
cswHMM: A NOVEL CONTEXT SWITCHING HIDDEN 
MARKOV MODEL FOR BIOLOGICAL SEQUENCE ANALYSIS  

Vojtěch Bystrý and Matej Lexa 
Faculty of Informatics, Masaryk University, Brno, Czech Republic 

Keywords: Bioinformatics, Data-mining, Hidden markov models. 

Abstract: In this work we created a sequence model that goes beyond simple linear patterns to model a specific type 
of higher-order relationship possible in biological sequences. Particularly, we seek models that can account 
for partially overlaid and interleaved patterns in biological sequences. Our proposed context-switching 
model (cswHMM) is designed as a variable-order hidden Markov model (HMM) with a specific structure 
that allows switching control between two or more sub-models. An important feature of our model is the 
ability of its sub-models to store their last active state, so when each sub-model resumes control it can 
continue uninterrupted. This is a fundamental variation on the closely related jumping HMMs. A 
combination of as few as two simple linear HMMs can describe sequences with complicated mixed 
dependencies. Tests of this approach suggest that a combination of HMMs for protein sequence analysis, 
such as pattern mining based HMMs or profile HMMs, with the context-switching approach can improve 
the descriptive ability and performance of the models. 

1 INTRODUCTION 

Biological sequences, especially protein sequences, 
code for 3-D objects, where even a sequentially 
distant position can fold into mutual proximity and 
vice versa, consecutive amino acids can have 
contrasting functions. As such, protein sequences 
contain interleaved gapped patterns of varying size, 
as well as long-distance interactions and complex 
dependencies that often need to be accounted for. 
That makes creating a good statistical model of a 
biological sequence extremely difficult. 

Many approaches to representations of sequences 
by specialized data structures and models have been 
tried and are still valid, such as suffix trees 
(Bejerano, 2001), regular expressions (Nicolas, 
2004) or motif descriptions (Bailey, 2009). Perhaps 
the most successful and widely known techniques 
are based on hidden Markov models (Karplus, 
1998), a class of stochastic models working with the 
probability of individual symbols in sequences. The 
most commonly used models are the profile hidden 
Markov models (pHMM) (Eddy, 1998) where each 
hidden state represents a specific position in the 
biological sequence. Models where states 
correspond to a group of sequence positions also 

exist. Such models have been used for 
transmembrane protein topology prediction 
(Viklund, 2004) or gene finding. (Pachter, 2001) 
Lately, more complex variations appeared such as 
jumping profile hidden Markov models (jpHMM) 
(Schultz, 2006) or the gapped pattern-mining-based 
hidden Markov model VOGUE (Zaki, 2010). 
VOGUE adds the ability of modelling gapped 
patterns and its biggest contribution is the idea of 
combing data mining with data modelling. We have 
adapted this data mining technique as a part of the 
parameter learning process of our model. jpHMM 
improve upon simple HMMs by allowing jumping 
between different sub-models. That allows jpHMM 
to better model alternating contexts in sequences. 
Strict adherence to the markovian property causes 
the history of visited states to be completely 
forgotten after every jump to a different sub-model. 

To address this shortcoming, we propose a new 
type of hidden Markov model that is a combination 
of jumping profile HMMs and variable order 
HMMs. Same as jpHMM, our model consists of 
distinct sub-models, each representing a different 
context in the sequence. Similarly to jpHMM, our 
model can arbitrarily switch between these sub-
models.  Our model adds a context memory by 
remembering the last active state of each sub-model, 
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so that these can continue the computation 
uninterrupted after resuming control.  It means that 
each sub-model can represent different arbitrarily-
gapped context in the sequence and cswHMM can 
combine them together. That gives cswHMM a 
unique ability to analyze sequences that contain 
mixed signals with interleaving patterns.  

We envision applications of cswHMM in several 
areas of biological sequence analysis. For example, 
proteins from a single family or superfamily often 
share a common amino acid core, but differ in the 
surface amino acids, often located in loops of 
varying lengths. While the composition of the core is 
driven by the necessity for predictable protein 
folding, the external parts may be determined by 
possible binding partners, the surrounding 
environment or a required enzymatic activity. The 
two kinds of sequences alternate in most currently 
known protein folds (Fernandez-Fuentes, 2010), 
therefore modelling such sequences with cswHMM 
seems natural. Another candidate for the application 
of cswHMM may be found in gene prediction. The 
position of genes in nucleotide sequences is often 
predicted using HMMs. In the case of eukaryotic 
genes, part of the HMM predicts exons interleaved 
with introns. Because the exons contain 3-nucleotide 
codons which must remain in-frame even between 
two exons separated by an intron, successful 
prediction of precise exon/intron boundaries requires 
a memory mechanism identical to the one proposed 
in cswHMMs (Majoros, 2009). Membrane proteins 
often form interfaces between two environments 
separated by the membrane, the parts of the protein 
that form one or the other part of such interface are 
commonly interleaved in the primary sequence 
(Krogh, 2001), again giving a possibility to model 
such sequences with cswHMM better than with 
alternative models. The other broader goal is to 
identify new gapped motifs in protein sequences and 
the possibility of their combination. This will allow 
us to contribute to a better understanding of protein 
sequence composition (Ganapathiraju, 2005).  

The rest of the paper is organized as follows. In 
Section 2 we describe in detail the general design of 
cswHMM and its formal definition. In the end of the 
section we show a possible way of unsupervised 
learning of the cswHMM based on mined gapped 
patterns. In Section 3 we present two applications of 
our model to protein sequence analysis. Finally, 
Section 4 concludes our work and presents possible 
future research. 

2 METHODOLOGY 

HMM is the mathematical basis for our model since 
cswHMM is a case of a HMM with special 
topology. To summarize and unify the notification 
we will briefly describe the formal definition of 
HMM. 

2.1 HMM Definition 

HMMs are defined by a set of discrete hidden states ܵ = ଵݍ} ,௫ݍ)ܶ a transition function {݊ݍ… (௬ݍ =ܲ൫ݍ௬หݍ௫൯ providing ܲ൫ݍ௬หݍ௫൯ the probability of 
transition from state ݍ௫ to state	ݍ௬; by its output 
density probability function ܱ(ݍ௫) =  is a random variable over the set of possible (௫ݍ|)ܲ where (௫ݍ|)ܲ
observations determining probability of these 
observations. For applications in sequence analysis 
the set of possible observations is usually equal to 
sequence alphabet and it is a discrete variable. The 
last thing to define in HMM is a vector of prior 
probabilities. In the following text we omit 
definitions of these, since they are irrelevant to our 
model and can always be replaced by an additional 
initial state and a corresponding addition to the 
transition function. 

2.2 cswHMM Definition 

As explained in Section 1, the basic idea of 
cswHMM is to combine different sub-models so 
they can transit from one to another while keeping 
the last active state in all other sub-models in a 
specialized memory. A classical hidden Markov 
model is memoryless, but we can encode the 
information about the last active states in the 
topology of the HMM. 

 
Figure 1: a) Transition diagram of two HMMs we want to 
join. b) Transition diagram of joined cswHMM. 

To join two HMM sub-models with a set of states X 
and Y, we create a model with two sets of states, 
each composed of the Cartesian product of X and Y. 
Each state of cswHMM can be identified by an 
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ordered triplet ൣ݅, ,௫ݍ ݅ ௬൧ whereݍ ∈ {1,2} is the 
number of the currently active sub-model. ݍ௫ ∈ ܺ 
and  ݍ௬ ∈ ܻ are the last active states in the 
respective sub-models. Figure 1 illustrates how two 
simple HMMs are joined to cswHMM. In the next 
paragraph we present the formal definition of 
cswHMM for joining of n sub-models. We define 
the emission and transition probability functions of 
such model.  

Suppose we have a set of HMMs Λ	 =	{Hଵ …H୬}, where each ܪ has states  ݏ =൛ݍభ ,ೕݍ)ݐ ൟ, transition probability functionݍ… (ೖݍ = ܲ൫ݍೖห	ݍೕ)	, and output probability 
density function (, (ೕݍ = ,݆ where ,(ೕݍ|)ܲ ݇ ∈ {1…݉} and o are possible observation.  Let 
there be an index set ܫ = {1…݊}. Then cswHMM 
created as a combination of individual HMMs from Λ would have states S according to Equation 1. 
Equation 2 defines the emission probability function 
O and the transition probability function T of such 
cswHMM is defined by Equations 3-5. ܵ = ܫ × ଵݏ × ଶݏ × …× ݏ ==ራራ … ራ{ݍ,ଵೕ,…,ೕ}

ೕୀଵ
ଵ
ଵೕୀଵୀூ  (1) 

ܱ ቀݍ,ଵೕ,…,ೕቁ =  ቆݍቀೕቁቇ (2) ܶ ቀݍ,ଵೕ,…,ೕ,…,ೕ, =,ଵೕ,…,ೖ,…,ೕቁݍ ݐ ቆݍቀೕቁ,  ൫ೖ൯ቇݍ
(3) 

ܶ ቀݍ,ଵೕ,…,ೕ,…,ೕ, :,ଵೕ,…,ೖ,…,ೕݍ ݅ ≠ ݈ቁ= ݐ ቆݍቀೕቁ, ∗൫ೖ൯ቇݍ ܹܵ൫ ݅, ݈൯ (4) 

otherwise ܶ(ݔ, (ݕ = 0 (5)

Where 	ܹܵ(݅, ݈) in the equation (4) is the 
probability of switching from state j of sub-model Hi 
to sub-model Hl. Essentially, parameter ܹܵ(݅, ݈) 
reflects the frequency of switching between 
contexts. Since we may not know the mapping of 
contexts on the data until the end of the learning 
procedure, estimation of this parameter is 
problematic and has to be done iteratively during the 
learning process or we must use some known 
properties of the data. 

With this topology the cswHMM can switch 
between its underlying sub-models without losing 
knowledge of the continuity in the sub-models. That 

makes cswHMM a powerful tool for modelling data 
with interleaving patterns. 

2.3 State Space Reduction 

The drawback of such a general model is its 
complexity, since cswHMM composed of n HMM, 
each with m states ݊ ∗ ݉ has states. Since the 
algorithms for inference of HMM have time 
complexity Ο = (ܰଶ ∗  where N is the number of (ܮ
states and L is the length of analyzed sequence, the 
time complexity of inference for such a cswHMM 
would be Ο = (݊ଶ ∗ ݉ଶ ∗  It is therefore .(ܮ
necessary to build cswHMMs from a small number 
of relatively small sub-models in order to keep the 
models computationally feasible. 

In real-world problems it is not usually necessary 
to combine all states of every sub-model, since in a 
linear sequence the number of directly neighbouring 
and possibly interleaved contexts is limited. The 
following methods can be used to lower the state 
complexity of cswHMM. If there are set of states of 
individual sub-model which do not switch to other 
sub-models, we can model such sub-models as a 
hierarchical HMM, where the “non-switching” set of 
states will be encapsulated in one higher-level state. 
The switching will take part only between these 
higher-level states. 

The second method to lower state complexity is 
to combine only the sub-models that might 
interleave in the sequence. If we had two sub-models 
that we know will not mix in the sequence, we can 
create two separate cswHMMs, each with only one 
such model and then connect these cswHMM in 
parallel via a general state. This method allows us to 
create one complex model of a protein family that is 
made of many relatively small cswHMMs. Thus, the 
overall state complexity of the model is 
computationally feasible. 

To conclude this section, let us emphasize that 
cswHMM may itself be a deep and complex model, 
but it is always a result of combining simpler 
HMMs. As such, its overall quality always depends 
on the sub-models we use.  

2.4 Learning cswHMM 

As mentioned before, the combination of models 
and the lack of precise knowledge about switching 
between them makes it difficult to learn model 
parameters directly from data. For HMMs this is 
commonly done by some type of EM algorithm. 
Inability to directly separate training data into sub-
models requires a different approach. A possible 
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solution is to use data mining to estimate the 
separation of data into sub-models and a subsequent 
data modelling step based on the mined patterns. A 
similar technique of combining data mining and data 
modelling has been used in VOGUE (Zaki, 2010), 
we therefore used its backbone as a basis for our 
algorithm. Figure 2 shows the general scheme of the 
necessary algorithms. The main difference in our 
approach is the separation of patterns using 
clustering to obtain more models for different 
contexts. Next, we will describe individual parts of 
our algorithm in detail. 

 
Figure 2: General diagram of cswHMM learning process 
via mined patterns. 

We used pattern mining algorithm VGS used as a 
base for the VOGUE model, which itself is a 
modification of cSPADE (Zaki, 2001), a method for 
constrained sequence mining. VGS finds all patterns 
of length at most k, with the maximum gap g 
between each two elements that have minimal 
frequency f in the sequence. Variables ݇, ݃, ݂ are 
parameters of the algorithm set by the user. VGS 
starts with patterns of lengths k = 1 and then 
incrementally couples those with enough positions 
in mutual proximity (defined by g) to reach 
frequency ݂. As an output of pattern mining we have 
a set of relevant patterns, each consisting of its ID 
and a list of positions of patterns occurring in the 
sequence.  

In the second step of our algorithm we compute a 
similarity matrix in order to cluster mined patterns in 
the different sets representing individual contexts in 
the sequences. The logic behind “similarity” of two 
patterns is that if they frequently overlap and extend 
each other it is likely that they belong to the same 
context and therefore to the same pattern set. On the 
other hand patterns which frequently interleave and 
mix without coinciding with each other are more 
likely to belong to different contexts. We therefore 
define a similarity function ݏ൫௫, ௬൯ → [0,1] in 
Equation  7 where ௫ and ௬ are patterns we want to 

compare. 

,௫൫ݏ ௬൯ = ቌ 11 +max(0, ܿଵ + ⋯+ ܿ)݊ ቍగ (6) 

Here n is the number of instances of ௫ and ௬ 
overlapping in the sequence.  ܿଵ, … , ܿ are respective 
distance coefficients of these collisions and ߨ is a 
coefficient determining the steepness of the function. 
Distance coefficients ܿ are defined by Equation 7. ܿ = ൫݊௫ݓ + ݊௬൯2 −  ∗   (7)ݓ

where ݊௫ is the number of elements of pattern ௫ 
that lie in some gap of pattern ௬. Similarly, ݊௬ 
denotes the same for elements of ௬ in some gap of ௫.  is the number of elements of patterns that 
coincide and ݓ and ݓ are weights set by the user. 

For the clustering itself we used direct clustering 
as implemented in the clustering tool CLUTO 
(Karypis, 2002), since direct clustering is the best 
clustering method for small number of clusters. Each 
cluster represents one set of patterns that in turn 
represent one context in the sequence. 

Individual HMMs which are the bases for our 
cswHMM are created from each pattern set similarly 
to the VOGUE algorithm, except we don’t add the 
gap states in the individual HMMs. Instead we add 
an additional HMM consisting of a single gap state, 
representing the parts of sequence not covered by 
any other HMMs. cswHMM is consequently created 
by combining these HMMs as described in Section 
2. 

Once we obtain an estimation of the appropriate 
cswHMM, we can separate data into sub-models and 
fine-tune our model using common EM methods, 
such as the popular Baum-Welsch algorithm. 

3 VALIDATION AND POSSIBLE 
APPLICATIONS 

3.1 PROSITE Classification 

With this type of unsupervised learning we tested 
the performance of cswHMM as applied to the 
problem of protein classification. To compare our 
model with other existing HMMs, we chose the 
same dataset and type of experiment as the authors 
of the VOGUE (Zaki, 2010) model. 

From the dataset of protein families PROSITE 
(Nicolas, 2004), ten families were chosen as a 
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testing dataset. Each family was divided into a 
training and testing set. Precisely, 75% of family 
members were used as training data for individual 
models, while remaining 25% of each family was 
compiled into a classification testing set. 

Table 1: Accuracy of protein classification for individual 
protein families from PROSITE and overall accuracy. 

Class cswHM
M VOGUE HMMER HMM 

PDOC00662 81,82 81,82 72,73 27,27 
PDOC00670 85,71 80,36 73,21 71,4 
PDOC00561 90,48 95,24 42,86 61,9 
PDOC00064 85,71 85,71 85,71 85,71 
PDOC00154 71,88 71,88 71,88 59,38 
PDOC00224 91,67 87,5 100 79,17 
PDOC00271 91,89 89,19 100 64,86 
PDOC00343 92,85 89,29 96,43 71,43 
PDOC00397 80 100 40 60 
PDOC00443 85,71 100 85,71 85,71 

Average 86,38 85,11 80,43 67,66 

We trained the cswHMM with different values of 
parameters of maximal pattern length, maximal gap 
length, minimal pattern frequency, similarity 
function coefficients and the switching probability. 
The models that gave the best performance were 
chosen. The optimal value of maximal pattern length 
was found to be 6 to 7. The maximal gap length was 
found not to significantly influence the results if 
higher than 5. The average probability of switching 
between sub-models was 0,86. This means that most 
of the modelled patterns were gapped. 

Table 1 shows the comparison of results of 
different models on individual datasets and the 
overall probability of prediction. cswHMM is 
comparable with other methods and in overall 
probability it even slightly surpass them, but this 
type of application should not be the primary 
function of cswHMM. We use it more as a 
validation of our proposed model whose main 
purpose is to improve analyses of sequences with 
mixed contexts and to identify those contexts.  To do 
so, we currently develop a tool to analyze individual 
sub-models and their performance during sequence 
analysis. 

3.2 Loop Modelling 

We analyzed eight arbitrarily selected protein 
families defined in the Pfam database (Finn, 2010), 
using the alignment of seed sequences of each 
family to determine conserved (protein core) and 
variable (loops) regions. In each alignment we 

identified possible loop positions as positions where 
more than 30% of aligned sequences had a gap. 
Amino acids at these positions were used to create a 
database of short sequences that represent the 
possible loops. 

Table 2: Logarithmic probabilities for combined HMM, 
classic profile HMM and their comparison. 

Pfam code cswHMM pHMM difference % 

PF00078 -3,738 -3,670 0,07 1,84 
PF00024 -3,856 -3,756 0,10 2,66 
PF00117 -3,722 -3,709 0,01 0,34 
PF00171 -3,834 -3,798 0,04 0,95 
PF00227 -3,699 -3,685 0,01 0,39 
PF00246 -3,786 -3,695 0,09 2,46 
PF03129 -3,856 -3,752 0,10 2,77 
PF01436 -3,864 -3,812 0,05 1,36 
Average -3,794 -3,735 0,060 1,60 

We trained a four-state HMM on this database to 
create a simple loop model for each family. 
Subsequently, we used the core profile HMM of 
each family and combined it with the corresponding 
loop model to create a simple cswHMM. We 
computed logarithmic probabilities of generating 
individual family without insertion states sequences 
with the new model and compared them with the 
logarithmic probabilities for classical pHMM. The 
results are shown in Table 2 and show slight 
improvement of generating probability with 
cswHMM. 

The loop modelling experiment has shown that 
the cswHMM approach may find use in protein 
sequence analysis where blocks of amino acids 
interfacing with different environments (protein 
core, membrane or cytoplasm) are interspersed with 
contrasting blocks. Numerical treatment 
corresponding to the proposed cswHMM provided 
an average 1,6% improvement in sequence 
description, consistently better for all studied 
families (Table 2). Models used within the 
cswHMM framework could possibly represent 
different building blocks, where at least one of the 
block types follows a predetermined order of amino 
acids and where mixing of the blocks is variable or 
optional. 

4 CONCLUSIONS AND FUTURE 
WORK 

In this paper we have presented a new model that is 
a type of variable-order hidden Markov model with 
ability to analyze mixed contexts in sequences. We 
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also introduced one possible method for 
unsupervised learning of cswHMM based on mined 
gapped patterns and showed two possible 
applications of such model to protein sequence 
analysis. 

In our future work we plan to apply our 
cswHMM to identify other mixed contexts in 
biological sequences. The possible application area 
is twofold. We can use our model to combine 
existing models of sequences that are known to have 
non-uniformly mixed contexts and in that way 
increase the description ability of those models. 
Some examples of such sequences are in Section 1.  
The other way of application of cswHMMs is to use 
unsupervised learning over different sets of 
sequences and try to find new, currently unknown 
common gapped patterns and their possible 
combinations. In that way we could reveal new rules 
governing biological sequence composition. 
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