA (θ) = ϕr

AB (θ + π)

ϕr
rot(A) rot(B) (θ) = ϕr

AB (θ − ρ)

ϕr
sca(A) sca(B) (θ) = λ3−rϕr

AB (θ)

ϕr
AB (θ) = (αi −j=1

k∑i=1
k∑ αi+1)(α j − α j+1) ϕr

Ai B j
(θ)

ϕr
AB (θ) = (αi − αi+1)ϕr

Ai B j
(θ)i=1

k∑

ϕr
AB (θ) = ϕr

Ai Bj (θ)j=1
b∑i=1

a∑
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(a) (b) (c) 

Figure 2: Partitioning of the objects. (a) Each object is divided into trapezoidal pieces. Note that A and B are not necessarily 
convex or disjoint: there may be more than two pieces between two consecutive lines, and some pieces may intersect. (b) 
The trapezoids p1 p2 p3 p4 and q1 q2 q3 q4 are cut along the dotted lines into three pieces each. (c) p1 p2 p3 p4 is broken into p1 
q2 q3 p4 and q2 p2 p3 q3, and q1 q2 q3 q4 is broken into q1 p1 p4 q4 and p1 q2 q3 p4. 

 
(a) (b) (c) (d) 

Figure 3: Two trapezoids Ai and Bj between two consecutive lines. There are 4 cases. Note that in (a), the trapezoids may 
share one vertex or one edge; in (b) they may only share one vertex. 

tor when r<1 and the two objects A and B are equal 
(Matsakis et al., 2011). 

3 ALGORITHM 

3.1 Vector Objects 

In the remainder of this paper, we assume that every 
αi -cut of an object can be expressed using the union 
and difference set operations in terms of a finite 
number of simple polygons P1

i , P2
i , P3

i , …, where 
the edges of Pu

i  and Pv
i  do not intersect if u≠v. 

Note that an object may be crisp or fuzzy, convex or 
concave, connected or disconnected, and may have 
holes in it. Practically, each object is described in a 
text file as the list of its cuts (sorted by increasing 
αi); each cut is described as a set of polygons (in any 
order); each polygon as a list of vertices (listed either 
clockwise or counterclockwise); each vertex as a pair 
of coordinates x and y. 

3.2 Handling of Vector Objects 

As per (7) and (8), the handling of any two objects 
comes down to the handling of crisp objects. Let us 
explain, therefore, how to calculate ϕr

AB (θ)  when A 
and B are crisp. First, a partition (Ai) of A and a 

partition (Bj) of B are obtained as follows. The 
straight lines in direction θ that pass through the 
objects’ vertices divide the objects into trapezoidal 
(or triangular) pieces (Fig. 2a). Consider a piece of A 
and a piece of B between two consecutive lines. If 
two nonparallel edges of these pieces intersect, an 
additional line in direction θ is drawn through the 
intersection point. This line divides the two pieces 
into smaller pieces (Fig. 2b). Consider two of these 
smaller pieces, between two consecutive lines. If an 
edge of the piece of A runs inside the piece of B, or 
vice versa, both pieces are broken into even smaller 
pieces (Fig. 2c). The partitioning is then complete, 
and ϕr

AB (θ)  can be calculated as in (9). Note that 
ϕr

AiBj (θ) = 0 unless Ai and Bj are between two 
consecutive lines. If they are, 4 cases must be 
considered (Fig. 3): in each case, ϕr

Ai Bj (θ)  can be 
expressed in terms of r, θ, ε, x1, x2, y1, y2, z1, z2, 
where x1, x2, z1, z2 are edge lengths and ε, y1, y2 are 
distances between edges (Fig. 4). These expressions 
result from the calculation of triple integrals, and are 
given in Table 2. The functions f1, f2, f3, f4 are as in 
Table 1, and t(θ) = max{ cos(θ) , sin(θ)} . 

4 EXPERIMENTS 

The general algorithm for force histogram calculation 
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Figure 4:  ϕr

Ai Bj (θ)  can be expressed in terms of r, θ, ε, x1, x2, y1, y2, z1, z2. See Table 2. Note that the vertices of Ai and Bj 

are projected onto horizontal lines if cos(θ) > sin(θ)  and onto vertical lines otherwise. 

Table 1: The functions f1, f2, f3, f4. 

 f1(x, y) f2(x, y) f3(x, y) f4(x, y) 

  x≠y  

  x=y x ln(x) 1+ln(x) 1/x (3−r)  

Table 2: Expressions for ϕr
AiBj (θ) .  See Table 1 and Figs. 3-4. 

BEFORE 0 

A
FT

ER
 

  r = 0 [(x1+x2)(z1+z2)+x1z1+x2z2] 

  r = 1 [ f1(x1+y1+z1, x2+y2+z2)+f1(y1, y2)−f1(x1+y1, x2+y2)−f1(y1+z1, y2+z2)] 

  r = 2 − ε [ f2(x1+y1+z1, x2+y2+z2)+f2(y1, y2)−f2(x1+y1, x2+y2)−f2(y1+z1, y2+z2)] 

  r = 3 [  f3(x1+y1+z1, x2+y2+z2)+f3(y1, y2)−f3(x1+y1, x2+y2)−f3(y1+z1, y2+z2)] 

  else ε [ f4(x1+y1+z1, x2+y2+z2)+f4(y1, y2)−f4(x1+y1, x2+y2)−f4(y1+z1,y2+z2)] 

 
 

TO
U

C
H

   r = 1 [ f1(x1+z1, x2+z2)−f1(x1, x2)−f1(z1, z2)] 

r <1 or 
1< r <2 

[ f3(x1+z1, x2+z2)−f3(x1, x2)−f3(z1, z2)] 

  else +∞ 

EQ
U

A
L

  r<1 f4(x1, x2) 

  else +∞ 
 

y2 (ln(y)− 0.5)− x2 (ln(x)− 0.5)
y − x

y ln(y) − x ln(x)
y − x

ln(y)− ln(x)
y − x

y3−r − x3−r

y − x

x2− r

ε
6 t(θ)2

ε
2 t(θ)

ε t(θ)
2

                                                                                                              
t(θ)2−r (1− r)(2 − r)(3− r)

ε
2 t(θ)
ε

t(θ)2−r (1− r)(2 − r)(3− r)

ε
t(θ)2−r (1− r)(2 − r)(3− r)
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in the case of 2-D vector objects was implemented in 
C, and the experiments were conducted on a Mac 
OS X 10.6, Intel Core 2 Duo, 2.4 GHz, 4 GB. If the 
forces are as in (2), then (7) applies, and the 
algorithm runs in O(Kk2 η log η) time, where K is the 
number of directions in which forces are considered, k 
is the number of nonzero membership degrees (k=1 
for crisp objects), and η is the total number of object 
vertices. If the forces are as in (3), then (8) applies, 
and the algorithm runs in O(Kk η log η). The η log η 
part comes from the fact that for every direction θ 
considered, the partitioning of the objects is 
achieved by sorting the vertices following direction 
θ+π/2. Figures 5 and 6 show examples of objects 
and related force histograms, and Fig. 7 shows the 
processing times of crisp objects in a best case 
scenario (a)(b)(c) and in a worst case scenario 
(d)(e)(f). Note, (a)(d), that the processing time is 
minimum when r = 0, maximum when r is not an 
integer (all non-integer r values give about the 
same processing times), and between these two 
extremes when r is a nonzero integer. Times to 
process objects in vector vs. raster forms are 
compared in (b)(c)(e)(f). For example, (e), 
calculating the histogram of constant forces (r = 0) 
between two intersecting stars with 50 vertices each 
(i.e., 25-pointed stars) is about 20 times faster if the  

stars are in vector form (than if they are in raster 
form and made of 250K pixels each; whatever the 
raster algorithm used). Note that for every r and 
every pair of objects considered in these 
experiments, the histograms produced by the vector 
and raster algorithms are visually indistinguishable, 
and their similarity (as measured by the Tanimoto 
index) is greater than 99.6%. 

5 CONCLUSIONS 

A relative position descriptor like the histogram of 
forces which is endowed with remarkable properties 
and able to handle any pair of 2-D objects (whether 
these objects are crisp or fuzzy, connected or 
disconnected, with or without holes, disjoint or 
overlapping) is undoubtedly a most useful tool: 
relative position descriptors are a natural complement 
to colour, texture, and shape descriptors; the spatial 
organization of 2-D objects is a subject of interest in 
many disciplines; spatial regions are modelled by 
fuzzy sets in an increasing number of applications 
and areas; examples of regions with holes or 
multiple connected components abound; examples 
of regions that touch or overlap abound as well (in 
particular, fuzzy regions often naturally overlap).  

(a) (b) (c) (d) 

Figure 5: (a) Britain and Ireland share Northern Ireland. (b) Bolivia in South America. (c) Canada and the U.S. (d) The risk 
for strong or violent tornadoes in the U.S. is high (black), medium (dark gray), low (light gray), negligible (elsewhere). 

   
(a) (b) (c) (d) (e) (f) 

Figure 6: Examples of force histograms. In (a), the objects are disjoint (Canada relative to South America). In (b), they 
touch (Canada relative to the U.S.). In (c), they overlap (Britain relative to Ireland). In (d), they are equal (the U.S.). In (e), 
one includes the other (South America and Bolivia). In (f), one is crisp (the U.S.) and the other is fuzzy (tornado risk map).  
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(a) (b) (c) 

(d) (e) (f) 

Figure 7: Processing times; in each case, forces were computed in 100 evenly distributed directions. In (a)(b)(c), the objects 
are crisp disjoint regular convex polygons; in (d)(e)(f), they are crisp intersecting star polygons. In (a)(d), the objects are in 
vector form and the processing time is the average processing time per direction; note that in (a), only the directions with 
nonzero forces were actually considered. In (b)(c)(e)(f), the time ratio is the time to process the two objects in raster form 
divided by the time to process the same two objects in vector form. In (b)(e), each raster object is made of 250K pixels; in 
(c)(f), each vector object has 100 vertices.  

Until now, however, only objects in raster form 
could be considered. In this paper, we have widened 
the scope of the histogram of forces to objects in 
vector form. Since polygons are a fundamental type 
of data in, e.g., computer graphics and GIS, and are 
also often used to approximate boundaries of raster 
regions, this is a significant achievement which 
should draw the interest of practitioners. Note that all 
the programs for force histogram computation are 
freely available upon request. We are currently 
developing efficient general algorithms for the 
handling of 3-D raster and vector objects. 
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